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Abstract. We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that

in the absence of arbitrage, if the underlying stock price at time T admits finite log-moments E [| logST |q ] for

some positive q, the arbitrage-free growth in the left wing of the implied volatility smile for T is less constrained

than Lee’s bound. The result is rationalised by a market trading discretely monitored variance swaps wherein

the payoff is a function of squared log-returns, and requires no assumption for the underlying price to admit any

negative moment. In this respect, the result can be derived from a model-independent setup. As a byproduct,

we relax the moment assumptions on the stock price to provide a new proof of the notorious Gatheral-Fukasawa

formula expressing variance swaps in terms of the implied volatility.

1. Introduction

Implied volatility is at the very core of Quantitative Finance and is the day-to-day gadget that traders observe

and manipulate. The increasing complexity of stochastic models we have witnessed over the past thirty years

is a testimony to its importance and subtlety. One key issue though is the absence of closed-form expression

for the latter, leaving it to the sometimes capricious moods of numerical analysis. Among the plethora of

research in this direction, carried out both by academics and by practitioners, model-free results, with minimum

assumptions, are scarce. Roger Lee’s Moment Formula [31] was a groundbreaking result and its importance

cannot be understated: it provides a direct link between the slope of the smile in the wings and the moments of

the distribution of the underlying asset price. It serves not only to infer directly observed information about the

implied volatility smile into constraints on model parameters but also to provide arbitrage-free solutions to the

extrapolation problem (how to evaluate options for strikes outside the observed range). Recent refinements have

led to a deeper understanding of the information contained in the implied volatility smile, determining whether

the probability of default of the underlying could be inferred [15, 24] or the potential lack of martingality of

the latter [28]. These have complemented the otherwise exhaustive literature on the asymptotic behaviour of

stochastic models in Finance, a thorough review of which can be consulted in [18].

Asymptotic methods have both supporters and enemies, the former trying to expand the abundance of

techniques to every possible model, while the latter sometimes dismiss the usefulness of these results. The truth

as often lies somewhere in the middle but asymptotic results nevertheless provide useful information about the

qualities and pitfalls of models with regards to real-life practices. With this in mind, we revisit Lee’s formula
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when presented with some underlying stock price, the prices of finitely many co-maturing European Call and Put

options as well as a variance swap with the same maturity. In [13] conditions were stated under which a given set

of European Call and Put prices all maturing at the same time T is consistent with absence of arbitrage, which

is shown to be equivalent to the existence of a market model ; a filtered probability space carrying an adapted,

integrable process (St)t∈[0,T ], with S0 equal to the time-0 stock price, in which the discounted stock price process

is a martingale and the discounted expectations of the Put option payoffs recover the observed time-zero values.

In [14] robust model-free conditions are provided, when the process (St)t∈[0,T ] admits continuous sample paths,

for a set of European Put option prices and continuously monitored variance swap price to be consistent with

absence of arbitrage. Our approach here is to make no assumption on the dynamics of the stock-price price

process, and to instead infer limiting behaviour of the left-wing given merely the information that the marginal

distribution of ST admits finite log moments, E [| logST |q] for finite positive values of q, which is motivated

directly from the market since it trades a (discretely or continuously monitored) variance swap. Further, it

is feasible for market models to exist that do not admit any negative moment for the stock price and Lee’s

Moment Formula (on ST rather than log(ST )) implies that the left wing of the smile has slope precisely equal

to two. Our newly formulated Log-Moment Formula allows us to provide higher-order term in this asymptotic

behaviour, fully characterised by the moments of the log-stock price.

We provide a precise formulation of the problem and a thorough review of Roger Lee’s Moment Formula in

Section 2 before stating and proving the new Log-Moment Formula in Section 3. As a byproduct, we revisit the

Fukasawa-Gatheral formula expressing variance swaps in terms of the implied volatility, provide a new proof

with relaxed assumptions and further show how this improves Fukasawa’s representation [19] of option prices

in terms of implied volatility. We highlight in Section 4 a few stochastic models, both with continuous paths

and with jumps, used in Finance for which our formula refines Lee’s standards.

2. Problem Formulation and background

We consider a time horizon [0, T ], with T > 0 and a filtered probability space
(
Ω,F , (F)t∈[0,T ],Q

)
satisfying

the usual assumptions and carrying two adapted processes (St)t∈[0,T ], the asset price, and (Bt)t∈[0,T ], starting

from B0 = 1, where BT represents the value at time T of £1 invested at time 0 in the money-market account. We

further denote by Ft the t-forward price of S from time 0, thus F0 = S0 is the observed spot price. Dividends

may be paid by the asset S, but we do not make any assumptions about these. The process (St)t∈[0,T ] is

assumed to be a strictly positive Q-semimartingale. We finally assume the existence of a zero-coupon-bond

maturing at T with face-value £1, traded with price PT at time zero such that FT and PT are consistent with

absence of arbitrage; we further assume that the probability measure Q is a T -forward neutral measure, meaning

that the prices of all traded assets, expressed using the zero coupon with maturity T as numéraire, are local

martingales. In particular, since bounded local martingales are true martingales, the price of a vanilla Put

option with strike K ≥ 0 is given by P0(K) := PTE[(K − ST )+]. Using normalised units for the stock-price

ST := ST /FT and log-moneyness x := log(K/FT ), the normalised price of the Put option is denoted by

P(x) :=
P0(K)

PTFT
= E

[
(ex − ST )

+
]
.

