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ABSTRACT

We show the existence of a stationary measure for a class of multidimensional

stochastic Volterra systems of affine type. These processes are in general not Marko-

vian, a shortcoming which hinders their large-time analysis. We circumvent this issue

by lifting the system to a measure-valued stochastic evolution equation introduced

by Cuchiero and Teichmann [17], whence we retrieve the Markov property. Leverag-

ing on the associated generalised Feller property, we extend the Krylov-Bogoliubov

theorem to this infinite-dimensional setting and thus establish an approach to the

existence of invariant measures. We present concrete examples, including the rough

Heston model from Mathematical Finance.
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1. Introduction

We are interested in the large-time behaviour of multidimensional Stochastic Volterra

Equations (SVEs) of affine type which take the form

Vt = V0 +

∫ t

0
K(t− s)b(Vs) ds+

∫ t

0
K(t− s)σ(Vs) dWs, t ≥ 0, (1.1)

where σσ⊤ : Rd → Rd×d and b : Rd → Rd are affine. Define R+ := [0,∞); the ker-

nel K ∈ L2
loc(R+,Rd×d) is a diagonal matrix with each component being the Laplace

transform of some signed measure on R+, such as the kernel t 7→ tα−1

Γ(α)e
−δt, α ∈

(1/2, 1], δ > 0.

The main result of this paper is the existence of an invariant measure for the Markovian

lift of (1.1) introduced by Cuchiero and Teichmann [17]; this entails a new notion of

stationarity for V . The renewed interest in SVEs stems from the emergence of a new

class of stochastic volatility models which surrender the comfort of Markovianity for

the sake of consistency with the data. Two examples in this direction are the rough

Heston model, which arises as the scaling limit of a high-frequency model governed

by Hawkes processes [26], and the rough Bergomi model which appeared in [5]. The

former is affine in the sense of (1.1) while the latter is not. The term affine Volterra

process was coined in [3] where general existence and uniqueness are derived. We note

here however that despite the large number of asymptotic results, very little is known

about the ergodic behaviour of rough volatility models.

In fact, to the best of our knowledge, only three related results exist in this direction.

The first one is a large deviation principle for the rescaled log-price under the rough

Heston model [31]; it is derived from computing the limit of its characteristic function,

which is known in semi-closed form [28]. The second one is [38], where the authors

proved the existence of an invariant measure for the asset price under the assumption

that the non-Markovian variance process has a stationary distribution. Upon comple-

tion of this work, we became aware of the very recent (and the third known related

result to us) [33]. There, using completely different methods than ours, the authors

prove the existence and characterise the properties of the invariant measure associated

to a special case (1.1), where the diffusion matrix σ is taken to be diagonal (so it does

not include the rough Heston model for example). While our results currently only

provide conditions for existence of an invariant measure (see however the discussion

in Section 6), our method is generally applicable to SVE models as long as one can

verify that the lift is a generalised Feller process and that certain bounds hold and

importantly we note that it parallels the Markovian theory. Other notable results in
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related directions are [6, 16].

When the process is Markovian, one gains access to transition semigroups, which in

turn allow to study the ergodic behaviour. A multitude of tools have been developed to

prove existence and uniqueness of invariant measures, as well as asymptotic stability

and rates of convergence. The most prominent in the literature are based either on

showing that the transition semigroup has the (strong) Feller property or on dissipa-

tivity methods, which are related to Lyapunov function techniques. We refer to [18, 19]

for an overview of these approaches.

A different point of view is given by the theory of Random Dynamical Systems where

Markovianity is replaced by a cocycle property for the driving noise, e.g. (fractional)

Brownian motion [4, 35]. Furthermore, in this context one analyses the asymptotic

behaviour by taking the starting time to −∞ and looking at the system at t = 0,

instead of starting at t = 0 and looking at t goes to +∞.

This inspired Hairer’s theory of Stochastic Dynamical Systems, which aimed at study-

ing the large-time behaviour of an SDE driven by additive fractional noise [39]. To

reconcile the Markovian ergodic theory with non-Markovian processes, his main idea

was to augment the state space with all the past fractional noise, and to define a Feller

semigroup on this augmented space. This led to further advances with multiplicative

noise in the case H > 1/3 [43, 44], and for the discretised version of the SDE [58].

The more recent literature on large-time behaviour of fractional processes has flour-

ished under the umbrella of rough paths theory, in particular regarding multiscale

systems [14, 36, 37, 52, 56, 57]. Their asymptotic properties were also investigated

thanks to Malliavin calculus [9] and the stochastic sewing lemma [41]. As usual with

fractional stochastic integrals however, these frameworks do not accommodate for the

highly irregular paths (Hurst exponent in (0, 1/4)) found in rough volatility models.

The idea of [40] with augmenting the state space to recover Markovianity made its

way to rough volatility modelling, albeit with a mild adaptation. Motivated by hedging

applications in the rough Heston model, El Euch and Rosenbaum [27] showed that since

the variance process is non-Markovian one needs to include the whole forward variance

curve; this suggests to consider the system (St, (E[Vs+t|Ft])s≥0). The forward variance

even satisfies a Stochastic Partial Differential Equation (SPDE) [2], which allowed

to further characterise the Markovian structure of the model. A similar stochastic

evolution equation lift for another singular SVE was in fact derived in an earlier

work [55]. The analysis of the rough Heston model is facilitated by its affine structure,

unlike the rough Bergomi model, its main competitor. Yet, the forward variance curve

of the latter also satisfies a stochastic evolution equation as it belongs to the realm of
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polynomial processes [15]. The most conducive stochastic evolution equation lift for

our purposes, though, was introduced by Cuchiero and Teichmann in [17]. Unlike the

previous approaches, they argue it is more sensible to start from the Markovian lift

before solving the SVE. More precisely, they consider the one-dimensional measure-

valued stochastic evolution equation

dλt(dx) = −xλt(dx) dt+ ν(dx)dXt, (1.2)

where λ0 and ν are signed measures on [0,+∞]

Xt = −β

∫ t

0
⟨1, λs⟩ds+ σ

∫ t

0

√
⟨1, λs⟩dWs,

where ⟨y, λ⟩ :=
∫∞
0 y(x)λ(dx) for all y ∈ Cb(R+). In fact, one should interpret the

stochastic evolution equation (1.2) in the mild sense such that

⟨y, λt⟩ =
∫ ∞

0
e−txy(x)λ0(dx) +

∫ ∞

0

(∫ t

0
e−(t−s)xy(x) dXs

)
ν(dx).

Applying the stochastic Fubini theorem, the total mass ⟨1, λ⟩ thus solves the affine

SVE (1.1) in dimension one, with K(t) =
∫∞
0 e−tx ν(dx) and λ0 being the Dirac mass

at zero multiplied by V0.

This setting is not limited to the univariate case and, recalling our initial motivation,

we observe that the rough Heston model implies the lift


dλ1

t (dx) = −xλ1
t (dx) dt+ δ0(dx)

(
−1

2
⟨1, λ2

t ⟩ dt+
√

⟨1, λ2
t ⟩dW 1

t

)
,

dλ2
t (dx) = −xλ2

t (dx) dt+ ν(dx)

(
β(θ − ⟨1, λ2

t ⟩) dt+ σ
√

⟨1, λ2
t ⟩dW 2

t

)
,

where W 1 and W 2 are correlated Brownian motions. In this framework, ⟨1, λ1
t ⟩ repre-

sents the log asset price and ⟨1, λ2
t ⟩ the instantaneous variance.

The added value of this approach lies in the generalised Feller property, a notion

introduced in [20], which is satisfied by the solution to (1.2) (albeit with θ = 0)

and opens the gates to many parallels with Markovian ergodic theory. Indeed, it is

an extension of the standard Feller property to spaces that are not locally compact.

