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Abstract. We investigate the links between various no-arbitrage conditions and the existence of pricing
functionals in general markets, and prove the Fundamental Theorem of Asset Pricing therein. No-
arbitrage conditions, either in this abstract setting or in the case of a market consisting of European
Call options, give rise to duality properties of infinite-dimensional sub- and super-hedging problems.
With a view towards applications, we show how duality is preserved when reducing these problems over
finite-dimensional bases. We also introduce a rigorous perturbation analysis of these linear programming
problems, and highlight numerically the influence of smile extrapolation on the bounds of exotic options.

1. Introduction

In mathematical finance, pricing contingent claims consists in postulating the existence of a filtered
probability space (or of a model, using the terminology in Cox and Obłój (2011)) such that the discounted
price process is a martingale. In the absence of arbitrage (appropriately defined), prices of claims can
then be expressed as expectations of the discounted payoffs under a martingale measure. The postulated
model is in general not unique, and a whole range of prices arises as all possible models are taken into
account, together with no-arbitrage constraints. In contrast, model-independent finance strives to move
away from this paradigm, and instead relies on no-arbitrage conditions and additional market information
to find arbitrage-free bounds on prices of contingent claims.

Hobson (1998) posited no model at all and instead used no-arbitrage assumptions to derive arbitrage-
free range of possible prices for exotic derivatives. This approach fundamentally relies on the Skorokhod
embeddings and Dambis-Dubins-Schwarz time-change techniques, and a vast literature on arbitrage-free
bounds on prices of derivatives has grown since Bonnans and Tan (2013); Brown et al. (2001); Cox and
Hoeggerl (2016); Cox and Obłój (2011); Cox and Wang (2013); Davis et al. (2014); Hobson and Klimmek
(2015); D. Hobson and Wang (2005); Hobson and Neuberger (2012); Obłój and Ulmer (2012). More
recently, this problem has been tackled using martingale optimal transportation theory, first initiated
by Beiglböck et al. (2013), who showed that when full marginals (equivalently all European Call/Put
options) are known, the problem of finding arbitrage-free bounds on prices of exotic derivatives can be
formulated as a martingale version of a Monge-Kantorovich mass transport problem. From a practical
point of view, the appeal is that this formulation can be seen as an infinite-dimensional linear programming
problem, with a dual that can be interpreted in terms of semi-static hedging strategies. This seminal paper
has since been extended to the case of finitely many marginals De Marco and Henry-Labordère (2015); Guo
et al. (2016b); Obłój and Spoida (2017) and some of its technical assumptions, either on the marginals or
on the cost function to be minimised, have been relaxed Beiglböck and Juillet (2016); Henry-Labordère
and Touzi (2016); Henry-Labordère et al. (2016). An underlying question is whether observed option
prices yield any kind of arbitrage in the market. This relation between market data and fundamental
theorem of asset pricing has been made precise, in the model-independent framework, by Acciaio et al.
(2016); Bayraktar and Zhang (2016); Cousot (2007); Davis and Hobson (2007). Bouchard and Nutz (2015)
formulate the fundamental theorem and the superhedging problem in the quasi-sure setting, where all
statements hold outside polar sets of a collection of probability measures P, not necessarily equivalent, on
the measurable state space (Ω,A) that governs the market. They obtain the first fundamental theorem
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and the superhedging property in a multi-period setting with possible inclusion of options for static
hedging. They show in particular (Bouchard and Nutz, 2015, Example 1.2) that if P is the set of all
Borel probability measures on a finite d-dimensional state space then the quasi-sure inequalities become
pointwise.

In this paper, we first investigate in Section 2 the relations between absence of weak free lunch, similar
to the ‘free lunch’ introduced by Kreps (1981), and the existence (and extension) of pricing functionals in
general abstract markets. In order to represent the extension as a Borel probability measure on a locally
compact state space, we assume the existence of a strictly positive continuous function dominating the
payoffs of the traded assets along with a technical assumption. We further show how to sub/super-
replicate general options in this general market. We then (Section 3) specialise the market to the case
where only finitely many European Call options are traded for a given set of maturities. In order to
avoid the emergence of duality gaps, we introduce a restriction on the set of feasible dual solutions in the
form of the total implied variance extrapolation and how such extrapolation is connected to existence of
higher moments of the underlying price process (Section 3.2). We discuss in Section 3.3 the notion of
weak arbitrage, introduced by Davis and Hobson (2007), which naturally leads to the introduction of sub-
and super-hedging problems. We finally investigate the impact of the extrapolation of the total implied
variance on the latter: we first discretise the latter to obtain semi-infinite linear programmes (Section 4),
and prove convergence as the discretisation becomes finer. Section 5 is devoted to a perturbation analysis,
following Bonnans and Shapiro (2000), of the initial inputs (Call option prices) in the optimisation
problem, which provides the user with a better control over model parameters and extrapolation issues.
We illustrate numerically our findings in several examples common in Finance in Section 6.