Recall now the Black-Scholes formula for the European Put option:

(2.1) PBS(x, σ) =

{
exΦ[−d(x, σ)]− Φ[−d(x, σ)− σ], if σ 6= 0,

(ex − 1)
+
, if σ = 0,
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where Φ denotes the Gaussian cumulative distribution function and, for σ 6= 0,

(2.2) d(x, σ) := −x
σ
− σ

2
,

which is nothing else than the usual d2 or d− from the Black-Scholes formula. Since the maturity T is fixed

throughout the whole paper, we work with normalised volatility σ rather than the classical σ
√
T notation. This

has the clear advantage of avoiding cluttered statements.

Definition 2.1. For any log-moneyness x ∈ R, the implied volatility I(x) ∈ [0,∞) is the unique non-negative

solution to P(x) = PBS(x, I(x)).

The implied volatility I(x) is well defined whenever P(x) ∈ [(ex − 1)+, ex), which holds since it has been

assumed that S is strictly positive and FT = E[ST ]. Our starting point is the following initial bound for the

implied volatility [31, Lemma 3.3]:

Lemma 2.2. For any β > 2, there exists x∗ < 0 such that I(x) <
√
β|x| for all x < x∗. For β = 2, the same

holds if and only if Q[ST = 0] < 1
2 .

In our setup, ST is strictly positive almost surely and therefore I(x) = O(
√

2|x|) as x tends to −∞. When

the number of finite inverse power moments for the stock price is known, the small-strike Moment Formula due

to Lee [31] refines the above result:

Theorem 2.3 (Lee’s Left Moment Formula). Let

p := sup
{
p > 0 : E

[
S−pT

]
<∞

}
, and βL := lim sup

x↓−∞

I(x)2

|x|
.

Then βL ∈ [0, 2], p = 1
2βL

+ βL

8 −
1
2 , with 1

0 :=∞. Equivalently, βL = 2− 4(
√

p2 + p− p), equal to 0 for p =∞.

This theorem was one of the first model-free results about the relationship between the distribution of the

stock price and the behaviour of the implied volatility. The lim sup in Lee’s result was further strengthened

to a genuine limit by Benaim and Friz [2, 3], albeit with additional assumptions, and necessary and sufficient

conditions to replace lim sup by lim can be found in [23]. It is really a cornerstone in the implied volatility

modelling literature and has provided academics and practitioners robust consistency checks for extrapolation

of the smile. Lee also proved a symmetric right-wing formula, but we omit its presentation as we shall not

require it here. This left-wing behaviour of the smile left two unresolved issues however: if ST has a strictly

positive mass at the origin, then Lee’s expression is not able to distinguish it from a mass-less distribution with

fat tails; this was tackled in [15, 24]. The second issue is that in fact no information about the moments of ST

is really available in the market, and the so-called Power options [6] are rarely traded. However, variance swaps

are traded on the market and it is thus a natural question to check if Lee’s celebrated Moment Formula could

be refined to take into account these highly liquid derivatives.

3. Variance swaps and the Log-Moment Formula

3.1. Characterisation of variance swaps. Variance swaps are highly liquid traded derivatives on the Equity

market. One can describe them as a standard swap, where, over the time horizon [0, T ] the floating leg is equal

to the (annualised) realised variance Vd
T as measured by

Vd
T :=

252

T

n∑
i=1

log

(
Sti
Sti−1

)2

,
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in which 0 = t0 < t1 < · · · < tn = T is an equidistant partition with ti − ti−1 = T/n corresponding to one

day for some positive integer n. The superscript d here refers to the fact that this definition corresponds to the

so-called discretely monitored variance swap. The early advances on the hedging and pricing of the variance

swap by Neuberger [38], Dupire [11], Carr and Madan [7] and Demeterfi, Derman, Kamal and Zou [17] led to

the instrument being used extensively by traders to express views on future realised variance and for hedging

volatility risk. These advances hinged on assuming (i) the stock price process is a continuous semimartingale

with strictly positive values, (ii) the realised variance is continuously monitored and measured by the quadratic

variation 〈logS〉T , and (iii) Call or Put options maturing at time T are traded for all strikes K ∈ R+. Itô’s

formula for continuous semimartingales applied to − logST , then gives

〈logS〉T =

∫ T

0

d〈S〉t
S2
t

= −2 log

(
ST
S0

)
+ 2

∫ T

0

dSt
St

.

The variance swap is replicated by holding a contract paying − log(ST /S0) and dynamic trading in the under-

lying stock. Now, the log payoff − logST is redundant, since

− log

(
ST
S0

)
=
ST − S0

S0
+

∫ S0

0

(K − ST )+

K2
dK +

∫ ∞
S0

(ST −K)+

K2
dK,

i.e. it is hedged by a static position in the underlying asset, the continuum of Call and Put options, and cash.

The variance swap payoff in this setup is therefore fully replicated, with no assumptions on the dynamics of the

price process S, except for continuity. It thus follows that the variance swap-rate is the forward cost of the full

hedging portfolio. When interest rates are zero and dividends are not paid by the underlying asset, this is

2

∫ S0

0

P0(K)

K2
dK + 2

∫ ∞
S0

C0(K)

K2
dK,

provided both integrals are finite, with P0(K) and C0(K) the prices of Put and Call options with strike K. The

subtle impact of jumps on the prices of variance swaps was treated thoroughly by Broadie and Jain [4]. In both

the discretly monitored and the continuously monitored case, the moments of the underlying stock price are

not at play, but rather the moments of its logarithm, thus creating the need to refine Lee’s formula to this case.

3.2. The Log-Moment Formula. Our main result is the following Log-Moment Formula, proved on Page 8:

Theorem 3.1. Let q := sup {q ≥ 0 : E [|logST |q] <∞} be finite. Then

lim inf
x↓−∞

d(x, I(x))√
2 log |x|

=
√
q.

