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Abstract

Classical Physics-informed neural networks (PINNs) approximate solutions to
PDEs with the help of deep neural networks trained to satisfy the differential
operator and the relevant boundary conditions. We revisit this idea in the quan-
tum computing realm, using parameterised random quantum circuits as trial
solutions. We further adapt recent PINN-based techniques to our quantum set-
ting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson,
the Heat and the Hamilton-Jacobi-Bellman equations, which are ubiquitous in
most areas of science. On the theoretical side, we develop a complexity anal-
ysis of this approach, and show numerically that random quantum networks
can outperform more traditional quantum networks as well as random classical
networks.
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1 Introduction

Partial Differential Equations (PDEs) describe continuous phenomena, such as the
fluid flows or the propagation of waves. They correspond to the mathematical trans-
lation of observable, physical, chemical or biological processes. Unfortunately, these
equations rarely admit analytical solutions, and need to be be discretised on some
mesh. This process can be computationally expensive, especially for high-dimensional
problems and when unstructured meshes are required, for example to account for local
irregular behaviours. This discretised scheme can then be solved using a variety of
numerical methods, such as finite elements (FEM), finite differences (FDM) or the
finite volume (FVM). However, even these methods can be inefficient for large and
complex problems. For example, the solution of the Navier-Stokes equations, describing
the motions of a fluid, can require millions of hours of CPU or GPU time on a super-
computer. Another example is the Poisson equation, one of the most important PDEs
in engineering, including heat conduction, gravitation, and electrodynamics. Solving
it numerically in high dimension is only tractable with iterative methods, which often
do not scale well with dimension and/or require specialist knowledge when dealing
with boundary conditions or when generating the discretisation mesh.

Neural networks (NNs) are well positioned to solve such complicated PDEs and
are already used in various areas of engineering and applied mathematics for complex
regression and image-to-image translation tasks. The scientific computing community
has applied them PDE solving as early as the 1980s [18], yet interest has exploded
over recent years, due in part to significant improvements in computational techniques
and improvements in the formulation of such networks, as detailed and highlighted for
example in [4, 19, 30].

Quantum computing is a transformative new paradigm which takes advantage of
the quantum phenomena seen at the microscopic physical scale. While significantly
more challenging to design, quantum computers can run specialised algorithms that
scale better than their classical counterparts, sometimes exponentially faster. Quan-
tum computers are made of quantum bits (or qubits) that, unlike bits in conventional
digital computers, store and process data based on two key principles of quantum
physics: quantum superposition and quantum entanglement. They characteristically
suffer from specific errors, namely quantum errors, which are related to the quantum
nature of their qubits. Even if quantum computers of sufficient complexity are not
yet available, there is a clear need to understand what tasks we can hope to perform
thereon and to design methods to mitigate the effects of quantum errors [27].

Quantum neural networks form a new class of machine learning networks and
leverage quantum mechanical principles such as superposition and entanglement with
the potential to deal with complicated problems and/or high-dimensional spaces. Sug-
gested architectures for quantum neural networks include [6, 10, 32] and suggest that
there might be potential advantages, including faster training. Preliminary theoretical
research into quantum machine learning shows that quantum networks can produce a
more trainable model [1]. This is particularly relevant to solving PDEs with machine
learning as techniques which produce a more favourable loss landscape can drastically
improve the performance of these models [12, 16].
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In the present work, we suggest a new way of formulating a quantum neural net-
work, translate some classical machine learning techniques to the quantum setting and
develop a complexity analysis in the context of specific PDEs (the Heat, the Poisson
and an HJB equation). This provides a framework to demonstrate the potential and
the versatility of quantum neural networks as PDE solvers.

The paper is organised as follows: Section 2 introduces the PINN algorithm and
reviews the basics of classical and quantum networks. In Section 3, we introduce a
novel quantum network to solve specific PDEs and provide a complexity analysis.
Finally, we confirm the quality of the scheme numerically in Section 4.

Notations. We denote by Cn(Ω,R) the space of n times differentiable functions
from Ω to R, by Lp(Ω) the space of functions with finite Lp norm and define the Sobolev
space Wα,β(Ω) :=

{
f ∈ Lβ(Ω) : ∇sf ∈ Lβ(Ω) for all |s| ≤ α

}
, where ∇sf refers to

the weak derivative of order s. Similarly, we let Wα,β
0 be the subspace of functions

in Wα,β(Ω) that vanish in the trace sense on the boundary of Ω. We use ∥ · ∥ to refer
to the Euclidean norm.

2 Main tools

2.1 PINN algorithm

The Physics-informed neural network (PINN) algorithm relies on the expressive power
of neural networks to solve PDEs. Let Ω ⊂ Rd be a bounded Lipschitz domain with
boundary ∂Ω, F : CK(Ω,R) → C(Ω,R) a differential operator of order at most K,
E ⊂ ∂Ω and h : E → R. The goal is to estimate the solution u : Ω → R to the PDE{

F (u) (x) = 0, for all x ∈ Ω,

u(x) = h(x), for all x ∈ E.

Let uΘ : Ω → R be a neural network at least K times continuously differentiable
parameterised by some set Θ. We assume access to two datasets: independent and

identically distributed (iid) random vectors {X(e)
i }i=1,...,ne with known distribution µE

on E and iid random vectors {X(r)
i }i=1,...,nr with known distribution µΩ on Ω. We

then minimise the empirical loss function

Lne,nr
(uΘ) :=

λe
ne

ne∑
i=1

∣∣∣uΘ

(
X

(e)
i

)
− h

(
X

(e)
i

)∣∣∣+ 1

nr

nr∑
i=1

∣∣∣F (uΘ)
(
X

(r)
i

)∣∣∣ , (2.1)

over the set Θ using a hybrid quantum-classical training loop, where λe > 0 is a
hyper-parameter allowing one to balance the two loss components. This training loop
evaluates all uΘ(·) values on a quantum computer before feeding the values to a classi-
cal computer for use in classical optimisation routines. As shown in [5] (Proposition 3.2
and the associated discussion) minimising (2.1) does not necessarily imply anything
about the mean squared error ||u− uΘ||22.
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2.2 Gaussian smoothing

In [14], the authors investigated Gaussian smoothing the output of a classical neu-
ral network for use as a PDE trial solution, providing a simpler expression (as an
expectation) for all derivatives. Consider indeed a trial solution of the form

f(x) := Eδ∼N (0,Iσ2)[u(x+ δ)], for all x ∈ Rd, (2.2)

for some σ > 0, where u is the output of a neural network. Then, assuming u
measurable, all derivatives can then be written as follows:
Theorem 2.2.1 ([14, Theorem 1]). For any measurable function u : Rd → R, the
function f defined in (2.2) is differentiable and the following holds for all x ∈ Rd:

∇f(x) =
1

σ2
Eδ∼N (0,Iσ2) [δu(x+ δ)] .