2. Preliminary results

We establish super-hedging duality in general markets as an application of infinite-dimensional linear
programming. The general market consists of securities with continuous payoffs (φi)i∈I and traded at
prices (ci)i∈I , with I some index set. Since the market is assumed frictionless, the set of traded securities
becomes a subspace of the space of continuous functions, on which we introduce a pricing functional
mapping payoffs of traded securities to market prices. We fix an index set I (not necessarily finite) and a
collection of functions φi ∈ C(Ω), i ∈ I representing payoffs of securities available on the market at finite
prices ci ∈ R. We assume that the market is frictionless, i.e. there are no transaction costs associated
with buying and selling securities, there are no liquidity constraints and market participants are allowed
to buy and sell any position in a security or a portfolio of securities. Denote by M the space of traded
claims, i.e. the set of portfolios of securities that can be bought and sold freely on the market, as

(2.1) M :=

{
N∑

n=1

αnφin : (αn)n=1,...,N ∈ RN , N ∈ N and i1, . . . , iN ∈ I

}
.

As trading is frictionless, M is a linear subspace of C(Ω). Define also a pricing functional ρ : M → R
mapping payoffs to their market prices

(2.2) ρ(m) :=

{
N∑

n=1

αncin : m =

N∑
n=1

αnφin for some N ∈ N, i1, . . . , iN ∈ I

}
.

Although it is defined as a set-valued function, below we show that absence of arbitrage is equivalent to
certain properties of the pricing functional, including being single valued. Before we proceed we make a
regularity assumption on the market that will allow us to establish separating duality in the sequel.

Assumption 2.1. There exists a reference claim, namely a continuous function h : Ω → R+ ∪{∞} with
the following properties:

(1) h has compact level sets ({ω : h(ω) ≤ K} is compact for all K > 0) and 1/h is bounded on Ω

(there exists C > 0 such that {1/C ≤ 1/h(ω) ≤ C for all ω ∈ Ω});
(2) h /∈ M, i.e. h is not a tradeable asset;
(3) φi = o(h) (as ‖ω‖1 ↑ ∞) for all i ∈ I.
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Assumption 2.1 has already been considered in the literature, albeit with slightly different flavours.
Cheridito et al. (2017) assume existence of a continuous function h : Ω → [1,+∞), with bounded level
sets {h←(−∞, z) : z ∈ R+}, and consider payoffs that are upper and lower semi-continuous and bounded
by h. Under additional technical existence assumptions, they allow for claims growing at most linearly,
extending the results by Acciaio et al. (2016). The latter indeed assume existence of a super-linear
convex function, accounting for the pay-off of a traded option (equivalent to assuming infinitely many
traded European Call options). Their assumptions on h are weaker than ours, requiring bounded level
sets as opposed to compact level sets. However, our setting is more general since we allow for the more
realistic case case of finitely many options traded on the market. We mention in passing the works by
Bouchard and Nutz (2015) and by Burzoni et al. (2016), using a quasi-sure approach: they replace the
pathwise superhedging inequality with an inequality that holds outside ‘maximal polar sets’ common to
a set of non-dominated probability measures. This however is a different route than ours, and we refer
the interested reader to these papers for more details. Here and elsewhere, R+ := [0,∞) denotes the
non-negative half-line. With the weighted space

(2.3) Ch(Ω) :=
{
f ∈ C(Ω) : ‖f‖h := sup

ω∈Ω

|f(ω)|
h(ω)

<∞
}
,

Assumption 2.1 implies that M ⊂ Ch(Ω), and the topology on M is the one inherited from Ch(Ω). Endowed
with ‖·‖h, Ch(Ω) is a Banach lattice, and the order unit in Ch(Ω) is h (Definitions A.2 and A.3). Following
arguments from (Bogachev, 2007a, Example 8.6.5), the topological dual of Ch(Ω) is the space of signed
Borel measures that integrate h to a finite constant:

(2.4) (Mh)+(Ω) := {µ ∈ M+(Ω) : 〈h, µ〉 <∞} ,

with M(Ω) the set of signed Borel measures on Ω (the notations M+ and M++ are introduced in
Definition A.1 ) and the bilinear form

(2.5) 〈f, µ〉 :=
∫
Ω

f(ω)µ(dω), for all f ∈ Ch(Ω), µ ∈ Mh(Ω).