It is clear that q does not provide information about the right tail of the distribution of ST . Since the first

moment of ST is finite, then, for any q ≥ 0, there exists some constant cq ≥ 1 such that

E
[
| logST |q11{ST≥cq}

]
≤ E

[
|ST |11{ST≥cq}

]
≤ E [ST ] ,

which is finite, since ST is strictly positive almost surely. The following corollary is immediate but makes the

behaviour of the implied volatility in the left wing more explicit.

Corollary 3.2. In the setting of Theorem 3.1, there exists a sequence (xn)n∈N diverging to −∞ such that

lim
n↑∞

I(xn)√
2q log(|xn|) + 2|xn| −

√
2q log(|xn|)

= 1,
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and, when q > 0, for n large enough,

I(xn) =
√

2|xn| −
√

2q log |xn|+
q log(|xn|)√

2|xn|
+O

(
log(|xn|)2

|xn|3/2

)
.

Proof. Theorem 3.1 implies the existence of a subsequence (xn)n∈N diverging to −∞ such that

lim
n↑∞

d(xn, I(xn))√
2 log |xn|

=
√
q.

In the case where q = 0, the corollary is straightforward. Consider then q > 0. For any ε > 0 small enough,

there exists Nε ∈ N such that, for any n ≥ Nε,

√
q− ε ≤ d(xn, I(xn))√

2 log |xn|
=

1√
2 log |xn|

(
− xn

I(xn)
− I(xn)

2

)
≤
√
q + ε.

We choose Nε large enough so that I(xn) > 0 and xn < 0. This is equivalent to

(
√
q− ε)

√
2 log |xn| ≤ −

xn
I(xn)

− I(xn)

2
≤ (
√
q + ε)

√
2 log |xn|,

or else, since I(xn) > 0,

(3.1) −2 (
√
q + ε)

√
2 log |xn| I(xn)− 2xn ≤ I(xn)2 ≤ −2 (

√
q− ε)

√
2 log |xn| I(xn)− 2xn,

The right-hand side can be written as:

I(xn)2 + 2 (
√
q− ε)

√
2 log |xn|I(xn) + 2xn ≤ 0.

The discriminant of this quadratic on the left reads ∆ = 8
(√

q− ε
)2

log |xn| + 8|xn| and is clearly strictly

positive, so that the two roots are

I±(xn) =
−2
(√

q− ε
)√

2 log |xn| ±
√

∆

2
= − (

√
q− ε)

√
2 log |xn| ±

√
2 (
√
q− ε)2 log |xn|+ 2|xn|.

The positive root corresponds to the + sign. Arguing analogously for the left-hand side of (3.1) yields

− (
√
q + ε)

√
2 log |xn|+

√
2 (
√
q + ε)

2
log |xn|+ 2|xn| < I(xn) < − (

√
q− ε)

√
2 log |xn|+

√
2 (
√
q− ε)2 log |xn|+ 2|xn|,

and the first equality in the corollary follows by taking ε to zero (equivalently n to infinity). Now,

I+(xn) = − (
√
q− ε)

√
2 log |xn| ±

√
2 (
√
q− ε)2 log |xn|+ 2|xn|

= − (
√
q− ε)

√
2 log |xn|+

√
2|xn|

√
1 +

(√
q− ε

)2
log |xn|

|xn|

= − (
√
q− ε)

√
2 log |xn|+

√
2|xn|

{
1 +

1

2

(√
q− ε

)2
log |xn|

|xn|
+O

(
log |xn|
|xn|

)2
}

= − (
√
q− ε)

√
2 log |xn|+

√
2|xn|+

(√
q− ε

)2
log |xn|√

2|xn|
+O

(
log(|xn|)2

|xn|3/2

)
,

using a Taylor expansion in the last term. A similar analysis can be carried out for the left inequality in (3.1),

and the corollary holds, taking ε to zero. �
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Benaim and Friz [2, 3] refined Lee’s result, with additional assumptions, from a lim inf / lim sup statement

to a genuine limit. One could investigate how this might apply here, but we defer it to a future analysis in

order not to clutter our main result with extra technical assumptions. An interesting feature however is the

form of the small-strike implied volatility expansion in Corollary 3.2. The slope equal to 2 of the total implied

variance I2 is trivial from Lee’s result (Theorem 2.3) since q finite implies p = 0 (no negative moment of the

stock price exists). Lee’s formulation however does not provide further details. In the case of a strictly positive

mass at the origin, De Marco, Hillairet and Jacquier [15, Theorem 3.6] proved that

I(x) =
√

2|x|+ c + ϕ(x), as x ↓ −∞,

where the constant c is related to the mass at zero and the function ϕ tends to zero as x tends to infinity, which,

while capturing the slope 2, is markedly different from our new formula here. Before being able to prove the

theorem, we need two lemmas providing bounds on prices of Put options and on the implied volatility.

Lemma 3.3. Let q ≥ 0 be such that E [|logST |q] is finite. Then for all x < (q − 1)11{q<1},

PBS(x, I(x)) ≤ ex|x|−qE [|logST |q] .

Proof. The case q = 0 is a consequence of no-arbitrage bounds for the Put option. Now consider q > 0. For

ease of exposition only, we work in the moneyness unit K = ex. The map K 7→ | log(K)|q is strictly convex on

K := (0, eq−111{q<1} + 11{q≥1}). Let now vq(K) denote the solution to the equation

(3.2) K = vq(K)

(
1− 1

q
log vq(K)

)
,

for K ∈ K, such that limK↓0 vq(K) = 0. This equation can be solved explicitly as

vq(K) = exp
{
W−1

(
−qKe−q

)
+ q
}
.

From [12], the Lambert function W solves W(z)eW(z) = z for z ≥ −1
e and is multi-valued for z ∈ [− 1

e , 0).