Theorem 2.2.1 implies that an (unbiased) estimate for the gradient can be
computed for example by Monte Carlo, for example as

∇̃f(x) :=
1

K

K∑
k=1

δk
σ2

u(x+ δk),

using K iid Gaussian N (0, Iσ2) samples (δk)k=1,...,K . This can be improved using a
combination of antithetic variable and control variate techniques (see for example [8,
Chapter 4] for a thorough overview) resulting in the new estimator

∇̃f(x) :=
1

K

K∑
k=1

δk
2σ2

(
u(x+ δk)− u(x− δk)

)
.

This method can easily be extended to derivatives of any order with recursion, for
example for the Laplacian:

∆̃f(x) :=
1

K

K∑
k=1

∥δk∥2 − 2σ2

2σ4

(
u(x+ δk)− 2u(x) + u(x− δk)

)
.

In fact, the function f defined in (2.2) is Lipschitz continuous:
Theorem 2.2.2. Let u : Rd → R be measurable. The map Eδ∼N (0,Iσ2)[u(· + δ)] is

Lipschitz with respect to any arbitrary norm. In particular with the 2-norm, it is u
σ

√
2
π

Lipschitz, with u = supx∈Rd |u(x)|.

Proof. This statement is proved in [14] for the ℓ2-norm, and it is easy to extend to
any arbitrary norm. Since f is differentiable by Theorem 2.2.1, it is well known that
its Lipschitz constant Lα(f) in the α-norm can be obtained as

Lα(f) = sup
x∈Rd

∥∇xf(x)∥∗α,
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with ∥z∥∗α := sup∥y∥α≤1 y
⊤z the dual norm of ∥·∥α. Using Theorem 2.2.1, we can write

Lα(f) = sup
x∈Rd

∥∥∥∥E [ δ

σ2
u(x+ δ)

]∥∥∥∥∗
α

=
1

σ2
sup
x∈Rd

sup
∥y∥α≤1

∣∣y⊤E [δu(x+ δ)]
∣∣

=
1

σ2
sup
x∈Rd

sup
∥y∥α≤1

∣∣E [y⊤δu(x+ δ)
]∣∣

≤ u

σ2
sup

∥y∥α≤1

∣∣E [y⊤δ]∣∣
≤ u

σ2
sup

∥y∥α≤1

E
[∣∣y⊤δ∣∣] ≤ u

σ2
sup

∥y∥α≤1

σ

√
2∥y∥2
π

.

When α = 2, the upper bound becomes u
σ

√
2
π and the theorem follows.

As concluded in [14], this Lipschitz constant restriction is not particularly limiting
in the classical setting since small values of σ can be used. However, in the quan-
tum setting small values of σ introduce a large error if not enough shots are used.
Specifically, consider the parameterised expectation (detailed in (2.3))

g(x) := ⟨C⟩M(x)|0⟩ = ⟨0|M(x)†CM(x)|0⟩ ∈ C, for x ∈ Rd.

On actual quantum hardware we can only obtain an estimate g̃(x) of g(x) using a
finite number of shots, and we denote

ε(x) := g(x)− g̃(x)

the (pointwise) inaccuracy, which is a random variable, since g̃(x) is an empirical
estimator. This framework allows for error from both noisy circuits and estimating
expectations using a finite number of shots. Since the map g is bounded and the
numbers of shots and qubits are finite, then there exists a constant εf > 0 such that

|ε(x)| ≤ εf uniformly over x ∈ Rd. Define G(x) := E[g(x+δ)] and G̃(x) := E [g̃(x+ δ)],
where δσ ∼ N (0, Iσ2), the following lemma provides a bound for the distance between
the gradients of these two functions:
Lemma 2.2.3. The following bound holds for the Euclidean norm:

sup
x∈Rd

∥∥∥∇G(x)−∇G̃(x)
∥∥∥ ≤

√
d εf
σ

.

Proof. From Theorem 2.2.1, we can write, for any x ∈ Rd,∥∥∥∇G(x)−∇G̃(x)
∥∥∥ =

∥∥∥∥ 1

σ2
E[δσg(x+ δσ)]−

1

σ2
E [δσ g̃(x+ δσ)]

∥∥∥∥
=

1

σ

∥∥∥E[δ1g(x+ δ1σ)]− E [δ1g̃(x+ δ1σ)]
∥∥∥
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=
1

σ
∥E[δ1ε(x+ δ1σ)]∥

≤ 1

σ
E∥δ1ε(x+ δ1σ)∥ ≤ εf

σ
E∥δ1∥ =

εf
√
2

σ

Γ(d+1
2 )

Γ(d2 )
≤

√
d εf
σ

.

We use Jensen’s inequality to take the norm inside of the expectation. The penultimate
inequality follows since the Euclidean norm of the Gaussian is a Chi distribution, and
the last inequality is Gautschi’s [29, Equation (6)].

Therefore we see that decreasing the parameter σ increases the impact of quantum
induced sampling error. Similar reasoning can be applied to finite difference based
methods, and we refer the reader to [2, Section 2.1] for a general review of finite
differences for gradients with error.

2.3 Random classical networks

We call ‘random classical network’ a single-hidden-layer feedforward neural network
with randomly generated internal weights, where only the last layer of weights and
hyperparameters is optimised over. Such random networks have previously been suc-
cessfully applied to solving different types of (high-dimensional) PDEs [9, 15, 22, 28].
For the Black-Scholes-type PDE (similar to the heat equation), Gonon [9] provided
a full error analysis of the prediction error of random neural networks. Specifically,
let N ∈ N be the number of hidden nodes, B = (B1, · · · , BN ) an iid sequence of
real-valued random variables and E = (E1, · · · , EN ) another iid sequence of random
variables in Rd, independent of B. For a vector W ∈ RN , define the random function

HE,B
W (x) :=

N∑
i=1

Wiϱ (Eix+Bi) , for all x ∈ Rd,

where we consider the non-linear activation function ϱ(x) = max(0, x). The vector W
then represents the trainable parameters, while E and B are sampled from some prior
distribution and frozen. These random networks are considerably easier to train than
traditional fully connected deep neural networks, especially in a supervised learning
context, where training reduces to a linear regression. The PINN algorithm is not
a supervised learning approach, and this therefore does not apply; however it does
reduce the number of trainable parameters, and hence the computational burden.
In [11], Gonon, Grigoryeva and Ortega proved that, as long as the unknown function
is sufficiently regular, it is possible to draw the internal weights of the random network
from a generic distribution (not depending on the unknown object) and quantify the
error in terms of the network architecture.

2.4 Quantum neural networks

2.4.1 Quantum neural networks

Using a quantum network for the PDE trial solution in the PINN algorithm was first
proposed by Kyriienko, Paine and Elfving [17]. Essentially, the spatial variable x is
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embedded into a quantum state via a unitary operator U(x) (referred to as the feature
map), then a parameterised unitary operator UΘ (independent of x) is applied before
producing the output of the network by taking the expectation of a Hermitian cost
operator C:

uΘ(x) := ⟨C⟩UΘ U(x)|0⟩ = ⟨0| (UΘ U(x))
†C UΘ U(x)|0⟩ ,

and the parameters Θ are found by minimising some loss function, for example (2.1).
In [17], the authors suggested that increasing the number of qubits or using cost
operators with more complex Pauli decompositions could produce more expressive
networks. Preliminary research [24–26] has shown the potential of parameterising
the feature maps and repeated application of unitary operators, leading to the more
general formulation

uΘ(x) = ⟨0|

(
1∏
i=L

Ui,θiUi,ωi
(x)

)†

C

(
1∏
i=L

Ui,θiUi,ωi
(x)

)
|0⟩ ,

for some positive integer L, where Θ = {θ1, ω1, · · · , θL, ωL} is the set of all hyperpa-
rameters. In particular, the authors in [26] showed that one-qubit networks can act
as universal approximators for bounded complex continuous functions or integrable
functions with a finite number of finite discontinuities.