To the best of our knowledge, the present paper is the first to study the large-time

behaviour of affine Volterra processes through generalised Feller processes. Friesen and

Karbach, in a paper posted at the same time as ours [34], exploit generalised Feller

processes to study the stationarity of a class of Hilbert-valued models. Interestingly
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enough, in [17], the authors also prove weak existence and uniqueness of the mild

solution of (1.2) by computing its Laplace transform

E[exp(⟨y0, λt⟩)] = exp(⟨yt, λ0⟩),

where y is the unique solution of a non-linear PDE.

The ergodic theory of space-time SPDEs is classical by now, with the monographs [18,

19], and in particular the vast literature on the 2D stochastic Navier-Stokes equation

which was the stage of several profound advances such as the asymptotic coupling

technique and the asymptotic Feller property [24, 25, 30, 40, 42]. More recent results

include [11, 12, 48].

As one can expect, the literature on measure-valued stochastic evolution equations

is less developed. However, there exist connections with measure-valued branching

processes (aka superprocesses) which are also Markovian processes characterised by

their Laplace transform, only the PDE satisfied by y takes a different form [53]. We

note that the ergodic behaviour of superprocesses has been studied extensively thanks

to their Laplace transform [13, 29, 32, 46, 49], which is a hopeful message for us.

Furthermore, the analogy with our stochastic evolution equation lift does not stop

there: the density field of some of these superprocesses also satisfies an stochastic

evolution equation with an affine structure [50, 54], and in the continuous-state case

branching processes share properties with affine SDEs [47]. However, superprocesses

take values in spaces of non-negative measures, which can be locally compact, in which

case it makes sense to use the standard Feller property.

The rest of the paper is organised as follows. In Section 2 we discuss the mathematical

framework, the generalised Feller property, and present our main results, Proposi-

tion 2.4 and Theorem 2.6. In Section 3 we introduce a condition for existence of an

invariant measure in an abstract setting that then leads to the proof of Proposition 2.4.

In Section 4, we consider the multidimensional stochastic evolution equation, prove

that there is a unique solution to the multidimensional lift that is a generalised Feller

process and further discuss its properties in Proposition 4.2. Section 5 concludes the

proof of Theorem 2.6 by showing that under Assumption 2.5, the bound in Proposi-

tion 2.4 holds. Section 6 discusses future directions.
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2. Framework and main results

We recall some of the notations introduced in [17]. Let X be a completely regular

Hausdorff topological space. We say that ϱ : X → (0,∞) is an admissible weight

function if the sets KR := {x ∈ X : ϱ(x) ≤ R} are compact for all R > 0 [17,

Definition 2.1]. The supremum norm on R is denoted ∥·∥∞. The vector space

Bϱ(X) :=

{
f : X → R : sup

x∈X
ϱ(x)−1 ∥f(x)∥∞ < ∞

}
,

equipped with the norm

∥f∥ϱ := sup
x∈X

ϱ(x)−1 ∥f(x)∥∞ , (2.1)

is a Banach space, and Cb(X) ⊂ Bϱ(X). Moreover, the space Bϱ(X) is defined as

the closure of Cb(X) in Bϱ(X) [17, Definition 2.3], and is also a Banach space when

equipped with the norm (2.1). Generalised Feller semigroups are the analogue of stan-

dard Feller semigroups on the space of continuous functions vanishing at infinity on

locally compact spaces. They are bounded, positive, linear, strongly continuous oper-

ators.

Definition 2.1 (Definition 2.5 of [17]). A family of bounded linear operator Pt :

Bϱ(X) → Bϱ(X) for t ≥ 0 is called generalised Feller semigroup if

(i) P0 = I, the identity on Bϱ(X),

(ii) Pt+s = PtPs, for all t, s ≥ 0,

(iii) For all f ∈ Bϱ(X) and x ∈ X, limt↓0 Ptf(x) = f(x),

(iv) There exist C > 0 and ε > 0 such that for all t ∈ [0, ε], ∥Pt∥L(Bϱ(X)) ≤ C,

(v) Pt is positive for all t ≥ 0, that is, for any f ∈ Bϱ(X) such that f ≥ 0, then

Ptf ≥ 0.

Theorems 2.11 and 2.13 of [17] ensure that each generalised Feller semigroup gives rise

to an associated Markov process and such process has a version with càglàd paths.

Let P(X) be the space of probability measures on X.

Definition 2.2. For all t ≥ 0, we define P ∗
t as the adjoint of Pt, that is, for all φ ∈

Bϱ(X) and µ ∈ P(X), they satisfy

∫
X
Ptφ(x)µ(dx) =: ⟨Ptφ, µ⟩ = ⟨φ, P ∗

t µ⟩.
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We will call (λt)t≥0 the process associated to the semigroup (Pt)t≥0 (and reciprocally)

if, for all t ≥ 0, P ⋆
t γ is the law of λt whenever γ is the law of λ0. From the display

above, one deduces that in that case Ptφ(λ0) = Eγ [φ(λt)].

Definition 2.3. We say that µ is an invariant measure if ⟨Ptφ, µ⟩ = ⟨φ, µ⟩ for all t ≥ 0

and for all φ ∈ Bϱ(X).

2.1. Main results

We start with a condition for existence in a general state-space Y ⋆, defined as the dual

of a Banach space Y and equipped with its weak-⋆-topology. We also define the strong

norm ∥λ∥Y ⋆ := supy∈Y, ∥y∥≤1⟨y, λ⟩.

Proposition 2.4. If (λt)t≥0 is a generalised Feller process taking values in Y ⋆ and

sup
t≥0

E[∥λt∥Y ⋆ ] < ∞, (2.2)

then it has an invariant measure.

Remark 1. Equation (2.2) corresponds to supt≥0 E[ϱ(λt)] < ∞ for the choice of

weight function ϱ(λ) := 1 + ∥λ∥Y ⋆ .

Our goal is to apply this to Y ⋆-valued stochastic evolution equations which we

introduce now. Let d ≥ 1, we consider the Banach space Y := Cb(R+,Rd),

where R+ := R ∪ +∞ (compactifying R+ makes Cb(R+,Rd) separable) and its

dual Y ⋆ = M(R+,Rd) is the space of signed measured, as explained in [22, Chap-

ter IV]. We then have ⟨y, λ⟩ :=
∑d

i=1⟨yi, λi⟩i :=
∑d

i=1

∫∞
0 yi(x)λi(dx) for all y ∈ Y ,

λ ∈ Y ⋆. Moreover, the weight function is ϱ(λ) := 1 + ∥λ∥Y ⋆ , the set X introduced in

[17, Section 1.3] is a subset of Y ⋆ and the space Bϱ(X) is defined in the same way.

We consider the Y ⋆-valued multidimensional measure-valued stochastic evolution

equation

dλt(dx) = −xλt(dx) dt+ ν(dx) dXt, (2.3)

where, denoting λs := ⟨1, λs⟩, X is the Rd-semimartingale:

Xt :=

∫ t

0
b(λs) ds+

∫ t

0
σ(λs)dWs, (2.4)
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with λ := (λ
1
, · · · , λd

), λt(dx) ∈ Rd, ν(dx) ∈ Rd×d, W is an m-dimensional Brownian

motion, and b ∈ Rd and σ ∈ Rd×m are such that

bi(x) = −
d∑

k=1

βikxk; σij(x) =

d∑
k=1

σijk
√
xk + cijk, for all x = (x1, · · · , xd) ∈ Rd.

(2.5)

Let us define d̃ ∈ J0, dK and the state space D := Rd̃
+ × Rd−d̃.