The W−1 branch is the one that satisfies limz↑0W−1(z) = −∞. Note further that necessarily vq(K) ∈ (0,K):

indeed (3.2) can be re-written as vq(K) −K =
vq(K)
q log vq(K). Clearly vq(K) = K is not possible otherwise

vq(K) ∈ {0, 1} but K /∈ {0, 1} by assumption. Assume that vq(K) > K, then log vq(K) needs to be strictly

positive, i.e. vq(K) > 1, which is not consistent with limK↓0 vq(K) = 0. Thus, since vq(K) < K for small K

and can never be equal to K, it is always in (0,K).

For any K ∈ K, the map u 7→ 1
q vq(K)| log vq(K)|1−q| log u|q is decreasing and convex on u ∈ (0,K), and

u 7→ (K − u)+ is also decreasing (and linear) on this interval. They further intersect precisely at u = vq(K),

where furthermore both have gradients equal to −1, and therefore

(K − u)+ ≤
1

q
vq(K)| log vq(K)|1−q |log(u)|q , for any u > 0,

where the statement is obvious for u ≥ K since the right-hand side is non-negative then. Replacing u with ST

and taking expectations, we obtain

(3.3) PBS(log(K), I(log(K))) ≤ 1

q
vq(K)| log vq(K)|1−qE [|logST |q] .

By construction 0 < vq(K) < K ≤ 1, hence | log vq(K)|−q < | log(K)|−q. Using log vq(K) < 0 and (3.2), it

holds 1
q vq(K)| log vq(K)| < K. Combining these, a larger bound (than in (3.3)) for Put prices is given by

(3.4) PBS(log(K), I(log(K))) ≤ K| log(K)|−qE [|logST |q] .
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�

Remark 3.4. In the limit x ↓ −∞ (or K ↓ 0), we are indifferent between the bounds in (3.4) and (3.3), because

(3.5) lim
K↓0

1
q vq(K)| log vq(K)|1−q

K| logK|−q
= 1.

To see this, first recall that limK↓0 vq(K) = 0, then from (3.2),

lim
K↓0

K
1
q vq(K)| log vq(K)|

= 1.

Further, taking logarithm of both sides of (3.2) it follows that limK↓0
log(K)

log vq(K) = 1, which implies (3.5).

Lemma 3.5. Let q > 0 such that E [| logST |q] is finite. Then for any p ∈ [0, q), there exists xp < 0 such that

I(x) <
√

2|x|+ 2p log(|x|)−
√

2p log(|x|), for all x < xp.

Remark 3.6. When q = 0, the condition E [| logST |q] finite is empty and so is the set [0, q). The conclusion of

the lemma nevertheless still holds with p = 0 and xp = x∗ from Lemma 2.2.

Proof. Let q > 0 and define the functions f, g : (−∞, 1)→ R by

f(x) :=
√
p log(|x|)− x and g(x) :=

√
p log(|x|),

such that f(x)2 − g(x)2 = −x Consider then an implied volatility of the form

I(x) =
√

2(f(x)− g(x)), for x ∈ R,

so that, from (2.2), we have

d(x, I(x)) =
√

2g(x) and − d(x, I(x))− I(x) = −
√

2f(x),

and therefore the corresponding Put option price (2.1) is given by

PBS(x, I(x)) = exΦ
(
−
√

2g(x)
)
− Φ

(
−
√

2f(x)
)
.

With φ denoting the Gaussian density, the asymptotic relationship

(3.6) lim
z↑∞

zΦ(−z)
φ(z)

= 1,

holds trivially by L’Hôpital’s rule and therefore

lim
x↓−∞

Φ
(
−
√

2f(x)
)

exΦ
(
−
√

2g(x)
) = 0,

which implies

lim
x↓−∞

PBS

(
x,
√

2(f(x)− g(x))
)

exΦ
(
−
√

2g(x)
) = 1.
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We can then deduce

lim
x↓−∞

ex|x|−q

PBS

(
x,
√

2(f(x)− g(x))
) = lim

x↓−∞

ex|x|−q

exΦ
(
−
√

2g(x)
) = lim

x↓−∞

|x|−q

Φ
(
−
√

2g(x)
)

= lim
x↓−∞

−
√

2g(x)|x|−q

φ
(
−
√

2g(x)
)

= lim
x↓−∞

2
√
πg(x)|x|−q

e−g(x)2

= lim
x↓−∞

2
√
πg(x)|x|p−q =

{
0, if p < q,

∞, if p ≥ q,
(3.7)

and the lemma follows from Lemma 3.3 and the monotonicity of PBS(·, ·) in its second argument. �

Before stating the proof of Theorem 3.1, recall the following lemma, which will be used repeatedly:

Lemma 3.7. For any convex function f : R+ → R, the identity

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ x0

0

(y − x)+µ(dy) +

∫ ∞
x0

(x− y)+µ(dy),

holds for Lebesgue almost all x, x0 ∈ R+, where µ = f ′′ in the sense of distributions.

Proof of Theorem 3.1. Let ζ := lim infx↓−∞
d(x,I(x))√
2 log |x|

. We first prove the theorem in the case q > 0. Suppose by

contradiction that ζ <
√
q and let q such that

√
q ∈ (ζ,

√
q). Then there exists a sequence (xn)n∈N in (−∞,−1)

with xn ↓ −∞ such that for all n, d(xn, I(xn)) <
√

2q log |xn|. Expanding this yields

0 <
√

2q log |xn| − d(xn, I(xn)) =
√

2q log |xn|+
xn

I(xn)
+

I(xn)

2
.