2.4.2 Random quantum networks

Consider a system with n qubits. Let A : Ω → C2n×2n be a random function which
maps the spatio-temporal variable x to a unitary matrix and Λ ∈ C2n×2n a random
unitary matrix distributed according to the Haar measure. Then for a suitable set of
parameters Θ, we define the random function uΛ,A

Θ : Ω → R,

uΛ,A
Θ (x) := ⟨0|

(
UΘ(x)ΛA(x)

)†
C
(
UΘ(x)ΛA(x)

)
|0⟩ ,

where C is a Hermitian cost operator. When using this random quantum neural net-
work to approximate u we generate A and Λ, consider them fixed and train the
parameters Θ. Specific examples of A are given in Section 3.1.
Remark 2.4.1. In practice, one may encode the data x only through A and leave UΘ
independent of x. We leave the current formulation as is, allowing for more generality.

2.4.3 Optimised parameter shift

When differentiating parameterised expectation values we apply the family of param-
eter shift rules discussed by Mari, Bromley and Killoran [21]. In quantum computing,
one-qubit rotation gates can be written as exp

{
− ix

2 G
}
for some unitary matrix G and

some real number x. We shall require here a slightly modified version:
Definition 2.4.2. For x ∈ R, the matrix M(x) is a single qubit rotation-like gate if

M(x) = exp

{
− ix

2
G

}
,

7



for some complex-valued involutory generator matrix G (satisfying G2 = I).
We shall use these single qubit rotation-like gates to construct an approxima-

tion uΛ,A
Θ . The following lemma allows us to decompose the unitary conjugation

M(x)† C M(x) to the sum of three easy-to-compute terms, as mentioned in [21,
Equation (5)], but without proof:
Lemma 2.4.3. For any x ∈ R, the identity M(x)†CM(x) = A+B cos(x)+C sin(x) holds
for any single qubit rotation-like gate M(x) with

A =
G†CG+ C

2
, B =

C − G†CG
2

, C =
i

2

(
G†C − CG

)
.

Proof. Let x ∈ R. Since M(x) is a rotation-like gate as in Definition 2.4.2 with
involutory generator G, then it is trivial to show that

M(x) = exp

{
− ix

2
G

}
= cos

(x
2

)
I− i sin

(x
2

)
G.

Therefore

M†CM =
(
cos
(x
2

)
I− i sin

(x
2

)
G
)†

C
(
cos
(x
2

)
I− i sin

(x
2

)
G
)

=
(
cos
(x
2

)
I + i sin

(x
2

)
G†
)
C
(
cos
(x
2

)
I− i sin

(x
2

)
G
)

=

[
cos
(x
2

)2
C + sin

(x
2

)2
G†CG

]
+ i
[
sin
(x
2

)
cos
(x
2

)
G†C − sin

(x
2

)
cos
(x
2

)
CG
]

=

[
cos
(x
2

)2
C +

(
1− cos

(x
2

)2)
G†CG

]
+

i

2

(
G†C − CG

)
sin(x)

= G†CG+
(
C − G†CG

)
cos
(x
2

)2
+

i

2

(
G†C − CG

)
sin(x)

= G†CG+
(
C − G†CG

) 1 + cos(x)

2
+

i

2

(
G†C − CG

)
sin(x)

=
G†CG+ C

2
+

C − G†CG
2

cos(x) +
i

2

(
G†C − CG

)
sin(x),

and the lemma follows.

Consider the function g : R → R defined as

g(x) := ⟨0|M(x)† C M(x)|0⟩ , for any x ∈ R, (2.3)

given some single qubit rotation-like matrix M as in Definition 2.4.2. Clearly g is
infinitely differentiable, and it is furthermore periodic by Lemma 2.4.3. Denote its
partial derivatives

gj1,j2,··· ,jd(x) :=
∂dg(x)

∂xj1∂xj2 · · · ∂xjd
, for any x ∈ R.
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Applying the family of parameter shift rules [21, Equation (9)] results in

gj(x) =
g(x+ sej)− g(x− sej)

2 sin(s)
, for any x ∈ R, (2.4)

for any s ∈ R \ {kπ : k ∈ Z}, where ej is a unit vector along the xj axis. Iteratively
applying this rule with the same shift results in

gj1,j2(x) =
g(x+ s(ej1 + ej2))− g(x+ s(−ej1 + ej2))− g(x+ s(ej1 − ej2)) + g(x− s(ej1 + ej2))

4 sin(s)2
,

for any x ∈ R. For j1 = j2 and using the value s = π
2 reduces this to

gj,j(x) =
g(x+ πej)− g(x)

2
, (2.5)

and for s = π
4 we obtain

gj,j(x) =
g
(
x+ ej

π
2

)
− 2g(x) + g

(
x− ej

π
2

)
2

. (2.6)

While (2.5) only requires the evaluation of two expectation values compared to the
three of (2.6), the latter has the distinct advantage of providing both the deriva-
tives gj,j and gj . For the complexity analysis we apply either (2.5) or (2.6) depending
on which one is more efficient for the chosen PDE. The optimised parameter shift rules
above are covered in [21], but simple yet tedious computations can provide higher
other derivatives if needed, as shown in the following:
Theorem 2.4.4. Let g be any function of the form (2.3) with M a single qubit rotation-
like gate and C a Hermitian cost operator. For any d ≥ 2 and all x ∈ R,

∂dg(x)

∂xdj
=
[
2 sin

(π
d

)]−d{(
1 + (−1)d

)
g(x+ πej) +

d−1∑
i=1

(−1)i+d
(
d

i

)
g

(
x+

(
2πi

d
− π

)
ej

)}
.

Proof. Repeated applications of the parameter shift rule (2.4) with the same basis
vector and the same shift magnitude for each shift results in

∂d

∂xdj
g(x) =

d∑
i=0

(−1)i+d
(
d

i

)
g
(
x+ ( 2πid − π)ej

)
(2 sin(π/d))d

.

The first and last terms in the expansion are

1

(2 sin(π/d))d
(
(−1)dg(x− πej) + g(x+ πej)

)
.

By periodicity of our expectation function, for d even this reduces to
2g(x+πej)
(2 sin(π/d))d

,

whereas when d is odd the first and last terms in the expansion cancel.
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We see that we have the ability to find a dth order unmixed partial derivative
with just d evaluations of the parameterised expectation. Quantum automatic differ-
entiation engines can be built using a combination of the chain rule and the above
formulae where the argument of each expectation is calculated on a classical computer,
the expectation is calculated on a quantum computer before the result is fed back to
the classical computer to compile the different values in the correct way to construct
the derivative. This suggested method is in sharp contrast to the automatic differen-
tiation procedures carried out on classical neural networks where different orders of
derivatives can only be calculated sequentially. For traditional automatic differentia-
tion the algorithm has to first build the computational graph for first-order derivatives
and then perform back-propagation on the graph for the second-order derivatives
before this process is repeated. Note that previous publications such as [17] suggested
repeated applications of the basic parameter shift rule which does not benefit from
the computational acceleration discussed above.