Assumption 2.5. The following conditions hold:

a) λ0(dx) = V0δ0(dx) for some V0 ∈ D;

b) for all i ∈ J1, dK, νi(dx) = 1
Γ(α(i))Γ(1−α(i))(x − δ)−α(i)

1x>δ dx, where α(i) ∈ (12 , 1]

and δ > 0;

c) cijk = 0 for all i, j, k;

d) if i ≤ d̃ and i ̸= k, then σijk = βik = 0 for all j;

e) if i > d̃ and k > d̃, then σijk = βik = 0 for all j.

f) βii > 0 for i = 1, · · · , d̃ and βjk ≤ 0 for j, k = 1, · · · , d̃ and j ̸= k.

Our main result is the following theorem.

Theorem 2.6. If Assumption 2.5 holds, then the solution to (2.3) has an invariant

measure.

Remark 2. Assumption 2.5 has specific structural restrictions on the coefficients β, σ

under which Theorem 2.6 holds. We note here though that these are only sufficient

conditions and in fact, intermediate results of independent interest, such as Propo-

sition 4.2 and Lemma 5.2, do not require these conditions. We also note that even

though our main result holds with cijk = 0 for all i, j, k in (2.5), certain results in the

paper are proven with non-zero cijk, see Section 4.

Condition d) states that for i ≤ d̃ the total mass λ
i
of the ith component is an

autonomous square-root process. The last condition entails that for i > d̃ the ith

component is explicitly given in terms of the autonomous square-root processes. In

the mild sense, (2.3) reads

⟨y, λt⟩ = ⟨e−t·y, λ0⟩+
∫ ∞

0
y(x)

(∫ t

0
e−x(t−s) dXs

)
ν(dx), (2.6)
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for any y ∈ Y and λ0 ∈ Y ⋆, and for all i ∈ J1, dK,

⟨yi, λi
t⟩ = ⟨e−t·yi, λi

0⟩+
∫ ∞

0
yi(x)

(∫ t

0
e−x(t−s) dXi

s

)
νi(dx).

Assumption 2.5 then implies

dXi
t = −βiiλ

i
t dt+

√
λ
i
t

m∑
j=1

σijidW
j
t , if i ∈ J1, d̃K,

dXi
t = −

d̃∑
k=1

βikλ
k
t dt+

m∑
j=1

d̃∑
k=1

σijk

√
λ
k
t dW

j
t , if i ∈ Jd̃+ 1, dK.

The representation (2.6) allows to derive the equation satisfied by λ in certain cases

of interest.

Example 2.7.

• The one-dimensional Volterra square-root process, appearing as the variance in

the rough Heston model [26] (without long-term mean) satisfies these conditions

with d̃ = d = 1 and α(i) = α ∈ (12 , 1):

λt = V0 +

∫ t

0
(t− s)α−1

(
−βλs

)
ds+

∫ t

0
(t− s)α−1σ

√
λs dWs.

Its lift is the one-dimensional stochastic evolution equation introduced in [17].

• The two-dimensional rough Heston model (without long-term mean) is also cov-

ered where d̃ = 1, d = m = 2, α(1) = α ∈ (12 , 1) and α(2) = 1:


λ
1
t = V 1

0 +

∫ t

0
(t− s)α−1

(
−βλ

1
s

)
ds+

∫ t

0
(t− s)α−1σ

√
λ
1
s dW

1
s

λ
2
t = −1

2

∫ t

0
λ
1
s ds+

∫ t

0
ρ

√
λ
1
s dW

1
s +

∫ t

0
ρ̄

√
λ
1
s dW

2
s .

More precisely, the coefficients are σij1 = 0 for all i, j = 1, 2 and

β =

0 1/2

0 β

 ; σ··2 =

ρ ρ

0 σ

 .

• One can also consider extensions of the previous example with α(2) < 1, and

higher dimensional systems where d̃ > 1 and the square-root processes feed back
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into the dynamics of λ
d
t , i.e. βdk > 0 for all k ≤ d̃.

Proof of Theorem 2.6. This is a combination of Propositions 2.4, 4.2 and 5.1. More

precisely, Proposition 2.4 states that, for a generalised Feller process (λt)t≥0, the

bound (2.2) is a sufficient condition for the existence of an invariant measure. Proposi-

tion 4.2 shows that there exists a unique solution (λt)t≥0 to (1.2) and that it is indeed

a generalised Feller process. Finally, Proposition 5.1 ensures the condition holds.

Theorem 2.6 delivers a new notion of stationarity for the Volterra process (λt)t≥0.

Straightforward computations show that, for any s < t,

λt =

∫ ∞

0
e−x(t−s)λs(dx) +

∫ t

s
K(t− r)dXr, (2.7)

where K(t) =
∫∞
0 e−xt ν(dx) and X solves (2.4). The choice of ν in Assumption 2.5

yields the kernel Ki(t) = tα(i)−1

Γ(α(i))e
−δt, and weak existence and uniqueness were derived

in [3]. Equation (2.7) emphasises that, as λ is an evaluation of λ on a lower-dimensional

space, the law of λt conditional to Fs := σ({Wr : r ≤ s}) with s < t is equal to the

law of λt conditional to λs.

Corollary 2.8. Under Assumption 2.5, there exists a probability measure µ⋆ on Y ⋆ =

M(R+,Rd) such that if, for any s ≥ 0, µ⋆ is the distribution of λs then (λt)t≥s is a

strictly stationary process on R+.

Proof. Let µ⋆ denote an invariant distribution of λ, which we note is constructed

as a limiting distribution. Provided λs follows this distribution, the process (λt)t≥s is

strictly stationary and the relation λ = ⟨1, λ⟩ then immediately implies the claim.

It is insightful to compare this type of stationarity for fractional process with existing

results.

• In the closest paper to ours [33], the authors prove that (λt+h)t≥0 converges in law

towards a stationary process (λ
stat
t )t≥0 as h → ∞. They characterise properties

of the marginal law of this limiting process but do not provide information on its

dynamics, in particular it is not known whether λ
stat

satisfies an SVE. Moreover,

this convergence result does not imply that λ itself is a stationary process.

• Hairer [40] on the other hand looks for an invariant measure on the product

space of R (where the fractional OU process lives) and the past of the driving

noise (an infinite-dimensional space).
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• Fractional SDEs with additive noise are also studied by [51]: they find stationary

solutions Y on C(R+), meaning that (Yt)t≥0 = (Yt+h)t≥0 in distribution for

all h ≥ 0.

In contrast, our approach allows to construct a stationary process directly on R+.

We close this section with an important remark on the consequences of Theorem 2.6

and of Corollary 2.8. Our goal here is to show that in the case of the kernel Ki(t) =
tα(i)−1

Γ(α(i))e
−δt with δ > 0, the limiting distribution of Vt in (1.1) is not that of the zero

process unless V0 = 0.

Let us denote V k
t = λ

k
t . Then, we have

E[V k
t ] = V k

0

(
1− βkk

∫ t

0
e−δssα−1Eα,α(−βkks

α)ds

)
. (2.8)

Based on integral representations for the Mittag-Leffler function [45, Section 7], we

obtain

lim
t↑∞

E[V k
t ] = V k

0

(
1− βkk

∫ ∞

0
e−δssα−1Eα,α(−βkks

α)ds

)
= V k

0

(
1− βkk

βkk + δα

)
.

(2.9)

This calculation shows that

• If δ = 0, then limt↑∞ E[V k
t ] = 0 no matter what the value of V k

0 is. It is indeed

true that if δ = 0, then Vt converges to the trivial zero process.

• If δ > 0, then limt↑∞ E[V k
t ] = 0 if and only if V k

0 = 0.