Multiplying both sides by 2I(xn) > 0 yields

0 < 2I(xn)
√

2q log |xn|+ 2xn + I(xn)2 =
(

I(xn) +
√

2q log |xn|
)2

+ 2xn − 2q log |xn|,

or equivalently,

2q log |xn| − 2xn <
(

I(xn) +
√

2q log |xn|
)2
.

Since the map x 7→ 2q log |x| − 2x is strictly positive on (−∞,−1) for any q > 0, we can take the square root

on both sides, and therefore

I(xn) >
√

2|xn|+ 2q log |xn| −
√

2q log |xn|,

which contradicts Lemma 3.5 since q < q.

Assume now that ζ >
√
q and let q such that

√
q ∈ (

√
q, ζ). We show that this implies E[| logST |p] is finite

for all p ∈ (q, q). Indeed, in this case, mimicking the previous argument, but recalling here that ζ represents a

lim inf, we have that
√
q < ζ implies that there exists xq < 0 such that for x < xq, d(x, I(x)) >

√
2q log |x|, and

the exact same steps as above yield

I(x) <
√

2|x|+ 2q log |x| −
√

2q log |x|,

but this time not only along a subsequence only. From (3.7) it follows that there exists x∗ < 0 such that for

any x < x∗,

PBS(x, I(x)) < ex|x|−q.
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Reverting to moneyness units (K = ex), one sees that for p ∈ (q, q), zp := (ep−111{p<1} + 11{p≥1}) ∧ ex
∗∧xq is

strictly smaller than 1 since p ≥ 0. In the below, we appeal to Lemma 3.7 applied to the convex function

x 7→ | log x|p11{x≤zp} + | log zp|p, and substitute x = ST , x0 = S0 = 1 before taking expectations. The final

inequality holds since q > p and since E
[
|logST |p 11{ST≥zp}

]
is finite due to ST being integrable by construction.

E [|logST |p] = E
[
|logST |p 11{ST<zp}

]
+ |log(zp)|p + E

[
|logST |p 11{ST≥zp}

]
− |log(zp)|p

=

∫ zp

0

PBS(log(K), I(log(K)))

K2
p
{

(p− 1)| log(K)|p−2 + | log(K)|p−1
}

dK + E
[
| logST |p11{ST≥zp}

]
− |p− 1|p

≤
∫ zp

0

K

| log(K)|q
p

K2

{
(p− 1)| log(K)|p−2 + | log(K)|p−1

}
dK + E

[
|logST |p 11{ST≥zp}

]
− |p− 1|p <∞.

In the case where q = 0, there is nothing to prove about the first part of the proof above. The second part

follows the same way with sets of the form (q, ·) replaced by [q, ·), and the theorem follows. �

3.3. Refinement of the Fukasawa-Gatheral formula. In his volatility Bible [21], Gatheral derived an ele-

gant formula expressing the log contract directly in terms of the implied volatility. This has obvious appeal as

traders can plug in their favourite implied volatility smile (parametric or not) and obtain the fair value of a vari-

ance swap. Earlier versions of this formula, albeit with more sketchy proofs, were proposed by Matytsin [36] and

Chriss and Morokoff [10]. A fully thorough derivation though has only recently been provided by Fukasawa [19]

(see also [33] for interesting connections with absence of arbitrage) who not only proved the key ingredient, the

decreasing property of the map k 7→ d(k, ·), but extended the formula to more general payoff contract. In all

these proofs, the main assumption is the existence of moments E[S1+ε
T ] for some ε > 0. We show hereafter that

this additional condition is in fact not required. Following [19], let

(3.8) f(x) := −d(x, I(x)) =
x

I(x)
+

I(x)

2
,

and note that, as proved by Fukasawa [19], the inverse function f← is well defined. This yields the following:

Theorem 3.8. If E [| log(ST )|] is finite (namely q ≥ 1) then, with φ denoting the Gaussian density,

−2E[log(ST )] =

∫
R

I(f←(z))2φ(z)dz.

Remark 3.9. We should note1 that a version of the Fukasawa-Gatheral formula was also derived by De Marco

and Martini [16], who first removed Roger Lee’s p > 0 condition (in Theorem 2.3), allowing for p = 0. In fact,

they considered E [Ψ(log(ST ))] where the function Ψ is of exponential growth. Unfortunately, this excludes the

identity function as in Theorem 3.8. However, borrowing their argument at the end of their Section 4, this can

be achieved by considering the limit of E
[
ep log(ST )

]
as p tends to zero since the expectation is at least well

defined in a strip of the complex plane of the form {p ∈ C : <(p) ∈ (0, 1)}. The proof we provide below is

however more direct and tailored for the log contract.

Remark 3.10. By linearity of the conditional expectation operator, both Put and Call option prices are

convex functions, and therefore admit both left-and right-derivatives (but may not be differentiable per se). In

the following, in order to avoid heavy notations, all derivatives should be understood as right derivatives (or

equivalently all derivatives as left derivatives).

1We are indebted to the referee for pointing this out explicitly.
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Proof. Note first that, by [19, Theorem 2.8] the map x 7→ d(x, I(x)) is decreasing. By (2.1) and the Put-Call

parity, a Call option with log-moneyness x = log(K/FT ) is worth

CBS(x, σ) = Φ[d(x, σ) + σ]− exΦ[d(x, σ)].

By Lemma 3.7, with c(ex) := CBS(x, I(x)) and p(ex) := PBS(x, I(x)), we can write

L := E[− log(ST )] =

∫ 0

−∞
p(ex)e−xdx+

∫ ∞
0

c(ex)e−xdx

=
[
−p (ex) e−x

]0
−∞ +

[
−c (ex) e−x

]∞
0

+

∫ 0

−∞
p′(ex)dx+

∫ ∞
0

c′(ex)dx

=

∫ 0

−∞
p′(ex)dx+

∫ ∞
0

c′(ex)dx.