3 Random network architecture and complexity
analysis

3.1 Random network architecture

We assume the input data x is scaled to the interval [0, 1]. By repeated applications of
the so-called UAT (Universal Approximation) gate, one-qubit circuits have the ability
to approximate any bounded complex function on the unit hypercube [26]. This UAT
gate is defined as

UUAT
Θ (x) := Ry(2φ)Rz(2γ

⊤x+ 2α), for all x ∈ [0, 1]d,

with Θ = (φ, γ, α) ∈ R × Rd × R. This was extended in [24] to multiple qubits by
applying the UAT gate to each qubit followed by an entangling layer. We create the
random network’s trainable layer using this UAT gate as well as an entangling layer,
which can be repeated several times. For the entangling layer we choose the sequence

0∏
i=n−1

CNOT(qi, qi+1modn),

of controlled NOT gates, where CNOT(qi, qj) denotes the controlled NOT gate acting on
qubit qj with control qubit qi. The whole trainable M -layer circuit then reads

UΘ(x) :=

M∏
j=1

(
0∏

i=n−1

CNOT(qi, qi+1modn)

)(
n−1⊗
i=0

UUAT
Θi,j

(x)

)
, (3.1)
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and we write Θ = {Θi,j}0≤i≤n−1,1≤j≤M . For the ‘encoding’ matrix A(x) introduced
in Section 2.4.2, we use

A(x) :=

n⊗
j=1

Rz

[
Xjπ acos

(
3

2

(
xgj −

1

2

))]
, (3.2)

where (Xj)j=1,...,n are iid U(0, 1) and an index gj := 1+(j+1 mod d) with nonlinear
activation function acos(·). The constants inside acos(·) and the constant π inside Rz
are justified experimentally as arguments of Rz away from ±π lead to better results.
Such a choice of encoding matrix is inspired from [17], who show that the resulting
matrix A(x) can then be written as a Chebyshev polynomial, the order of which
increases with n, known for approximating well non-linear functions.

Finally, we use a specific Ising Hamiltonian with transverse and longitudinal
magnetic fields and homogeneous Ising couplings for the cost operator:

C =
∑
j

[
Ẑj(modn)Ẑj+1(modn) + Ẑj(modn) + X̂j(modn)

]
, (3.3)

where X and Z are the usual one-qubit Pauli gates and the index refers to the qubit
index they act upon. This is a relatively complex cost operator, allowing us to approx-
imate a wide class of functions, better than the simpler cost operator

∑
j Ẑj . Therefore

the output of the quantum network is

uΘ(x) := ⟨C⟩UΘ(x)|0⟩ = ⟨0| (UΘ(x))†C UΘ(x)|0⟩ . (3.4)

3.2 Complexity analysis

Define the auxiliary variables αi and αi,j as the number of single-qubit rotation-like
gates respectively with xi dependence and with xi and xj dependence in the circuit
for uΘ. These are not uniquely defined values since the decomposition into single-qubit
rotation-like gates is not unique. Given the loss function (2.1), define the quantity
ξ(Lne,nr ), which returns the total number of uΘ evaluations needed to calculate the
loss function Lne,nr , and which we will use as our complexity metric. Let NΘ be the
total number of components in Θ. It may seem pertinent to include in this metric the
cost of computing all the derivatives (∂ΘiL)i=1,...,NΘ (for example for the optimisation
part); this is however unnecessary since the exact number of uΘ evaluations to do so
is given by 2NΘξ(L).

3.3 The p-Laplace equation

Consider the p-Laplace (1 < p < ∞) equation with Dirichlet boundary conditions:{
∆pu+ f = 0, on Ω,

u = h, on ∂Ω,
(3.5)
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where u ∈ W1,p
0 (Ω) ∩ Lp(Ω), f ∈ L

p
p−1 (Ω) and h the trace of some W1,p

0 (Ω) ∩ Lp(Ω)
function. Where the p-Laplace operator reads

∆pu := |∇u|p−4

(
|∇u|2∆u+ (p− 2)

d∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

)
. (3.6)

For the variational formulation we have [3, Lemma (2.3)] 1

u ∈ argmin
v∈W1,p(Ω)

Tv=h

(
1

p

∫
Ω

|∇v|pdx−
∫
Ω

fvdx

)
. (3.7)

We refer the reader to [7] for a reference on the weak formulation of PDEs. To
translate the variational statement (3.7) to a loss function, we add a penalisation term
for the boundary conditions and approximate the integral along the sample points,
resulting in the empirical loss function

LVar
ne,nr

(uΘ) :=
λe
ne

ne∑
i=1

∣∣∣uΘ

(
X

(e)
i

)
− h

(
X

(e)
i

)∣∣∣+ 1

nr

(
1

p
|∇uΘ(X

(r)
i )|p − f(X

(r)
i )uΘ(X

(r)
i )

)
.

(3.8)
This idea of minimising a functional to solve PDEs using neural networks has

previously been studied for Poisson equations [23, 31]. The cases p ̸= 2 and p = 2
need to be studied separately since the mixed second-order partial derivatives of the
p-Laplace operator (3.6) cancel when p = 2.

3.3.1 The p ̸= 2 case

Lemma 3.3.1. For the prototypical PINN loss function (2.1), we have

ξ(Lne,nr
) = nr

d∑
i,j=1,i≤j

(4αiαj − αi,j) + ne,

provided the second-order partial derivatives all commute, namely when[
∂vΘ
∂xi

,
∂vΘ
∂xj

]
= 0, for all i, j ≤ d.

Without any assumptions on the partial derivatives, we have

ξ(Lne,nr
) = nr

d∑
i,j=1

(4αiαj − αi,j) + ne.

1This is for the case with the zero boundary condition. However any problem with prescribed nonzero
boundary values can easily be transformed into this setting [7, Section (6.1.2)]
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Proof. Consider decomposing the quantum circuit (3.1) responsible for producing
uΘ(x) into one with just single qubit rotation-like gates and CNOTs. Assuming p
single qubit rotation gates and with a slight abuse of notation,

uΘ(x) = g(ϕ1(x), · · · , ϕp(x)) = g(ϕ(x)), (3.9)

where each ϕi is the rotation angle for a particular single qubit rotation-like gate. Note
that this decomposition is clearly not unique, as one could choose a decomposition
based on which has the lowest ξ value. Basic applications of the chain rule then yield

∂uΘ

∂xi
=
∑
a

∂g

∂ϕa

∂ϕa
∂xi

, (3.10a)

∂uΘ

∂xi∂xj
=
∑
a,b

∂g

∂ϕb∂ϕa

∂ϕa
∂xi

∂ϕb
∂xj

+
∑
a

∂g

∂ϕa

∂ϕa
∂xi∂xj

.