If the total variation of a measure µ ∈ (Mh)+(Ω) is equal to one then µ ∈ Ph(Ω), where Ph(Ω) denotes
the set of Borel probability measures that integrate h to a finite constant. We now define a notion of
arbitrage in this abstract market, using notation introduced in Definition A.1.

Definition 2.2. There is no strong model-independent arbitrage on M if inf ρ(m) ≥ 0 for all m ∈ M+,
and inf ρ(m) > 0 for all m ∈ M++.

This definition is inspired by, yet stronger than, that of absence of model-independent arbitrage
in (Davis and Hobson, 2007, Definition 2.1), which holds if ρ(m) ≥ 0 for all m ∈ M+. In order to avoid
the degenerate situation ρ(m) = 0 for all m ∈ M+ we make the following assumption:

Assumption 2.3. There exists a traded claim m0 ∈ M with m0(ω) > 0 for all ω ∈ Ω and ρ(m0) > 0.

Assumption 2.3 holds if a riskless bond is available on the market and implies that the two statements
in Definition 2.2 are equivalent. In general ρ is a set-valued function, but the following restricts its range:

Proposition 2.4. (Clark, 1993, Theorem 3) Under Assumption 2.3, absence of strong model-independent
arbitrage holds if and only if ρ, defined in (2.2), is strictly positive, linear and uniquely defined.

An earlier version of this theorem for Ross’ No Arbitrage was proved by Kreps (1981). Let us define
the set of feasible claims, i.e. traded claims available at non-positive prices, as

(2.6) F := {m ∈ M : inf ρ(m) ≤ 0}.

Ross’ principle of no-arbitrage Ross (1978) in the consumption space L reads Clark (1993) F∩L++(Ω) = ∅,
where L is a set of random variables with reference to a given probability measure. Under Assumption 2.3,
ρ(0) = 0, since L+ = L++ ∪ (L+ \ L++), this is equivalent to F ∩ L+ = {0}. This is clearly equivalent
to Definition 2.2. It is however different from Stricker’s No Approximate Arbitrage principle Stricker
(1990) F ∩ L++(Ω) = ∅, which involves the closure with respect to the weak topology on L. Our
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framework follows the model-independent approach, without reference to a given probability measure.
Proposition 2.4 implies that ρ(0) = 0, and the following representation of M holds:

Lemma 2.5. Under Assumption 2.3, M = Span {m0,F}.

Proof. It is immediate to see that Span {m0,F} ⊆ M. On the other hand for any m ∈ M available at
price ρ(m) define f := m − [ρ(m)/ρ(m0)]m0 with ρ(f) = 0 and thus f ∈ F. Then m can be trivially
represented as a linear combination f + [ρ(m)/ρ(m0)]m0 and the reverse inclusion follows. �

Although the notion of strong model independent arbitrage is helpful to restrict the range of ρ, it
does not appear to be helpful in explaining the behaviour of the pricing functional on the closure of the
feasible set of claims. The following notion of arbitrage is similar in flavour to (Cox and Obłój, 2011,
Definition 2.1):

Definition 2.6. There is a weak free lunch if there exists a sequence (gn)n∈N ⊂ Ch(Ω) converging weakly
to g ∈ (Ch)++(Ω), and a sequence (fn)n∈N ⊂ F with fn ≥ gn for all n ∈ N.

It must be noted that a strong model-independent arbitrage is also a week free lunch. Before we
proceed let us first show an auxiliary result.

Lemma 2.7. The following equality holds for the algebraic difference F− (Ch)+(Ω):

F− (Ch)+(Ω) := {f − g : f ∈ F, g ∈ (Ch)+(Ω)} = {g ∈ Ch(Ω) : there exists f ∈ F such that f ≥ g} =: G.