The boundary terms vanish because c(1) = p(1) by Put-Call parity, because c(·) tends to zero for large strikes

and by Lemma 3.3 since p(x) ≤ ex|x|−1E[| logST |] for x < 0 implies limx↓−∞ p(ex)e−x = 0. Now,

p′(ex)ex =
d

dx
PBS(x, I(x)) and c′(ex)ex =

d

dx
CBS(x, I(x)).

Hence, with δ(x) := d(x, I(x)),

p′(ex) =Φ[−δ(x)]− φ(δ(x))δ′(x) + e−xφ(−δ(x)− I(x))[δ′(x) + I′(x)]

c′(ex) =e−xφ(δ(x) + I(x))[δ′(x) + I′(x)]− Φ[δ(x)]− φ(δ(x))δ′(x).
(3.9)

Since the Gaussian density φ satisfies φ(a+ b) = φ(a− b)e−2ab for any a, b ∈ R, then

e−xφ(δ(x) + I(x)) = e−xφ

(
− x

I(x)
+

I(x)

2

)
= φ(δ(x)),

and hence the system (3.9) simplifies, by symmetry of φ, to

p′(ex) = Φ[−δ(x)] + φ(δ(x))I′(x) and c′(ex) = φ(δ(x))I′(x)− Φ[δ(x)].

Therefore

L =

∫ 0

−∞
Φ[−δ(x)]dx−

∫ ∞
0

Φ[δ(x)]dx+

∫
R
φ(δ(x))I′(x)dx

= [xΦ[−δ(x)]]
0
−∞ − [xΦ[δ(x)]]

∞
0 +

∫
R
xφ(δ(x))δ′(x)dx+

∫
R
φ(δ(x))I′(x)dx.

For the boundary terms, observe first from the log-moment Formula, Theorem 3.1, that q ≥ 1 implies δ(x) ≥√
2 log |x| eventually for x < 0, and so exp

{
− 1

2δ
2(x)

}
≤ |x|−1. Combining with the identity (3.6) one sees

limx↓−∞ xΦ[−δ(x)] = 0. Now, Lemma [31, Lemma 3.1] (the right-tail analogue of Lemma 2.2), implies the

trivial bound I(x) ≤
√

2x for x > 0 sufficiently large and therefore

δ(x) = −
(

x

I(x)
+

I(x)

2

)
≤ − x

I(x)
≤ −
√
x

2
,

which diverges to −∞ as x tends to infinity. Therefore, for x large enough,

0 ≤ xφ(−δ(x))

−δ(x)
=

1√
2π

x exp
{
− 1

2δ
2(x)

}
−δ(x)

≤ 1√
2π

x exp
{
− 1

4x
}

x
I(x)

=
I(x) exp

{
− 1

4x
}

√
2π

≤
√
x exp

{
− 1

4x
}

√
π

,



THE LOG-MOMENT FORMULA FOR IMPLIED VOLATILITY 11

which tends to zero as x tends to infinity. The limit (3.6) thus implies limx↑∞ xΦ[δ(x)] = 0 and therefore

L =

∫
R
xφ(δ(x))δ′(x)dx+

∫
R
φ(δ(x))I′(x)dx

=

∫
R
xφ(δ(x))δ′(x)dx+ [I(x)φ(δ(x))]R +

∫
R
φ (δ(x)) δ(x)δ′(x)I(x)dx

=

∫
R
φ(δ(x))δ′(x)[x+ I(x)δ(x)]dx = −

∫
R
φ(δ(x))δ′(x)

I2(x)

2
dx,

where the boundary terms cancel as above and by Lemma 2.2, and applying (2.2) for δ(x). Substituting z = δ(x),

using the symmetry of φ, the proposition follows from the limits limx→±∞ δ(x) = ∓∞. �

3.4. Pricing formulae for European options. In [19], Fukasawa not only proved a version of Theorem 3.8

(with more restrictive assumptions), but also extended it to options with payoffs of the form Ψ(log(ST )) for any

twice differentiable function Ψ with derivative of at most polynomial growth. More precisely, he derived [19,

Theorem 4.4] an integral form for E [Ψ(log(ST ))] assuming either that E[S1+p
T ] exists for some p > 0 or that

E[S−qT ] exists for some q > 0. The former case is not affected by our setup and we instead provide a refinement

of the latter case when no such q exists but instead log-moments are available. This in fact extends the scope

of Theorem 3.8 above. Recall that the function f is defined in (3.8) and let P±q denote the set of functions with

at most polynomial growth of order q ≥ 0 at ±∞, namely:

P−q := {Ψ : R→ R : there exists x < 0, C > 0 such that |Ψ(x)| ≤ C(1 + |x|q) for all x ≤ x} ,

P+
q := {Ψ : R→ R : there exists x > 0, C > 0 such that |Ψ(x)| ≤ C(1 + |x|q) for all x ≥ x} ,

and let C2,+q the set of twice differentiable functions with derivatives in P+
q . We simply write P+ (resp. P−,

C2,+) whenever P+
q (resp. P−q , C2,+q ) holds for any value of q ≥ 0. We further consider the following assumption

on the implied volatility:

Assumption 3.11. There exists x < 0 such that I′(x) < 0 for all x < x.

This assumption, inconsequential in practice, avoids highly degenerate behaviours of the implied volatility

in the left tail. While most – if not all – models used in finance satisfy it, it is possible to construct degenerate

models violating it. Such an atypical behaviour may also occur when interpolating option prices instead of

implied volatilities [30].