We then split the sum over a, b up resulting in

∂uΘ

∂xi∂xj
=
∑
a̸=b

∂g

∂ϕb∂ϕa

∂ϕa
∂xi

∂ϕb
∂xj

+
∑
a

∂g

∂ϕa∂ϕa

∂ϕa
∂xi

∂ϕa
∂xj

+
∑
a

∂g

∂ϕa

∂ϕa
∂xi∂xj

.

In the first summation there are (αiαj −αi,j) terms, so applying the standard param-
eter shift rule equation (2.4) twice results in 4(αiαj − αi,j) evaluations of uΘ. In the
second summation there are αa,b terms, so the optimised parameter shift rule (2.6)
results in 3αi,j evaluations of uΘ. We use this parameter shift rule as it provides all
of the quantum gate partial derivatives needed for the third summation too.

For the p-Laplace operator (3.6), we require all mixed partial derivatives, that
is the derivatives for all pairs (i, j); as a result the number of operators needed to
evaluate all these derivatives of uΘ is equal to

d∑
i,j=1

(4(αiαj − αi,j) + 3αi,j) =

d∑
i,j=1

(4αiαj − αi,j) ,

where we have assumed the derivatives do not necessarily commute. Assuming they
do, we then only need to sum over pairs with i ≤ j, as

d∑
i,j=1,i≤j

(4αiαj − αi,j) .

Note that the nr factor comes from the number of times the residual must be evalu-
ated; since boundary data appears with no derivatives, each sample then only requires
one uΘ evaluation.
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Lemma 3.3.2. For the variational loss function formulation (3.8),

ξ
(
LVar
ne,nr

)
= nr

(
1 + 2

d∑
i=1

αi

)
+ ne. (3.11)

Proof. The minimisation statement that arises from the variational formulation (3.7)
involves both the gradient and the function value for each sample point. Using the
same decomposition as before (3.9), the chain rule (3.10a) and the basic parameter

shift rule (2.4) the gradient involves exactly 2
∑d

i=1 αi evaluations of uΘ. The function
value results in only one uΘ evaluation. This is done for each sample point inside the
domain resulting in

ξ
(
LVar
ne,nr

)
= nr

(
1 + 2

d∑
i=1

αi

)
.

The extra ne term in (3.11) is a result of the boundary penalisation term in (3.8).

Lemma 3.3.3. If the PDE trial solution is the Gaussian smoothed output of a
quantum network then, using K classical samples of Gaussian noise,

ξ
(
LSmooth
ne,nr

)
= K(5nr + ne). (3.12)

Proof. When the output of the quantum network is Gaussian smoothed (2.2), the
Hessian matrix HfΘ can be calculated using

HfΘ(x) = E
[(

δδ⊤ − σ2I

σ4

)
uΘ(x+ δ)

]
, for all x ∈ Ω, (3.13)

with δ ∼ N
(
0, σ2I

)
, as proven in [14]. The general variance of this estimator can

be reduced by applying the control variate and antithetic variable method. For the
additive control variate we use uΘ(x) as a baseline which turns the estimate (3.13) into

HfΘ(x) = E
[(

δδ⊤ − σ2I

σ4

){
uΘ(x+ δ)− uΘ(x)

}]
, for all x ∈ Ω. (3.14)

just as authors do in [14]. Notice the estimate in (3.13) and (3.14) is invariant when δ
is substituted with −δ, averaging this new estimator with the one in (3.14) results in

HfΘ(x) = E
[(

δδ⊤ − σ2I

2σ4

){
uΘ(x+ δ) + uΘ(x− δ)− 2uΘ(x)

}]
.

The same technique can be applied to the estimator for the gradient resulting in

∇xfΘ(x) = E
[

δ

2σ2
(uΘ(x+ δ)− uΘ(x− δ))

]
.
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There are a total of five uΘ terms in both expressions, the boundary term will fea-
ture a single fΘ term for each sample point. Assuming we approximate each classical
expectation with K iid Gaussian samples the expression (3.12) follows.

Lemma 3.3.4. We can combine a Gaussian smoothed trial solution with the
variational loss function reformulation (3.8) and (3.7) resulting in

ξ
(
LVar,Smooth
ne,nr

)
= K(3nr + ne).

Proof. For each sample point the variational formulation (3.7) only involves a gradient
term and the function value and, proceeding as in the proof of Lemma 3.3.3, this
produces 3K evaluations of uΘ, where we again assume K iid Gaussian samples. Once
more the boundary penalisation element shown in (3.8) produces the Kne term.

3.3.2 The p = 2 case

The p = 2 Laplace equation reduces to the Poisson equation, and the following holds:
Lemma 3.3.5. For the Poisson equation, the complexity metrics for the prototypical
loss formulation (2.1) and the loss function using the variational form (3.8) read

ξ(Lne,nr
) = nr

(
d∑
i=1

(
4α2

i − αi
))

+ ne,

ξ
(
LVar
ne,nr

)
= nr

(
1 + 2

d∑
i=1

αi

)
+ ne.

Proof. The proof of ξ
(
LVar
ne,nr

)
is the exact same as the case with p ̸= 2. The first

statement’s proof is very similar to that in Lemma 3.3.1 however we include it for the
sake of completeness. Using the same decomposition as in Lemma 3.3.1 we have

∂uΘ

∂xi∂xj
=
∑
a ̸=b

∂g

∂ϕb∂ϕa

∂ϕa
∂xi

∂ϕb
∂xi

+
∑
a

∂g

∂ϕa∂ϕa

∂ϕa
∂xi

∂ϕa
∂xi

+
∑
a

∂g

∂ϕa

∂

∂xi

∂ϕa
∂xi

.

For the first term we apply the basic parameter shift rule twice to the α2
i −αi terms

resulting in 4(α2
i −αi) evaluations of uΘ . For the second term we apply the optimised

parameter shift rule given in (2.6), producing 3αi evaluations of uΘ and also providing
all of the quantum derivatives needed for the third term. Summing over all i,

d∑
i=1

(
4(α2

i − αi) + 3αi
)
=

d∑
i=1

(
4α2

i − αi
)
.

We then add the boundary term and multiply by the relevant sample sizes to produce
the original statement.
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Lemma 3.3.6. If the PDE trial solution is Gaussian smoothed, then

ξ
(
LSmooth
ne,nr

)
= K(3nr + ne). (3.15)

Proof. The Gaussian Laplacian term is given by [14, Equation (11)]

∆fΘ(x) = E
[(

∥δ∥2 − σ2d

2σ4

)
(uΘ(x+ δ) + uΘ(x− δ)− 2uΘ(x))

]
. (3.16)

There are a total of three uΘ terms in (3.16), the boundary term will feature a single
fΘ term for each sample point. Assuming we approximate each classical expectation
with K iid Gaussian samples the expression (3.15) follows.

3.4 Heat equation

We now consider the heat equation, solution to the system
(∆− ∂t)u(t, x) = 0, for all x ∈ Ω, t ∈ [0, T ),

u(0, x) = h(x), for all x ∈ Ω,

u(t, x) = g(x), for all x ∈ ∂Ω, t ∈ [0, T ).