Proof. For any g ∈ G there exists f ∈ F such that f − g ∈ (Ch)+(Ω) or equivalently g − f ≤ 0. As 0 ∈ F

we have that 0 − (f − g) ∈ F − (Ch)+(Ω) hence G ⊆ F − (Ch)+(Ω). On the other hand let f ∈ F and
z ∈ (Ch)+(Ω). Let g := f−z and note that f ≥ g. Hence g ∈ G and it follows that F−(Ch)+(Ω) ⊆ G. �

Lemma 2.7 still applies if the positive cone (Ch)+(Ω) is restricted to M+. It follows that the absence of
weak free lunch can equivalently be stated as F− (Ch)+(Ω)∩ (Ch)+(Ω) = {0}, where the closure is taken
with respect to the weak topology on Ch(Ω). We are now ready to state a version of the Fundamental
theorem, proved in Appendix B.1:

Theorem 2.8. Under Assumptions 2.1 and 2.3, absence of weak free lunch holds if and only if there
exists a continuous strictly positive linear functional π : Ch(Ω) → R that extends ρ. Moreover π can be
written as an integral with respect to a unique Borel probability measure µ ∈ Ph(Ω).

For a sequence (mn)n∈N ⊂ M converging weakly to m ∈ M (the weak closure of M) define ρ(m) :=

limn↑∞ ρ(mn). It can be shown that ρ is continuous, strictly positive and linear as a simple corollary
to Theorem 2.8. We now formulate the super- and sub-hedging problems as infinite-dimensional linear
programming problems. The super-hedging problem for an option with payoff Φ ∈ Uh(Ω), the set of
upper semi-continuous functions bounded by h, is formulated as

(2.7) ϑp(Φ) := inf
{
ρ(m) : m ∈ M,m(ω) ≥ Φ(ω), for all ω ∈ Ω

}
.

The dual problem consists in finding a Borel probability measure subject to market constraints maximising
(minimising in case of sub-hedging) the price of a derivative to be hedged and is stated as follows:

(2.8) ϑd(Φ) := sup
{
〈Φ, µ〉 : µ ∈ Ph(Ω), 〈m,µ〉 = ρ(m),m ∈ M

}
.

We define here the sub/super-hedging problems in terms of the extension ρ instead of ρ itself as continuity
of the former is essential for duality purposes. The sub-hedging problem for an option with payoff
Φ ∈ Lh(Ω), the set of lower semi-continuous functions bounded by h, can be stated as

(2.9) ϑp(Φ) := sup
{
ρ(m) : m ∈ M,m(ω) ≤ Φ(ω), for all ω ∈ Ω

}
,

and its dual problem is written as follows

(2.10) ϑd(Φ) := inf
{
〈Φ, µ〉 : µ ∈ Ph(Ω), 〈m,µ〉 = ρ(m),m ∈ M

}
.

It is easily seen that weak duality ϑp(Φ) ≤ ϑd(Φ) ≤ ϑd(Φ) ≤ ϑp(Φ) holds, at least for Φ ∈ Lh(Ω)∩Uh(Ω).
As h is not a traded asset, the following assumption prevents degeneracy of the primal problem (2.7):
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Assumption 2.9. For any fixed Φ ∈ Uh(Ω), there exists m ∈ M such that m ≥ Φ on Ω.

The assumption implies that ϑp(Φ) is feasible for any Φ ∈ Uh(Ω); since ρ is continuous on M, it
is also finite. Since ϑp(−Φ) = −ϑp(Φ), the sub-hedging problem (2.9) is feasible for Φ if −Φ satisfies
Assumption 2.9. The following result, proved in Appendix B.2, provides absence of duality gap between
the primal and dual problems.

Theorem 2.10. Suppose Assumptions 2.1, 2.3 and 2.9 hold. Then absence of weak free lunch implies
no duality gap between the primal and dual super-hedging (resp. sub-hedging) problems.

3. Duality in markets with Call options

We now consider when European Call options are traded on the market and discuss how Assumption 2.1
can be represented via arbitrage-free extrapolation of the total variance and how it affects the set of
feasible solutions to the primal and dual problems. We also introduce another notion of arbitrage to deal
with specific cases of Butterfly option spreads priced at zero, allowing us to consider positive rather than
strictly positive pricing functionals. Relaxing this condition also requires a different ordering on the cone
of feasible claims and we show duality results still hold with the latter.