Theorem 3.12. For q ∈ [1,∞) let Ψ ∈ P−q with q ∈ [0, q) such that Ψ′ ∈ P+ ∩ P−q′ with q′ ∈ [0, q− 1
2 ).

• If Ψ is twice differentiable, then

E [Ψ(log(ST ))] =

∫
R

{
Ψ(f←(z))−Ψ′(f←(z))

[
f←(z) +

I (f←(z))
2

2

]}
φ(z)dz +

∫
R

Ψ′′(x)I(x)φ(f(x))dx.

• If Ψ is absolutely continuous, then

E [Ψ(log(ST ))] =

∫
R

{
Ψ(f←(z))−Ψ′(f←(z)) + Ψ′(h(z))e−h(z)

}
φ(z)dz,

where h is the inverse function of the map x 7→ f(x)− I(x).

Remark 3.13. The essential difference between this theorem and [19, Theorem 4.4] is the condition on the left

tail of the stock price, i.e. on the behaviour of the function Ψ at −∞.
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Remark 3.14. With Ψ(x) ≡ x, then Ψ ∈ P−1 and Ψ′ ∈ P−0 , yielding Theorem 3.8.

Proof. The proof of this theorem follows that of [19, Theorem 4.4], or indeed that of Theorem 3.8 above. The

steps are analogous, but one has to pay special attention to the boundary terms arising from the different

integrations by parts involved. In our setting, the two terms that need special care are

(3.10) lim
x↓−∞

Ψ′(x)I(x)φ(f(x)) and lim
x↓−∞

Ψ(x)|I′(x)|φ(f(x)),

which we need to send to zero for a suitable class of functions Ψ. The decay to zero at +∞ was taken care of

in [19, Theorem 4.4] with the assumption Ψ ∈ P+ and the additional two regularity assumptions in the bullet

points of the theorem.

By Theorem 3.1,
√
q is the largest value such that for any ε > 0, there exists xε for which

(3.11)
d(x, I(x))√

2 log |x|
>
√
q− ε =:

√
qε,

for all x ≤ xε. Now, the equation (in σ) d(x,σ)√
2 log |x|

=
√
qε admits two roots σ± = −

√
2qε log(|x|)±

√
2qε log(|x|)− 2x,

so that, for x < xε, the inequality (3.11) holds if (similarly to Lemma 3.5 in fact)

(3.12) I(x) < −
√

2qε log(|x|) +
√

2qε log(|x|)− 2x.

Note that when q = 0 and replacing the lim inf by a genuine limit, this reads I(x) <
√

2|x| for x small enough,

which was proved by Lee [31]. This further implies directly that for x < xε,

(3.13) f(x) < −
√

2qε log(|x|).

Therefore for any function Ψ : (−∞, xε]→ R,

Ψ′(x)I(x)φ(f(x)) =
Ψ′(x)I(x)√

2π
exp

{
− f(x)2

2

}
≤ Ψ′(x)I(x)√

2π
e−qε log(|x|) =

Ψ′(x)I(x)√
2π

|x|−qε .

From the bound (3.12) on I(x), this expression tends to zero as x ↓ −∞ if and only if Ψ′ ∈ P−q′ with q′ ∈ [0, q− 1
2 ).

Clearly when q ∈ [0, 12 ], this cannot tend to zero as I(x) dominates φ(f(x)). This refines the analysis of [19,

Lemma 4.2] which assumed the existence of strictly negative moments for the stock price. Now Fukasawa

showed [19, Lemma 2.6] that, independently of any moment (or log-moment) assumptions, f(x)I′(x) < 1 for all

x ∈ R; combining this with the new upper bound (3.13), we obtain a new version of [19, Theorem 3.6], namely

I′(x) > − 1√
2q log(|x|)

,

for x small enough, so that, by Assumption 3.11, |I′(x)| < (2q log(|x|))−1/2 and therefore

Ψ(x)|I′(x)|φ(f(x)) =
Ψ(x)|I′(x)|√

2π
exp

{
− f(x)2

2

}
≤ Ψ(x)|I′(x)|√

2π
e−qε log(|x|) =

Ψ(x)

2
√
πq

|x|−qε√
log(|x|)

converges to zero as x ↓ −∞ as soon as Ψ ∈ P−q with q ∈ [0, q). This therefore implies that the two limits (3.10)

are equal to zero if and only if Ψ ∈ P−q for q ∈ [0, q). All the other statements in [19, Lemma 4.3] remain

identical, and therefore the proof of Theorem 4.4 follows analogously, the boundary terms cancelling out under

our new assumptions, thus proving the first bullet point in the theorem. A close look at the proof of the second

bullet point in [19, Theorem 4.4] shows that only the second limit in (3.10) needs to tend to zero, which, as just

discussed, is true as soon as Ψ ∈ P−q , and the theorem follows. �
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4. Examples

Practically there is no direct market observable for q (whenever it exists), just as there is none for inverse-

power moments. However in a market trading a discretely sampled variance swap our results provide a bound

for the left-wing without making further assumptions (restrictions) on the underlying distribution of the stock

price. There are two main avenues for leveraging the results in practice. The first is to leverage the bound to

help derive a parameterised implied volatility smile. The second is to employ a pricing model in which q <∞
is an input, for which an initial ’guess’ of this value may result from a regression of implied volatility against

log-moneyness. We first provide examples of models where only finitely many log-moments are admissible.