Similarly to above, we define αt to be the number single qubit rotation-like gates with
time dependence.
Lemma 3.4.1. The complexity with the loss function (2.1) reads

ξ(Lne,nr
) = nr

(
2αt +

d∑
i=1

(
4α2

i − αi
))

+ ne.

If the network is Gaussian smoothed then

ξ
(
LSmooth
ne,nr

)
= K(5nr + ne), (3.17)

Proof. For the first statement we apply the working from proof of the p-Laplace with
p = 2 followed by the basic parameter shift rule for ∂tuΘ which produces the 2αt factor.
For the Gaussian statement we use the Laplacian term in (3.16) and the corresponding
variance reduced equation reads

∂tfΘ = E(δt,δx)∼N (0,Iσ2)

[
δt
2σ2

(
uΘ(t+ δt, x+ δx)− uΘ(t− δt, x− δx)

)]
(3.18)

for the time derivative. Counting terms we arrive at (3.17).
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Since the other components of the Gaussian noise in (3.18) all return first-order
derivatives, then

(∂tfΘ,∇xfΘ) = E(δt,δx)∼N (0,Iσ2)

[
(δt, δx)

2σ2
(uΘ(t+ δt, x+ δx)− uΘ(t− δt, x− δx))

]
.

3.5 Hamilton–Jacobi equation

Consider the classical linear-quadratic Gaussian (LQG) control problem in d dimen-
sions, with the associated HJB equation given by [13]{(

∂tu+∆u− µ∥∇xu∥2
)
(t, x) = 0, for all x ∈ Rd, t ∈ [0, T ),

u(T, x) = h(x), for all x ∈ Rd.
(3.19)

with µ ∈ R. Similarly to the p-Laplace case above, we have the following:
Lemma 3.5.1. In this HJB framework, the complexity with the standard loss
function (2.1) reads

ξ(Lne,nr ) = nr

(
2αt + 3

d∑
i=1

αi(2αi − 1)

)
+ ne, (3.20)

which simplifies, for a Gaussian smoothed network, to

ξ
(
LSmooth
ne,nr

)
= K(5nr + ne), (3.21)

Proof. We apply the same decomposition and parameter shift applications as is done
in Lemma 3.3.5 and note that doing so provides all of the quantum expectations needed
to calculate ∇xuΘ too. The basic parameter shift rule is applied to find ∂tuΘ, after
multiplying each term by the number of relevant samples and adding the boundary
element we recover (3.20). For the Gaussian expression we apply (3.20) and (3.16),
counting terms adding the boundary term and multiplying by the relevant sample
sizes produces (3.21).

3.6 Explicit comparison

With the random network introduced in Section 3.1, assuming that the number n of
qubits is a multiple of the problem dimension d, we then have, for each i, j ∈ 1, · · · , d,

αi =
n

d
+Mn and αi,j = Mn.

For this particular class of networks, all second-order partial derivatives commute. For
the p-Laplace equation with p ̸= 2 and without Gaussian smoothing the complexity
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in Lemma 3.3.1 reads

ξ(Lne,nr
) = nr

 d∑
i,j=1,i≤j

4
[n
d
+Mn

]2
−Mn

+ ne =
nr
2
d(d+ 1)

[
4
[n
d
+Mn

]2
−Mn

]
+ ne,

ξ
(
LVar
ne,nr

)
= nr

(
1 + 2

d∑
i=1

αi

)
+ ne = nr

(
1 + d(d+ 1)

(n
d
+Mn

))
+ ne.

Let LVar, Smooth
ne,nr

represent the loss function (3.8) using Gaussian smoothing (2.2) in
its variational form (3.7). In this case, we have

ξ(LSmooth
ne,nr

) = K(5nr + ne) and ξ
(
LVar,Smooth
ne,nr

)
= K(3nr + ne).

Fix two final UAT trainable layers (M = 2) and let the number of qubits be three
times the problem’s dimension (n = 3d). The number of evaluations then reduces to

ξ (Lne,nr ) = nrd(d+ 1)(2(3 + 6d)2 − 3d) + ne = nr(72d
4 + 141d3 + 87d2 + 18d) + ne,

ξ
(
LVar
ne,nr

)
= nr (1 + d(d+ 1)(3 + 6d)) + ne = nr(6d

3 + 9d2 + 3d+ 1) + ne.

While still polynomial we clearly have better scaling in the dimension for the varia-
tional formulation. We in particular have ξ(Lne,nr ) > ξ

(
LVar
ne,nr

)
for all values of d ∈ N.

In [14], the authors find good experimental results using values of K ∈ [256, 2048] for
classical PINNs, so we now fix K = 1024. For nr = ne, we have

ξ
(
LVar, Smooth
ne,nr

)
< ξ

(
L Smooth
ne,nr

)
, for all d ∈ N,

ξ
(
LVar, Smooth
ne,nr

)
< ξ

(
LVar
ne,nr

)
, if and only if d ≥ 9,

ξ
(
L Smooth
ne,nr

)
< ξ

(
LVar
ne,nr

)
, if and only if d ≥ 10.

For the p-Laplace equation, Gaussian smoothing is thus more efficient as the dimension
grows.
Remark 3.6.1. Using the complexity analysis in the previous sections, a similar
comparison analysis is straightforward for the p-Laplace equation with p = 2 as well
as for the HJB and the Heat equations.

3.7 Expressive power of smoothed networks

From Theorem 2.2.2, when the output of the quantum network is Gaussian smoothed,

the resulting PDE trial solution is u
σ

√
2
π Lipschitz, where u = supx∈Rd |uΘ(x)| with

respect to the 2-norm. To derive an upper bound for u for any parameter set it suffices
to consider the range of the expectation for the Hermitian cost (3.4) operator

sup
x,Θ

|uΘ(x)| = sup
x,Θ

|⟨C⟩UΘ(x)|0⟩| ≤ sup
ψ,⟨ψ|ψ⟩=1

∣∣∣⟨C⟩ψ∣∣∣ ,
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using the Ising Hamiltonian (3.3)

sup
ψ,⟨ψ|ψ⟩=1

∣∣∣⟨C⟩ψ∣∣∣ ≤ sup
ψ,⟨ψ|ψ⟩=1

∣∣∣∣∣∣
〈

n∑
j=1

[
Ẑj(modn)Ẑj+1(modn) + Ẑj(modn) + X̂j(modn)

]〉
ψ

∣∣∣∣∣∣ ≤ 3n,

resulting in a Lipschitz constant of 3n
σ

√
2
π for the PDE trial solution, unlikely to be

the best Lipschitz constant. For example for a single qubit it is easy to see that the
expectation of Z will not be 1 when the expectation of X is 1.

3.8 Lipschitz constant for the heat equation

3.8.1 Heat equation with small Lipschitz constant

Consider the heat equation defined as
∆u(t, x) = ∂tu(t, x), for all x ∈ B0,1, t ∈ [0, T ),

u(0, x) =
∥x∥2

2d
, for all x ∈ B0,1,

u(t, x) = t+
1

2d
, for all x ∈ ∂B0,1, t ∈ [0, T ).

with B0,1, the unit ball in Rd. The solution is u(t, x) = t+ ∥x∥2

2d , with Lipschitz constant

Lα(u) = sup
x∈B0,1,t∈[0,T )

∥∇u(t, x)∥2 = sup
x∈B0,1

∥∥∥x
d
+ 1
∥∥∥
2
=

1

d
+ 1.