So if δ ̸= 0 and V k
0 ̸= 0, then limt↑∞ E[V k

t ] ̸= 0. It is also interesting to note that in

this case the limiting behaviour depends on the initial condition V k
0 ̸= 0, a point also

noted in [33]. Hence, in the case of δ ̸= 0 and V k
0 ̸= 0 the limiting behaviour of Vt is

not zero, whereas if δ = 0, then no matter what the initial condition V k
0 is, we will

have that limt↑∞ E[V k
t ] = 0.

3. A condition for existence

This section aims at proving Proposition 2.4. We start by stating and proving an ex-

tension of Krylov-Bogoliubov theorem [18, Theorem 11.7] to the setting of generalised

Feller processes on Bϱ(X) for any completely regular Hausdorff topological space X.
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Lemma 3.1. Let (Pt)t≥0 be a generalised Feller semigroup. Suppose that there ex-

ists γ ∈ P(X) and a strictly positive sequence Tn going to +∞ as n goes to +∞ such

that

(i) the sequence of measures Q∗
Tn
γ := 1

Tn

∫ Tn

0 P ∗
t γ dt converges weakly to some µ ∈

P(X);

(ii) It holds that

sup
t≥0

∫
X
Ptϱ(λ)γ(dλ) < ∞ (3.1)

Then µ is an invariant measure for (Pt)t≥0.

Remark 3. The original Krylov-Bogoliubov theorem for standard Feller semigroups

does not require (ii).

On Polish spaces, Prokhorov’s theorem [18, Theorem 2.3] states that (i) is equivalent

to tightness of (P ∗
t γ)t≥0. We will invoke an extension of this result to completely

regular spaces [8, Chapitre IX, Section 5.5, Théorème 1] as dual spaces equipped with

the weak-⋆-topology are not Polish. This result relies upon the so-called Prokhorov

condition for a subset H of the space of bounded Radon measures Mb(T ), where T is

completely regular. In the case H = P(X) ⊂ Mb(X) of interest to us, this preliminary

condition is equivalent to tightness. We now state the theorem.

Theorem 3.2 (Bourbaki). Let T be a completely regular space, and H a subset

of Mb(T ) satisfying Prokhorov’s condition; then H is relatively compact in Mb(T )

equipped with the topology of weak convergence.

As the dual of a separable Banach space equipped with the weak-∗-topology, Y ⋆ is a

completely regular space and so is the subset X.

Proof. Fix t > 0 and φ ∈ Bϱ(X), then by definition Ptφ ∈ Bϱ(X). Let R > 0, we

know from [17, Equation (2.3)] that f ∈ Bϱ(X) if and only if f |KR
∈ C(KR), where we

recall KR = {x ∈ X : ϱ(x) ≤ R}. We thus need to work on KR to apply the weak

convergence of (i):

⟨φ, P ∗
t µ⟩ = ⟨Ptφ, µ⟩ =

∫
X\KR

Ptφdµ+

∫
KR

Ptφdµ =

∫
X\KR

Ptφdµ+lim
n↑∞

∫
KR

PtφdQ∗
Tn
γ.

Note that in the last computation, weak convergence of Q∗
Tn
γ to µ can be used even

though the function 1KR
φ is not in C(X). This can be done following the proof of

12



approximation by appropriate cut-off functions as in [7, Theorem 29.1]. Then we go

back to X to apply the adjoint property

∫
KR

PtφdQ∗
Tn
γ =

1

Tn

∫ Tn

0
⟨Ptφ, P

∗
s γ⟩ ds−

∫
X\KR

PtφdQ∗
Tn
γ

=
1

Tn

∫ t+Tn

t
⟨φ, P ∗

s γ⟩ds−
∫
X\KR

PtφdQ∗
Tn
γ.

We observe that

1

Tn

∫ t+Tn

t
⟨φ, P ∗

s γ⟩ ds =
1

Tn

∫ Tn

0
⟨φ, P ∗

s γ⟩ ds+
1

Tn

∫ t+Tn

Tn

⟨φ, P ∗
s γ⟩ds−

1

Tn

∫ t

0
⟨φ, P ∗

s γ⟩ds,

where the second and third terms tend to zero as n goes to infinity, while the first one

is ⟨φ,Q∗
Tn
γ⟩. We relocate to KR for the weak convergence:

lim
n↑∞

1

Tn

∫ t+Tn

t
⟨φ, P ∗

s γ⟩ ds = lim
n↑∞

(∫
KR

φdQ∗
Tn
γ +

∫
X\KR

φdQ∗
Tn
γ

)

= lim
n↑∞

(∫
X
1KR

φdQ∗
Tn
γ +

∫
X\KR

φdQ∗
Tn
γ

)

=

∫
KR

φdµ+ lim
n↑∞

∫
X\KR

φdQ∗
Tn
γ.

In the last computation, once again the weak convergence of Q∗
Tn
γ to µ can be used

even though the function 1KR
φ is not in C(X), as in [7, Theorem 29.1]. Overall, this

yields our objective plus a remainder

⟨φ, P ∗
t µ⟩ = ⟨φ, µ⟩ −

∫
X\KR

φdµ+

∫
X\KR

Ptφdµ+ lim
n↑+∞

(∫
X\KR

φdQ∗
Tn
γ −

∫
X\KR

PtφdQ∗
Tn
γ

)
=: ⟨φ, µ⟩+ ε(R).

To deal with ε(R), we apply a Fatou-type lemma for measures [23, Theorem A.3.12].

For any f ∈ Bϱ(X),

∣∣∣ ∫
X\KR

f dµ
∣∣∣ ≤ sup

x∈X\KR

|f(x)|
ϱ(x)

∫
X
ϱ dµ ≤ sup

x∈X\KR

|f(x)|
ϱ(x)

lim inf
n↑+∞

∫
X
ϱ dQ∗

Tn
γ

= sup
x∈X\KR

|f(x)|
ϱ(x)

lim inf
n↑+∞

1

Tn

∫ Tn

0
Psϱ(λ) ds,

(3.2)

13



where λ is a X-valued random variable with distribution γ. By integrating over γ both

sides of (3.2) and noting this integral has mass one we get

∣∣∣ ∫
X\KR

f dµ
∣∣∣ ≤ sup

x∈X\KR

|f(x)|
ϱ(x)

(
sup
t≥0

∫
X
Ptϱ(λ)γ(dλ)

)

The same computations also yield the same estimate for
∣∣∣∫X\KR

f dQ∗
Tn
γ
∣∣∣. By [17,

Equation (2.3)] we have for any f ∈ Bϱ(X),

lim
R↑∞

sup
X\KR

|f(x)|
ϱ(x)

= 0.

The uniform bound (3.1) thus ensures that ε(R) vanishes as R goes to +∞.

Proof of Proposition 2.4. Let (Pt)t≥0 be the generalised Feller semigroup associ-

ated to (λt)t≥0. Hence, for any X-valued random variable λ0, Ptϱ(λ0) = Eλ0∼γ [ϱ(λt)].

In [17], the analysis is performed with the weight function ϱ(λ) = 1 + ∥λ∥2Y ⋆ . The

only necessary estimate is E[ϱ(λt)] ≤ Cϱ(λ0), for some finite constant C > 0, and

we note that the inequality E[1 + ∥λt∥2Y ⋆ ] ≤ C(1 + ∥λ0∥2Y ⋆) implies E[1 + ∥λt∥Y ⋆ ] ≤√
2C(1+ ∥λ0∥Y ⋆). Therefore, the weight function ϱ(λ) = 1+ ∥λ∥Y ⋆ is also admissible,

and the assumption (2.2) implies

sup
t≥0

∫
X
Eλ0

[ϱ(λt)]dγ(λ0) = sup
t≥0

E[ϱ(λt)] < ∞. (3.3)

This yields condition (ii) of Lemma 3.1.