4.1. Exponential Lévy models. In exponential Lévy models the stock-price process is modelled by

(4.1) St = S0 exp(Lt),

where (Lt)t∈[0,T ] is a real-valued Lévy process [39, Chapter 3], namely a càdlàg stochastically continuous process

with independent and identically distributed increments starting from L0 = 0. For any t > 0, the characteristic

function of the random variable Lt satisfies

logE
[
eiuLt

]
= ψ(u)t,

for all u ∈ R, where the characteristic exponent ψ admits the Lévy-Khintchine representation

ψ(u) = −ξu
2

2
+ iγu+

∫
R

(
eiux − 1− iux11{|x|≤1}

)
ν(dx),

with ξ ≥ 0, γ ∈ R and ν a measure on R satisfying ν({0}) = 0 and
∫
R(1∧x2)ν(dx) <∞. Sato [39, Theorem 25.3]

proved that for any submultiplicative, locally bounded function g, the expectation E[g(ST )] is finite if and only

if
∫
R g(x)ν(dx) is finite. In light of Theorem 3.1, we thus consider the function g(x) ≡ (log(|x|))q with q ≥ 0.

4.1.1. Finite moment log stable process. The Finite Moment Log Stable (FMLS) model was introduced by Carr

and Wu [9] to capture the negative skew observed on S&P options. There the driving Lévy process L in (4.1)

is α-stable with tail index α ∈ (1, 2) and skew parameter β = −1, so that [39, Chapter 3], for any T > 0,

• E [|ST |p] is finite for all p ≥ 0;

• the support of LT is the whole real line;

• E [| logST |q] is finite for all q ∈ (0, α) and is infinite if q ≥ α.

Theorem 3.1 thus applies with q = α ∈ (1, 2) and E
[
| log(ST )|2

]
is infinite. While the model may capture the

fat left tail and thin right tail of the stock price, it is too extreme if a discrete variance swap is traded. A more

detailed analysis of the left tail of the smile for that model, with higher-order terms, has been derived in [25,

Theorem 11.8]. For European option pricing, Theorem 3.12 then applies since q = α ≥ 1.

4.1.2. Finite moment log mixture model. In (4.1) let L := X − Y for two independent processes X and Y with

• qX := sup{q ≥ 0 : E [|X1|q] <∞} > 0 and E
[
epXX1

]
is finite for some pX ≥ 1;

• qY := sup{q ≥ 0 : E [|Y1|q] <∞} ∈ (0, qX) and E
[
e−pY Y1

]
for some pY ∈ [1, pX),

so that X and Y respectively influence the right and left tails in the distribution. Before identifying some

candidates for the process X and Y , we note:

Lemma 4.1. E
[
epY L1

]
is finite and qL := sup{q ≥ 0 : E [|L1|q] <∞} = qY .
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Proof. The first statement follows by independence of X and Y , so that the moment generating function of L

is simply the product of those of X and Y . Now, it is clear that E|L1|q is finite for q < qY . For q > qY , observe

|Y1|q ≤
∣∣∣(|Y1| − |X1|)+ + |X1|

∣∣∣q < 2q
({

(|Y1| − |X1|)+
}q

+ |X1|q
)

and (|Y1| − |X1|)+ ≤ ||Y1| − |X1|| ≤ |Y1 − X1|, where this last inequality is due to the reverse triangular

inequality. This implies the assertion about qL. �

Choices for X abound, as any process with finite moments and finite exponential moments of all orders will

do, in particular the Brownian motion, the generalised Inverse Gaussian process, the generalised Hyperbolic

process [1], the CGMY process [5]. For Y , the choices are scarcer, but the inverse Gaussian process is a valid

one, whereby Y is a pure-jump Lévy process with density at time 1 equal to

fIG(y;α, β) =
βα

Γ(α)
y−α−1e−β/y, for y > 0,

where α, β > 0 are the shape and scale parameters and Γ(·) is the Gamma function. Jørgensen [29] showed that

E [Y r] =
Γ(α− r)

Γ(α)
βr, if r < α, and infinite otherwise.

The reciprocal Gamma distribution is a special case of the Generalised Inverse Gaussian (GIG) distribution

and hence is infinitely divisible [1]. With this specification, the log-returns have exploding negative moments

beyond order qL = α (possibly larger than 2) and positive moments of arbitrary order depending on X.

4.2. SSVI parameterisation. In [20], Gatheral and Jacquier extended the original Stochastic Volatility In-

spired (SVI) parameterisation proposed by Gatheral [20] to a full (strike, maturity) surface. Denoting again x

the log-moneyness, they considered the parameterisation

ISSVI(x)2 =
θ

2

(
1 + ρϕ(θ)x+

√
(ϕ(θ)x+ ρ)2 + 1− ρ2

)
,

for all x ∈ R with ρ ∈ [−1, 1], and showed that, with some explicit conditions on θ and ϕ(·), the resulting

surface was fully free of arbitrage. Extensions of this framework can be found in [26] and detailed calibration

methodology in [27, 35, 34, 37]. Expanding it as x tends to −∞ yields

ISSVI(x) =

√
θ(1− ρ)ϕ(θ)

2

√
|x|+ c√

|x|
+O

(
|x|−3/2

)
,

where the constant c depends explicitly on θ and ϕ(θ), but we omit the details for clarity. Clearly, this expansion

does not fit with Corollary 3.2. Consider instead the ‘SVI-inspired’ formulation

ĨSSVI(x)2 := ISSVI(x)2 − θ

2

√
2q|x| log(|x|),

and set ρ = 0 and ϕ(·) = 1/
√

2 and θ = 4
√

2, so that, as x tends to −∞, we obtain

ĨSSVI(x) =
√

2|x| −
√

2q log(|x|) +
q log(|x|)√

2|x|
+O

(
|x|−1/2

)
,

which corresponds precisely to the expansion in Corollary 3.2 up to the higher-order error term. We leave the

detailed analysis of this modified SSVI volatility surface to future research but simply point out here that, for

practical purposes, one should be able to incorporate the optimal moment q into a parametric form of volatility

surface, immediately usable by practitioners.
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