In our formulation, n ≤ d, where n is the number of qubits and the data lies in Rd.
Therefore, the Lipschitz constant Lα(u) is smaller than that of the PDE trial solution,
3n
σ

√
2
π , obtained in Section 3.7 as long as σ ≤ 3n

√
2
π (1 + 1

d )
−1. Good experimental

results with σ ≤ 0.1 were outlined in [14], which clearly satisfies the condition for all
integers n and d.

3.8.2 Heat equation with large Lipschitz constant

For an example of PDE where this Gaussian method is intractable with quantum
networks, consider the heat equation

∆u(t, x) = ∂tu(t, x), (3.22)

for x ∈ [0, 1]d and t ∈ [0, T ), with Dirichlet boundary conditions, and consider the
solution given by

u(t, x) = d
1
d e−a

2π2dt
d∏
i=1

sin(aπxi), (3.23)
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for x = (x1, . . . , xd), and ∇t,x the gradient with respect to both t and x we have the
Lipschitz constant upper bound

Lα(u) = sup
x∈[0,1]d,t∈[0,T )

∥∇t,xu(t, x)∥2

= sup
x∈[0,1]d,t∈[0,T )

∥∥∥∥− e1a
2π2du(t, x) + aπd

1
d e−a

2π2dt
d∑
j=1

ej+1 cos(aπxj)

d∏
i=1,i̸=j

sin(aπxi)

∥∥∥∥
2

= sup
x∈[0,1]d

∥∥∥∥− e1a
2π2du(0, x) + aπd

1
d

d∑
j=1

ej+1 cos(aπxj)

d∏
i=1,i̸=j

sin(aπxi)

∥∥∥∥
2

≥
∥∥∥∥− e1a

2π2du

(
0,

1

2

)
+ aπd

1
d

d∑
j=1

ej+1 cos
(aπ

2

) d∏
i=1,i̸=j

sin
(aπ

2

)∥∥∥∥
2

=

∥∥∥∥− e1a
2π2du

(
0,

1

2

)
+ aπd

1
d

d∑
j=1

ej+1 cos
(aπ

2

)
sin
(aπ

2

)d−1
∥∥∥∥
2

=

√(
a2π2du

(
0,

1

2

))2

+

(
aπ cos

(aπ
2

)
d

1
d d sin

(aπ
2

)d−1
)2

,

where ej denotes the unit vector in Rd with 1 for component j and 0 otherwise. With
d = 50 and a = 1, the resulting Lipschitz constant is greater than 22360. Comparing
this to the Lipschitz restriction found earlier, if we use a value of σ = 0.1 we would
need more than 900 qubits for the smoothed PDE trial solution.

4 Numerical examples

The quantum state simulation is performed using the Yao package for Julia [20]. We
use the random quantum network introduced in Section 3.1 with a varying number of
qubits, which we compare to the random classical network developed by Gonon [9]:
let E1 be t5(0, Id) (multivariate t-distribution) random variable and B1 a Student
t-distribution with two degrees of freedom. At each training iteration we uniformly
sample new points from Ω and ∂Ω.We train solutions using both classical and quantum
networks. Due to the random nature of the networks we repeat each training process
five times, and all training statistics reported below are mean values.

4.1 Poisson equation

Consider the Poisson equation (3.5) with p = 2, Ω = (0, 1)2 and

f(x, y) = 26 cos(y) cos(5x)− 2y

(1 + x)3
,
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L2 Relative Error

Using LVar Using L

Quantum Networks
Full random network 0.040± 0.041 0.051± 0.067

Λ = I 0.575± 0.27 0.61± 0.22

Classical Networks

N = 10 0.683± 1.7 0.799± 1.30

N = 16 0.712± 0.43 0.616± 0.59

N = 24 0.511± 0.19 0.537± 0.13

N = 50 0.281± 0.093 0.200± 0.081

N = 100 0.239± 0.11 0.156± 0.074

Table 1 Training results for the random networks used to solve the Poisson
equation with varying loss function formulations.

so that the explicit solution reads

u(x, y) = cos(5x) cos(y) +
y

1 + x
+ sin(x+ y)2 + cos(x+ y)2.

Alongside quantum and classical networks, we also investigate the two loss func-
tions LVar and L. To demonstrate the effectiveness of the Haar random operator we
also train solutions using Λ = I. We use six qubits, detailed training information and
network settings are shown in Table A. Final relative L2 errors of the trial solutions
are shown in Table 4.1 alongside other metrics. Regardless of the loss function used
the full random quantum networks outperform all of the random classical networks.
In Table 4.1 we see that the performance of the classical networks improves when the
number of nodes increases, notably the full random quantum network has 24 trainable
parameters yet it outperforms the classical network with more than 4 times the num-
ber of trainable parameters. We also see that for both classical and quantum networks
the variational formulation loss functions produces trial solutions with approximately
the same final L2 relative error.

The addition of the Haar random operator Λ has little impact on the training
complexity since it is fixed. However, it greatly improves the final L2 relative error,
for example reducing the error for the variational loss from 0.575 to 0.040. Figure 4.1
shows the squared error |uΘ−u|2 over the domain of x1 for x2 ∈ {0.25, 0.5, 0.75}. The
solid blue line indicates the average value for the quantum network with the shaded
blue area representing all error values from the five runs. For the classical networks we
plot the network with the lowest overall error of the five. Figure 4.1 shows snapshots
of the trial solution against the analytic solution. The five quantum networks display
similar behaviour over the intervals when compared to each other.

4.2 Heat equation

We consider the heat equation (3.22) with the solution (3.23) and T = 1, a = 0.25.
We solve with d = 1, 2 using 4 and 6 qubits, respectively. Specific training settings
are shown in Appendix B and detailed training results can be found in Table 2 and
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Fig. 4.1 Squared error values |uΘ(x) − u(x)|2 of the trial solutions for the Poisson equation in R2

with x1 on the horizontal axis and for x2 ∈ {0.25, 0.5, 0.75}. The parameter N refers to the number
of nodes in the random classical network and n = 6 is the number of qubits in the random quantum
network. For the classical networks we plot the solution with the lowest overall mean squared error
whereas for the quantum networks we plot the average squared error with a ribbon indicating the
range of error for the five different training runs.
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Fig. 4.2 Results of the quantum networks for the Poisson equation in R2, as a function of x1 for
x2 ∈ {0, 0.5, 1}. We also plot the analytic solution for comparison.
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MSE Error

Quantum n = 4 (7.8± 3.5)E-4

Classical

N = 10 (1± 5.3)E-2

N = 16 (8± 5.8)E-3

N = 24 (1.12± 0.87)E-2

N = 50 (4.1± 0.65)E-2

N = 100 (2.7± 1.2)E-2

Table 2 Results for the random networks
for the Heat equation with d = 1.