For all t ≥ 0, let Λt be the Y
⋆-valued random variable with distributionQ∗

tγ. Inspection

of the proof of [10, Lemma 2.9] shows that, even though Y ⋆ is not a Polish space,

the family (Λt)t≥0 is tight if there exists a tightness function G : Y ⋆ → R+ such

that supt≥0 E[G(Λt)] < ∞. We observe that an admissible weight function is also a

tightness function by design, hence proving tightness of (Λt)t≥0 boils down to showing

sup
T≥0

1

T

∫ T

0
E[ϱ(λt)] dt < ∞,

which is a consequence of (3.3). We then invoke the version of Prokhorov’s theorem on

completely regular spaces (Theorem 3.2) to deduce that (Q∗
tγ)t≥0 is relatively compact

in P(X) and hence has a converging subsequence.

Therefore, both conditions of Lemma 3.1 are satisfied as soon as (2.2) holds.
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4. The multidimensional measure-valued stochastic evolution equation

For simplicity, we assume that ν is diagonal, which releases some indexation load and

appoints the same kernel for drift and diffusion. We can then define the matrix K(t) :=

⟨e−t·, ν⟩ and since ν is diagonal this yields Ki(t) = ⟨e−t·, νi⟩i where the superscript i

stands for the ith component of the diagonal.

We replicate the setting of Markovian affine processes characterised in [21] and cast

it in the appropriate multidimensional adaptation of [17]. In the setting of (2.3), we

want the total mass λ
i
of each component to be either a square root process or an

Ornstein-Uhlenbeck-type process; this is achieved by the following set of assumptions:

Assumption 4.1. The following hold:

• if i ≤ d̃ then cijk = 0 for all j, k; if moreover k ̸= i then σijk = βik = 0 for all j;

• if i > d̃ and k > d̃, then σijk = 0 for all j.

Remark 4. This assumption is strictly weaker than Assumption 2.5, hence Exam-

ples 2.7 are still covered.

We can now display the equations satisfied by the total mass of each component. For

each i ∈ J1, d̃K, λi
is then an autonomous square-root process living in R+, and satisfies

λ
i
t = ⟨e−t·, λi

0⟩+
∫ t

0
Ki(t− s)(−βiλ

i
s) ds+

∫ t

0
Ki(t− s)

√
λ
i
s

m∑
j=1

σijdW
j
s , (4.1)

with no feedback from the other components. For each i ∈ Jd̃+1, dK, λi
is an OU-type

process living in R, which allows feedback from every component in the drift but only

from the first d̃ square-root components in the diffusion:

λ
i
t = ⟨e−t·, λi

0⟩+
∫ t

0
Ki(t−s)

(
−

d∑
k=1

βikλ
k
s

)
ds+

m∑
j=1

d̃∑
k=1

∫ t

0
Ki(t−s)

(
σijk

√
λ
k
s + cijk

)
dW j

s .

(4.2)

The reason is that a component needs to lie on the positive cone if its square root

appears somewhere in the stochastic evolution equation.

We now go through the one-dimensional results of [17, Section 4] and highlight the

differences with the multidimensional case presented here. Instead of the spaces Ew

introduced in [17, (4.7)], we define for all n ∈ N,

En :=
{
λ0 ∈ Y ⋆ : ηi,nt ≥ 0, for all i ∈ J1, d̃K, ηi,nt ∈ M(R+,R) for all i ∈ Jd̃+ 1, dK and t ≥ 0

}
,
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where
ηi,nt = ⟨e−t·, λi

0⟩ −
(
βi − n

m∑
j=1

σ2
ij

)∫ t

0
Ki(t− s)ηi,ns ds, i ∈ J1, d̃K,

dηi,nt = A⋆ηi,nt dt+ ν

 d∑
k=1

βikη
k,n
t − n

m∑
j=1

d̃∑
k=1

(
σijk

√
ηk,ns + cijk

)2
 dt, ηi0 = λi

0, i ∈ Jd̃+ 1, dK,

(4.3)

where A⋆ is the linear operator of the form A⋆λ(dx) = −xλ(dx). Note that η satisfies

a deterministic equation and the condition for i ∈ Jd̃ + 1, dK in the definition of En

is necessarily satisfied, while we want to restrict the state space of the square-root

processes to R+. These definitions allow to define the invariant space E := ∩n∈NEn

and its polar cone E⋆ :=
{
y ∈ Y : ⟨y, λ⟩ ≤ 0 for all λ ∈ E

}
. For E to be well defined

we had to let the coefficients grow with n at a uniform speed across the components,

which is a notable difference with the one-dimensional framework of [17] where a single

speed w was needed.

To define the generator of the stochastic evolution equation, we introduce the set D :=

{y ∈ Y : ⟨y, ν⟩ is well-defined} and, for each y ∈ D, the set F of Fourier basis elements

of the form

fy : E → [0, 1]; λ 7→ exp(⟨y, λ⟩). (4.4)

We also recall that the resolvent of the second kind corresponding to K is the ker-

nel R ∈ L1(R+,Rd×d) such that

K ∗R = R ∗K = K −R.

The following is the analogue of [17, Theorem 4.17].

Proposition 4.2. Let Assumption 4.1 hold. Assume moreover that λ0 ∈ E, K ∈
L2
loc(R+,Rd×d) and, for all i ∈ J1, dK and w > 0, Ki and Rw

i are non-negative,

where Rw
i is the resolvent of the second kind of wKi.

(i) The stochastic evolution equation (2.3) admits a unique Markovian solution with

values in E given by a generalised Feller semigroup (Pt)t≥0 on Bϱ(E). The gen-

erator A : F → Bϱ(E) associated to the semigroup (Pt)t≥0 reads

Afy(λ) = fy(λ)

(
⟨Ay, λ⟩+ ⟨yb(λ), ν⟩+ 1

2
⟨yσ⊤(λ), ν⟩⟨yσ(λ), ν⟩

)
=: fy(λ)R(y, λ),

(4.5)
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where the coefficients are given in (2.5) and A is the adjoint operator of A⋆. 1

(ii) This generalised Feller process allows to construct a probabilistically weak and

analytically mild solution, i.e. for y ∈ Y ,

⟨y, λt⟩ = ⟨ye−t·, λ0⟩+
∫ t

0
⟨ye−(t−s)·, ν⟩ dXs.

(iii) The affine transform formula is satisfied, i.e.

Eλ0
[exp(⟨y0, λt⟩)] = exp(⟨yt, λ0⟩),

where yt solves

⟨∂tyt, λ⟩ = R(yt, λ), (4.6)

for all λ ∈ E, y0 ∈ E⋆, t ≥ 0, where R is defined in (4.5). Furthermore, yt ∈ E⋆
for all t ≥ 0.

(iv) For any λ0 ∈ E, the corresponding stochastic Volterra equation given by

λt = ⟨1, λt⟩ = ⟨e−t·, λ0⟩+
∫ t

0
K(t− s) dXs

admits a probabilistically weak solution.

(v) For all u ∈ R, the Laplace transform of the Volterra equation λt is

Eλ0

[
euλt

]
= exp

(
u⟨e−t·, λ0⟩+

∫ t

0
⟨e−(t−s)·, λ0⟩

(
⟨ysb(λ0), ν⟩+

1

2
⟨ysσ⊤(λ0), ν⟩⟨ysσ(λ0), ν⟩

)
ds

)
.