3.1. Market definitions. We work in a discrete time setting with a finite time horizon T and interme-
diate times 0 = t0 < t1 < . . . < tn = T . The collection of times is defined to be T0 := {t0, t1, . . . , tn}, and
T := T0 \ {t0}. The state space Ω :=

∏
t∈T Ωt, where Ωt := R+, is locally compact, and the coordinate

process S : Ω → R+ is defined to be St(ω) = ωt for all ω ∈ Ω and ωt ∈ Ωt. We also normalise it so that
S0(ω) = s0 = 1. We assume that for each maturity t ∈ T , there are European Call options traded on
the market at the price c(K, t), with forward moneyness K in a finite set Kt. We also refer to forward
log-moneyness k = log(K), and we shall interchangeably use c(k, t) and c(K, t). Let us define Kt

∗ for
each t ∈ T as the moneyness of a Call option available on the market at zero cost:

(3.1) Kt
∗ := inf{K ∈ Kt : c(K, t) = 0},

and Kt
∗ = ∞ if the set is empty. Denote by C := {c(K, t) : K ∈ Kt, t ∈ T } the collection of prices of

traded Call options.

Definition 3.1. A static position f := (φt)t∈T0 is a collection of maps from R → R, with φt0 ∈ R such
that, for each t ∈ T , there exists (αi)i=1,...,κ(t) ∈ Rκ(t), Kt

1, . . . ,K
t
κ(t) ∈ Kt, with κ(t) <∞, for which

φt :=

κ(t)∑
i=1

αi(St −Kt
i )+.

This function represents the payoff of the static position, with price at inception ct :=
∑κ(t)

i=1 αic(K
t
i , t),

and φt0 a static position in a riskless bond with unit payoff. The set of all static positions is denoted S.

Definition 3.2. A trading strategy is a vector ∆ := (∆t)t=t0,...,tn−1
∈ H, where H := R×

∏n−1
j=1 Cb(Rj

+)

denotes the set of trading strategies. The first component denotes the initial position in the stock and
the other components are continuous and bounded functions. The stochastic integral is defined as

(∆ • S(ω))T :=

n−1∑
i=0

∆ti(ω)
(
Sti+1

(ω)− Sti(ω)
)
,

and represents the gains or losses obtained by trading according to ∆. We use notation ∆ti(ω) :=

∆ti(Prω), where Prω is the projection of ω ∈ Ω onto Ri
+ for each i = 1, . . . , n− 1.

At time tj (for j = 1, . . . , n−1), we consider the strategy ∆tj as an element of Cb(Rj
+). This takes into

account possible absence of Markovianity of the underlying price process or European options with path-
dependent payoffs, in which case the trading strategy depends, not only on the current value, but on the
whole history of the price process. The above definition includes the trivial strategy ∆̃ = (1, 1, . . . , 1, 1)

of entering a forward contract at time zero maturing at T (or equivalently entering a forward contract
with maturity t1 and rolling it to the final maturity T ), with payoff (∆̃ • S(ω))T = ST (ω) − 1 for all
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ω ∈ Ω. Also note that the payoff of any trading strategy ∆ ∈ H is at most linear in ω. For a static
position f ∈ S and a trading strategy ∆ ∈ H, we write the initial cost and final payoff of a semi-static
portfolio (f,∆) as

(3.2) Πt0(f,∆) := φt0 +
∑
t∈T

ct and ΠT (f,∆;ω) := φt0 +
∑
t∈T

φt(St(ω)) + (∆ • S(ω))T ,

for all ω ∈ Ω. Note that it is possible to have a semi-static portfolio with final maturity t < T . However
as we work with normalised prices, one can represent the final payoff of a portfolio maturing at time t < T

as a position in the riskless bond maturing at T with the value of the position equal to the said payoff.
The set of traded claims M is then defined as a collection of all semi-static portfolio payoffs ΠT (f,∆; ·)
for a static position f ∈ S and a trading strategy ∆ ∈ H,

(3.3) M = {ΠT (f,∆; ·) : f ∈ S and ∆ ∈ H} .

As we assume that only European Call options are traded for each maturity t ∈ T and the payoff of a
trading strategy ∆ ∈ H is continuous and grows at most linearly in ω ∈ Ω, the set M consists of functions
m ∈ C(Ω) such that m(ω) = O(1+ ‖ω‖1) as ‖ω‖1 tends to infinity. It is in fact a subspace of Cl(Ω) where

(3.4) l(ω) := 1 +
∑
t∈T0

St(ω).