MSE Error

Quantum n = 6 0.06± 0.04

Classical

N = 30 0.36± 0.21

N = 40 0.23± 0.18

N = 50 0.17± 0.05

N = 60 0.09± 0.11

N = 70 0.07± 0.09

N = 80 0.025± 0.05

N = 100 0.038± 0.08

Table 3 Results for the random
networks for the Heat equation with
d = 2.

Table 3. For d = 1, the quantum network has a lower average MSE than the average
values for the classical networks. Specifically, the classical network with the same num-
ber of trainable parameters has an MSE an order of magnitude larger. We also train
classical networks with both more and fewer trainable parameters and see that the
quantum networks outperform all the classical ones. For d = 2, the quantum network
has 60 trainable parameters and outperforms all the random classical networks with
less than 70 parameters. There is a large boost in final MSE when the classical random
network has more than 80 nodes; compared to the previous two examples, this could
suggest that our quantum network lacks the expressivity needed or more training iter-
ations are required for accurate quantum networks. In Figure 4.3, we plot the squared
error values |uΘ−u|2 over the domain of x1 and at values of x2 ∈ {0.25, 0.5, 0.75}. The
solid blue line indicates the average value for the quantum network with the shaded
blue area being a ribbon that covers all error values from the five runs. For the classi-
cal networks we plot the network with the lowest overall error of the five. In Figure 4.4
we plot snapshots of the trial solution against the analytic solution.

4.3 Hamilton–Jacobi equation

We use the specific HJB equation (3.19) with the unique solution [13]

u(t, x) = −µ(2π)−
d
2 log

(∫
Rd

exp

{
−∥y∥2

2
− µh

(
x−

√
2(T − t)y

)}
dy

)
.

Due to the domain of x being Rd we require a different form of the encoding matrix,
as a result we change definition (3.2) to

A(x) :=

n⊗
j=1

Rz
[
Xjπ tanh

(
xgj

)]
.
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Fig. 4.3 Squared error values |uΘ(x)−u(x)|2 of the trial solutions for the Heat equation with d = 1
and x1 on the horizontal axis and for x2 ∈ {0.25, 0.5, 0.75}. The parameter N refers to the number
of nodes in the random classical network and n = 4 is the number of qubits in the random quantum
network. For the classical networks we plot the solution with the lowest overall mean squared error
whereas for the quantum networks we plot the average squared error with a ribbon indicating the
range of error for the five different training runs.
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Fig. 4.4 Solution snapshots of the quantum networks for the Heat equation with d = 1 and x1 on
the horizontal axis and x2 ∈ {0, 0.5, 1}. We also plot the analytic solution for comparison.
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MSE Error

Quantum Network n = 9 0.11± 0.13

Classical Networks
N = 50 0.31± 0.19

N = 75 0.27± 0.13

Table 4 Training results for the random
networks used to solve the given HJB equation.

We use the activation function tanh due to it’s performance in traditional machine
learning applications. We solve the specific HJB equation (3.19) with d = 2, µ = 1,

T = 1, h(x) = log
(

1+∥x∥2

2

)
and 9 qubits alongside 1 trainable layer. Training results

are shown in Table 4 and training settings in Appendix C. We see relatively poor
performance for both sets of random networks, which is due to hardware limitations.
Indeed, the MSE during training did not plateau for any of the models, showing than
more training iterations should be used. Calculating the derivatives needed for the HJB
equation using a network architecture of 9 qubits requires much larger computational
resources, which we leave to further study.

5 Conclusion

This paper develops parameterised quantum circuits to solve widely used PDEs in
any dimension. It further provides a precise complexity study of these algorithms and
compare them to their classical counterparts, highlighting their potential advantages
and limitations.
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A Poisson equation training details

We use iid sample points
{
x(i)
}
i=1,...,nr

drawn uniformly in (0, 1)d, and ne iid sample

points
{
x̃(i)
}
i=1,...,ne

drawn uniformly from the boundary ∂(0, 1)d. For the L2 relative

error statistics we use 1000 sample points of the form
{
x(i)
}
i=1,...,1000

.

Specific Training Details for Poisson equation.
Quantum Model Configuration
Trainable Layers 1
Number of Qubits 6
Trainable Parameters 24
Classical Model Configuration
Nodes / Trainable Parameters 10, 16, 24, 50, 100
Hyperparameters
Total iterations 1000
Domain Batch Size nr 128
Boundary Batch Size ne 64
Boundary Weighting λe 1
Optimiser Adam
Learning Rate 1E-3
Adam ε 1E-8
Adam (β1, β2) (0.9, 0.999)

B Heat equation training settings

We use iid sample points
{
(t(i), x(i))

}
i=1,...,nr

drawn uniformly in [0, 1]×(0, 1)d and ne

iid sample points
{
x̃(i)
}
i=1,...,ne

drawn uniformly from ∂(0, 1)d. For the MSE statistics

we use 1000 sample points of the form
{
(t(i), x(i))

}
i=1,...,1000

.

C HJB equation training settings

We use iid sample points
{
(t(i), x(i))

}
i=1,...,nr

and
{
x̃(i)
}
i=1,...,ne

, where
{
t(i)
}
i=1,...,nr

are drawn uniformly in [0, 1], and
{
x(i)
}
i=1,...,nr

and
{
x̃(i)
}
i=1,...,ne

are drawn from

centered normalised Gaussian distributions in Rd. For the MSE statistics we use 1000
sample points of the form

{
(t(i), x(i))

}
i=1,...,1000

.
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Specific Training Details for the Heat equation in 2 dimensions.
Quantum Model Configuration
Trainable Layers 1
Number of Qubits 4
Trainable Parameters 16
Classical Model Configuration
Nodes / Trainable Parameters 10, 16, 24, 50, 100
Hyperparameters
Total iterations 1000
Domain Batch Size nr 128
Boundary Batch Size ne 64
Boundary Weighting λe 500
Gradient Clipping ±1
Optimiser Adam
Learning Rate 5E − 3
Adam ε 1E-8
Adam (β1, β2) (0.9, 0.999)

Specific Training Details for the Heat equation in 3 dimensions.
Quantum Model Configuration
Trainable Layers 2
Number of Qubits 6
Trainable Parameters 60
Classical Model Configuration
Nodes / Trainable Parameters 30, 40, 50, 60, 70, 80, 100
Hyperparameters
Total iterations 2000
Domain Batch Size nr 64
Boundary Batch Size ne 64
Boundary Weighting λe 500
Gradient Clipping ±1
Optimiser Adam
Learning Rate 5E − 3
Adam ε 1E-8
Adam (β1, β2) (0.9, 0.999)
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Specific Training Details for the HJB equation in 3 dimensions.
Quantum Model Configuration
Trainable Layers 1
Number of Qubits 9
Trainable Parameters 45
Classical Model Configuration
Nodes / Trainable Parameters 50, 75
Hyperparameters
Total iterations 750
Domain Batch Size nr 64
Boundary Batch Size ne 64
Boundary Weighting λe 500
Gradient Clipping ±1
Optimiser Adam
Learning Rate 5E-3
Adam ε 1E-8
Adam (β1, β2) (0.9, 0.999)
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[24] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, et al (2020) Data re-uploading
for a universal quantum classifier. Quantum 4:226
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