Before we proceed with the proof of Proposition 4.2, we would like to point out that

even though we have calculated the generator Afy(λ) in Proposition 4.2 for Fourier

basis elements, we have not calculated the generator for all elements of its domain of

definition and very importantly we have not calculated its domain of definition. This is

useful to keep in mind as without explicit knowledge of its domain of definition, it can

be misleading to use the generator for drawing conclusions about limiting behaviour.

As a matter of fact, in the case Ki(t) = tα(i)−1

Γ(α(i))e
−δt with V0 ̸= 0 and δ > 0, the

calculation in (2.9) shows that the limiting behaviour clearly depends on the initial

condition V0 ̸= 0.

1This is the multidimensional version of the generator given in [17, (4.21)], where there seems to be a mild
typo. We have adopted a slightly non-standard notation in that we first define A⋆λ(dx) = −xλ(dx) and

then set A to be the adjoint operator of A⋆ mainly for reasons of being consistent with the existing literature

because A⋆ is typically considered to act on processes living in Y ⋆.
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Proof of Proposition 4.2. The entirety of [17, Section 4] aims at proving [17, Theo-

rem 4.17]. Our result follows from the same lines with a few modifications and remarks

that we highlight here. The Lemmas, Assumptions, Remarks, Propositions and The-

orems we refer to in this proof are all from [17], unless stated otherwise.

Modifications. Since e−t·ν ∈ Y ⋆ for all t > 0 and∫ t

0

∥∥e−s·ν
∥∥2
Y ⋆ ds =

∫ t

0
K(s)2 ds < ∞,

[17, Assumption 4.5] holds. Moreover, [17, Assumption 4.9] is satisfied thanks to our

assumption on Ki and Rw
i and Remark 4.10.

The space of signed measures is a vector space, hence a convex cone, and so are En for

all n ∈ N. The weak-⋆-continuity of the solution map and the bound of ϱ derived in

Proposition 4.6 hold without modification. Essentially, every bound remains by first

getting the bound for the autonomous one-dimensional square-root for i ∈ J1, d̃K and

then plugging it in the other rows.

The invariant spaces En then satisfy all the necessary properties of [17, Proposition 4.8

and Lemma 4.11] because they stay in their convex cone. This yields the generalised

Feller property on B(E) of [17, Theorem 4.13].

The variation of constants method continues to apply in multiple dimensions and for

OU type processes, hence Proposition 4.14 still holds.

We recall that A⋆λ(dx) = −xλ(dx) for all λ ∈ M(R+,Rd). In the proof of [17,

Theorem 4.17], for i ∈ J1, d̃K, we replace [17, Equation (4.26)] by

dλi,n
t = A⋆λi,n

t dt+ ν

βii − n

m∑
j=1

σ2
iji

λ
i,n
t dt+ ν

m∑
j=1

dN ij,n
t ,

whereN ij,n
t is a jump process that jumps by 1/n and with intensity n2σ2

ijλ
i,n
t . Similarly,

for all i ∈ Jd̃+ 1, dK,

dλi,n
t = A⋆λi,n

t dt+ν

 d∑
k=1

βikλ
k,n
t dt+

m∑
j=1

d̃∑
k=1

(
−n

(
σijk

√
λ
k,n
s + cijk

)2

dt+ dN ijk,n
t

) ,

where N ijk,n
t is a jump process that jumps by 1/n and with inten-

sity n2

(
σijk

√
λ
k,n
t + cijk

)2

. The same arguments as in the proof of [17, Theorem 4.17]
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allow to conclude that the limit of λn as n goes to infinity is a generalised Feller process

which generator coincides with that of (2.3) that we compute now.

The generator. Let us define, for any y ∈ E⋆, λ0 ∈ E and i ∈ J1, dK,

Si
t := ⟨yi, λi

t⟩ = ⟨yie−t·, λi
0⟩+

∫ t

0
⟨yie−(t−s)·, νi⟩dXi

s.

This is not a semimartingale, therefore we introduce this approximation for any ε > 0:

Si,ε
t := ⟨yie−t·, λi

0⟩+
∫ t

0
⟨yie−(t+ε−s)·, νi⟩dXi

s.

We define F (s) := es such that F (St) = e⟨y,λt⟩ = e
∑

i⟨yi,λi
t⟩ = fy(λt) and by conver-

gence in law Ptfy(λ0) = E[F (St)] = limε↓0 E[F (Sε
t )]. By Itô’s formula,

F (Sε
t ) = F (Sε

0) +

d∑
i=1

∫ t

0
∂iF (Sε

r)dS
i,ε
r +

1

2

d∑
i,j=1

∫ t

0
∂ijF (Sε

r)d[S
i,ε, Sj,ε]r,

where, denoting A the adjoint of A⋆, we obtain

dSi,ε
r =

(
⟨Ayie−r·, λi

0⟩+ ⟨yie−ε·, νi⟩bi(λr) +

∫ r

0
⟨Ayie(r+ε−u)·, νi⟩dXi

u

)
dr + ⟨yie−ε·, νi⟩σi(λr) dBr.

Hence, for all λ0 ∈ E ,

E[F (Sε
t )] = e⟨y,λ0⟩ +

∫ t

0
E
[
F (Sε

r)

d∑
i=1

(
⟨Ayie−r·, λi

0⟩+ ⟨yie−ε·, νi⟩bi(λr) +

∫ r

0
⟨Ayie(r+ε−u)·, νi⟩bi(λu) du

)

+
F (Sε

r)

2

d∑
i,j=1

⟨yie−ε·, νi⟩⟨yje−ε·, νj⟩σ⊤
i σj(λr)

]
dr.

Therefore, we obtain for λ0 the initial condition of the λ process

lim
t↓0

Ptfy(λ0)− fy(λ0)

t
= lim

t↓0

limε↓0 E[F (Sε
t )]− fy(λ0)

t

= fy(λ0)

d∑
i=1

(
⟨Ayi, λi

0⟩+ ⟨yi, νi⟩bi(λ0)
)
+

fy(λ0)

2

d∑
i,j=1

(
⟨yi, νi⟩⟨yj , νj⟩σ⊤

i σj(λ0)
)

= fy(λ0)

(
⟨Ay, λ0⟩+ ⟨yb(λ0), ν⟩+

1

2
⟨yσ⊤(λ0), ν⟩⟨yσ(λ0), ν⟩

)
,

where the coefficients were given in (2.5). This yields item (i), while item (ii) follows
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along the same lines as in [17, Theorem 4.17].

By the existence of a generalised Feller semigroup, E[exp(⟨y0, λt⟩)] is the unique solu-

tion to the Cauchy problem

∂tu(t, λ) = Au(t, λ), u(0, λ) = exp(⟨y0, λ⟩).

Moreover, for all λ ∈ E , there is a unique (mild) solution to

⟨∂tyt, λ⟩ = R(yt, λ), y0 ∈ Y,

as it is the adjoint equation to (4.3). We have fy0
(λ) = exp(⟨y0, λ⟩) and using the

equation satisfied by yt,

∂tfyt
(λ) = fyt

(λ)⟨∂tyt, λ⟩ = fyt
(λ)R(yt, λ) = Afyt

(λ),

where the last equality follows from the definition of the generator in (4.5). Hence

fyt
(λ) = E[exp(⟨y0, λt⟩)].

The fourth point is a consequence of the second with y ≡ 1.

Finally, let y0 ≡ u ∈ R, such that from (ii),

E
[
euλt

]
= E

[
e⟨y0,λt⟩

]
= e⟨yt,λ0⟩,

where, in virtue of (4.6),

⟨yt, λ0⟩ = u⟨e−t·, λ0⟩+
∫ t

0
⟨e(t−s)·, λ0⟩

(
⟨ysb(λ0), ν⟩+

1

2
⟨ysσ⊤(λ0), ν⟩⟨ysσ(λ0), ν⟩

)
ds.

This concludes the proof of the proposition.

5. Verifying the condition for existence

We proved in the previous section that the solution of (2.3) is indeed a generalised

Feller process, hence all that is left to apply Proposition 2.4 is to show that the bound

sup
t≥0

Eγ [∥λt∥Y ⋆] < ∞ (5.1)
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holds. In this section, we specify the conditions on the parameters of the stochastic evo-

lution equation that ensure (5.1). We start with some comments on the possible choices

of initial condition λ0; recall that λ0 is admissible if it belongs to E . By Assumption 5.2

and Remark 5.3 in [17], e−r·ν ∈ E for all r > 0. We can identify different conditions for

initial conditions of OU rows or square-root rows. Clearly, for i ∈ Jd̃+1, dK, λi
0 can be

any signed measure on R. For i ∈ J1, d̃K, by Remark 5.4 in [17] and Example 2.2 in [1],

are allowed all λ0 ∈ Y ⋆ such that t 7→
∫∞
0 e−txλ0(dx) ∈ GK , where GK includes in

particular Hölder continuous, non-decreasing functions g with g(0) ≥ 0, and functions

of the form g = V0 + K ∗ θ such that θ(s) ds + V0L(ds) is a non-negative measure,

where V0 > 0 and L is the resolvent of first kind of K. This yields at least two options:

• λ0(dx) = V0 δ0(dx), with V0 > 0;

• λ0(dx) = V0 δ0(dx) + x−α−µ dx where 0 < µ < 1− α, such that

∫ ∞

0
e−xtλ0(dx) = V0 + Γ(1− α− µ)tα+µ−1

= V0 +
Γ(1− α− µ)Γ(α+ µ)

Γ(α)Γ(µ)

∫ t

0
(t− s)α−1sµ−1 ds,

which is equal to V0 + (K ∗ θ)(t) with θ and L non-negative.

We will be particularly interested in the case of constant initial condition because

it allows us to compute E[λk
t ] explicitly, see (5.4), and because the bound (5.1) is

independent of ω. This is the main result of this section.

Proposition 5.1. Under Assumption 2.5, the bound (5.1) holds.

We need to state an intermediate lemma, the proof of which is postponed to the end

of the section, before being in a position to prove Proposition 5.1.

Lemma 5.2. The bound (5.1) holds if ∥λ0∥Y ⋆ < ∞ and, for all i ∈ J1, dK,

sup
t≥0

E
[∫ ∞

0

∣∣∣∣∫ t

0
e−x(t−s)dXi

s

∣∣∣∣ νi(dx)] < ∞. (5.2)

Remark 5. In the case where ν = δ0 there is no kernel, hence this expectation boils

down to E[
∣∣Xi

t

∣∣] where Xi is a Markovian process. For example, Condition (5.2) holds

if X is a multidimensional OU process, which is Gaussian with bounded variance,

and if X is a one-dimensional square-root process, which is positive with bounded

expectation.
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Proof of Proposition 5.1. First notice that ∥λ0∥Y ⋆ = V0 < ∞. For all i > d̃, since

cijk = 0 and βik = 0 for k > d̃,

E
[∫ ∞

0

∣∣∣∣∫ t

0
e−x(t−s)dXi

s

∣∣∣∣ νi(dx)]

≤ E

 d̃∑
k=1

∫ ∞

0

(∫ t

0
e−x(t−s)βikλ

k
s ds

)
νi(dx)

+

∫ ∞

0
E

∣∣∣∣∣∣
∫ t

0
e−x(t−s)

m∑
j=1

d̃∑
k=1

σijk

√
λ
k
s dB

j
s

∣∣∣∣∣∣
 νi(dx)

(5.3)

≤
d̃∑

k=1

E
[∫ ∞

0

(∫ t

0
e−x(t−s)βikλ

k
s ds

)
νi(dx)

]
+

∫ ∞

0
E

∫ t

0
e−2x(t−s)dm

m∑
j=1

d̃∑
k=1

σ2
ijkλ

k
s ds

 1

2

νi(dx),

by Itô’s isometry. By Lemma 5.2 it suffices to prove that the latter is uniformly

bounded in t ≥ 0. Recall that if k ≤ d̃ then λk is one-dimensional and, by [3,

Lemma 4.2],

E[λk
t ] = V k

0

(
1− βkk

∫ t

0
e−δssα−1Eα,α(−βkks

α)ds

)
. (5.4)

Let us define ν̂i(dx) := x−
1

2 νi(dx). For any f : R+ → R+, we can split the following

integral and apply Jensen’s inequality to both terms

∫ ∞

0

√
f(x)νi(dx) =

∫ 1

0

√
f(x)νi(dx) +

∫ ∞

1

√
f(x)x ν̂i(dx)

≤
√

νi((0, 1))

√∫ 1

0
f(x) νi(dx) +

√
ν̂i((1,∞))

√∫ ∞

1
f(x)x ν̂i(dx)

≤ Γ(1− α(i))−1

1− α(i)

√∫ ∞

0
f(x)νi(dx) +

Γ(1− α(i))−1

α(i)− 1
2

√∫ ∞

0
f(x)x ν̂i(dx).

We then set f(x) := E
[∫ t

0 e
−2x(t−s)σ2

ijkλ
k
s ds

]
. Both terms lead to the same type of
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kernel, after an application of Fubini’s theorem∫ ∞

0
e−2x(t−s)νi(dx) =

∫ ∞

0
e−2x(t−s) 1

Γ(α(i))Γ(1− α(i))
(x− δ)−α(i)

1x>δdx

=
1

Γ(α(i))Γ(1− α(i))

∫ ∞

δ
e−2x(t−s)(x− δ)−α(i)dx

=
1

Γ(α(i))Γ(1− α(i))
e−2δ(t−s)

∫ ∞

0
e−2y(t−s)y−α(i)dy

=
1

Γ(α(i))Γ(1− α(i))
2α(i)−1(t− s)α(i)−1e−2δ(t−s)

∫ ∞

0
e−zz−α(i)dz

=
2α(i)−1

Γ(α(i))
(t− s)α(i)−1e−2δ(t−s). (5.5)

The same exact calculation yields∫ ∞

0
e−2x(t−s)x ν̂i(dx) =

∫ ∞

0
e−2x(t−s) 1

Γ(α(i))Γ(1− α(i))
(x− δ)

1

2
−α(i)

1x>δdx

=
2α(i)−

3

2Γ(α(i)− 3
2)

Γ(α(i))
(t− s)α(i)−

3

2 e−2δ(t−s).

We are left to consider integrals of the type
∫ t
0 e

−2δ(t−s)(t − s)µ−1E
[
λ
k
s

]
ds, for µ ∈

(0, 1]. We want to show that such quantities are uniformly bounded over t ∈ [0,∞).

For this purpose, we have via a change of the domain of integration

∫ t

0
e−2δ(t−s)(t− s)µ−1E

[
λ
k
s

]
ds =

= V k
0

(∫ t

0
e−2δ(t−s)(t− s)µ−1 ds− βkk

∫ t

0
e−2δ(t−s)(t− s)µ−1

∫ s

0
e−δuuα−1Eα,α(−βkku

α)duds

)
= V k

0

(∫ t

0
e−2δ(t−s)(t− s)µ−1 ds− βkk

∫ t

0

(∫ t

u
e−2δ(t−s)(t− s)µ−1e−δuuα−1Eα,α(−βkku

α)ds

)
du

)
= V k

0

(∫ t

0
e−2δ(t−s)(t− s)µ−1 ds− βkk

∫ t

0

(∫ t

u
e−2δ(t−s)(t− s)µ−1ds

)
e−δuuα−1Eα,α(−βkku

α)du

)
= V k

0

(∫ t

0
e−2δ(t−s)(t− s)µ−1 ds− βkk

∫ t

0

(
(2δ)−µ

∫ 2δ(t−u)

0
e−κκµ−1dκ

)
e−δuuα−1Eα,α(−βkku

α)du

)

= V k
0

(∫ t

0
e−2δ(t−s)(t− s)µ−1 ds− βkk

∫ t

0

(
(2δ)−µγ(µ, 2δ(t− u))

)
e−δuuα−1Eα,α(−βkku

α)du

)
= V k

0

(
(2δ)−µγ(µ, 2δt)− βkk

∫ t

0

(
(2δ)−µγ(µ, 2δ(t− u))

)
e−δuuα−1Eα,α(−βkku

α)du

)
= V k

0

(
(2δ)−µγ(µ, 2δt)− βkk

∫ ∞

0
1[0,t](u)

(
(2δ)−µγ(µ, 2δ(t− u))

)
e−δuuα−1Eα,α(−βkku

α)du

)
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where γ(·, ·) denotes the incomplete Gamma function.

Now the quantity above is a continuous functions in both t ∈ [0,∞) and δ ∈ (0,∞).

Next, we want to pass to the limit as t → ∞ in the last expression.

For the first term we know that limt→∞ γ(µ, 2δt) = Γ(µ). For the second term we shall

use dominated convergence. Define the function u 7→ ξt(u)

ξt(u) = 1[0,t](u)
(
(2δ)−µγ(µ, 2δ(t− u))

)
e−δuuα−1Eα,α(−βkku

α)

and notice that

|ξt(u)| ≤
(
(2δ)−µΓ(µ)

)
e−δuuα−1Eα,α(−βkku

α) ∈ L1([0,∞)).

Hence, by dominated convergence, we have that as t → ∞ the quantity above limits

to, for δ fixed,

V k
0

(
(2δ)−µΓ(µ)− βkk

∫ ∞

0

(
(2δ)−µΓ(µ)

)
e−δuuα−1Eα,α(−βkku

α)du

)
= V k

0 (2δ)
−µΓ(µ)

(
1− βkk

∫ ∞

0
e−δuuα−1Eα,α(−βkku

α)du

)
= V k

0 (2δ)
−µΓ(µ)

(
1− βkk

βkk + δα

)
< ∞, (5.6)

the last identity following by the integral representation properties of the Mittag-

Leffler function, see for example [45, Section 7]. Hence, we indeed get the uniform

finiteness in t ∈ [0,∞) for i > d̃.

On the other hand, if i < d̃,

E
[∫ ∞

0

∣∣∣∣∫ t

0
e−x(t−s)dXi

s

∣∣∣∣ νi(dx)] ≤E
[∫ ∞

0

(∫ t

0
e−x(t−s)βiiλ

i
s ds

)
νi(dx)

]

+

∫ ∞

0
E

∣∣∣ ∫ t

0
e−x(t−s)

m∑
j=1

σiji

√
λ
i
s dB

j
s

∣∣∣
 νi(dx),

which boils down to (5.3).

Remark 6. The case cijk > 0 is unlikely to go through by splitting the integrals as
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we did here. Consider (5.2) where X is a one-dimensional OU process and split the

Lebesgue and Itô integrals as in (5.3). The stochastic integral then reads

∫ ∞

0
E[|Bx

t |]x−α dx, (5.7)

where Bx
t :=

∫ t
0 e

−x(t−s) dWs. Since E[|Bx
t |] =

√
1− e−2xt

xπ
, this entails that (5.7) grows

as tα−
1

2 , and thus is not uniformly bounded.

We conclude with the proof of Lemmas 5.2.

Proof of Lemma 5.2. Let B(R+) denote the Borel subsets of R+. For a signed

measure λ on R+, define the upper variation U (resp. lower variation L) as U(λ) :=

sup{λ(A) : A ∈ B(R+)} (resp. inf), and such that the total variation corresponds

to ∥λ∥Y ⋆ = U(λ)− L(λ).

Let us fix t > 0, then there exist two increasing sequences of sets (Un)n≥1 and (Ln)n≥1,

both in B(R+), such that λt(Un) is non-negative for all n ∈ N and increases to-

wards U(λt) as n goes to +∞, and analogously, λt(Ln) is non-positive and decreases

to L(λt). We will use the representation

∥λt∥Y ⋆ = lim
n↑∞

(
λt(Un)− λt(Ln)

)
= lim

n↑∞

(∫
Un

λt(dx)−
∫
Ln

λt(dx)

)
. (5.8)

Intuitively, one should think of the limit of Un (resp. Ln) as the subset of

R+ on which λt is positive (resp. negative). This way, the function maximising

sup∥y∥∞≤1⟨y, λt⟩ (if it exists) corresponds to the limit of 1Un
− 1Ln

.

We did not assume that ∥λt∥Y ⋆ should be finite. Yet, we can apply the monotone

convergence theorem on the representation (5.8)

E[∥λt∥Y ⋆ ] = lim
n↑+∞

E
[∫

Un

λt(dx)−
∫
Ln

λt(dx)

]
= lim

n↑+∞
E
[∫ ∞

0
(1Un

− 1Ln
)

(
e−xtλ0(dx) +

∫ t

0
e−x(t−s) dXs ν(dx)

)]
.

(5.9)

Since ∥λ0∥Y ⋆ < ∞ by assumption, the first term is finite. Starting from (5.9), we

consider the worst possible sets Un and Ln, recall that ν is diagonal and the form

25



of X:

E
[∫ ∞

0
(1Un

− 1Ln
)(x)

(∫ t

0
e−x(t−s)dXs

)
ν(dx)

]
= E

[
d∑

i=1

∫ ∞

0
(1Un

− 1Ln
)(x)

(∫ t

0
e−x(t−s)dXi

s

)
νi(dx)

]

≤
d∑

i=1

E
[∫ ∞

0

∣∣∣∣∫ t

0
e−x(t−s)dXi

s

∣∣∣∣ νi(dx)] ,
which yields the claim.

6. Outlook

It is of interest to extend the results to more general Volterra processes. By shifting

the generator of the lift it is possible to add a drift in the coefficient, for instance in the

one-dimensional case b(x) = β(θ− x), and prove that this still produces a generalised

Feller process. We have investigated the validity of the Condition (3.3) in this case,

but it is not clear at this point how to complete the proof.

Building on the generalised Feller property, we also aim at showing the uniqueness

of the invariant measure in the appropriate space, excluding the zero process. The

analogue of the strong Feller property is granted in our setting since Bϱ(X) already

includes the space of bounded functions; uniqueness shall follow if (λt)t≥0 satisfies a

sort of recurrence property. One can also hope to characterise the unique invariant

measure using tools from Malliavin calculus or the form of the Laplace transform.

Once ergodicity is established, it is interesting to identify the rate of convergence and

how it varies with α, thereby linking roughness of the volatility and convergence to

the stationary measure.
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[9] S. Bourguin, S. Gailus, and K. Spiliopoulos. Typical dynamics and fluctuation analysis

of slow-fast systems driven by fractional Brownian motion. Stochastics and Dynamics,

21(07):2150030, 2021.

[10] A. Budhiraja and P. Dupuis. Analysis and Approximation of Rare Events Representations

and Weak Convergence Methods. Springer, 2019.

[11] O. Butkovsky, A. Kulik, and M. Scheutzow. Generalized couplings and ergodic rates for

SPDEs and other Markov models. The Annals of Applied Probability, 30(1):1–39, 2020.

[12] L. Chen, D. Khoshnevisan, D. Nualart, and F. Pu. Spatial ergodicity for SPDEs via
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