Note that l ∈ M, as the semi-static portfolio (f∗,∆∗) with f∗ := (2+n, 0, . . . , 0) and ∆∗ := (n, n−1, . . . , 1)

has final payoff ΠT (f∗,∆∗; ·) = l on Ω. The dual space is Pl(Ω) := {µ ∈ P(Ω) : 〈l, µ〉 <∞}, the space of
all Borel probability measures with finite first moments. Define now the pricing functional ρ : M → R as

(3.5) ρ(ΠT (f,∆; ·)) := Πt0(f,∆).

As above, Theorem 3 in Clark (1993) implies that absence of strong model-independent arbitrage is
equivalent to ρ being linear, uniquely defined and strictly positive. We also define a market model
similarly to (Cox and Obłój, 2011, Definition 1.1).

Definition 3.3. A model is a probability measure in Pl(Ω) such that the coordinate process S is a
martingale in its own filtration F := (σ(Sr, r ≤ t))t∈T0 . A market model is a martingale measure
associated with a positive linear extension of the pricing operator ρ (defined in (3.5)) from M to Cl(Ω).

A sufficient condition to ensure that S is a martingale under µ ∈ M (the set of all martingale measures)
is 〈(∆ • S)T , µ〉 = 0, for all ∆ ∈ H. By definition S is a martingale in its own filtration F under a measure
µ ∈ Pl(Ω) if

∑n−1
i=0

〈
11Bti

(·)(Sti+1
− Sti), µ

〉
= 0, for all Borel sets Bti ⊂ Ωti for all i = 1, . . . , n − 1. To

see the sufficiency of the martingale condition, note that the Borel σ-algebra is generated by open sets
and the indicator function of an open set is a lower semi-continuous function. By Lebesgue Monotone
Convergence Theorem the definition of a martingale follows. Let us define the set of market models as

(3.6) MC :=
{
µ ∈ Pl(Ω) : 〈ΠT (f,∆; ·), µ〉 = Πt0(f,∆) for (f,∆) ∈ S ×H

}
.

Here, C appears in the definition through Πt0 defined in (3.2), where ct is the sum of elements of C. To
enforce the existence of the function h we restrict the set of market models MC by imposing conditions
on existence of moments of the underlying stock process S which are equivalent to allowing arbitrage-free
extrapolation of the total implied variance as will be shown in the sequel.

3.2. Extrapolation of variance. We propose to restrict the set of market models MC by imposing
conditions on arbitrage-free extrapolation of the total implied variance. The Black-Scholes formula for the
arbitrage-free price of a Call option at time zero reads cBS(k, σ

√
t) := E{(St − ek)+} = N (d)− ekN (d−

σ
√
t), with d := − k

σ
√
t
+ 1

2σ
√
t, where N is the standard Normal distribution function. For a given

market or model price c(k, t) with log-moneyness k and maturity t, the implied volatility σimplied(k, t)

is the unique non-negative solution to c(k, t) = cBS(k, σimplied(k, t)
√
t) and the total implied variance is

then w(k, t) := σ2
implied(k, t)t. In practice only finitely many option prices are quoted on the market and

hence the total implied variance function cannot be uniquely specified based on market quotes alone.
We concentrate our attention on extrapolation of the total implied variance for a fixed maturity t, while
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preserving absence of arbitrage. Lee (2004) proved that a slice of the total variance k 7→ w(k, t) can be
at most linear as |k| tends to infinity, and related precisely the slope of the wings to the moments of the
underlying stock price process. Benaim and Friz (2009, 2008) further refined this analysis under additional
conditions on the moment generating function of the log-returns distribution. Absence of strong model-
independent arbitrage (Definition 2.2) in presence of options is equivalent to absence of Calendar and
Butterfly Spread arbitrages, understood as absence of arbitrage opportunities across option maturities
for a fixed strike and absence of arbitrage opportunities across different strikes for a fixed maturity
respectively. We shall work with the following standing assumption on the total implied variance:

Assumption 3.4. For fixed k ∈ R, w(k, ·) ∈ C1(R+). For fixed t > 0, w(·, t) ∈ C(R) is strictly positive,
differentiable except possibly at finitely many points, and ∂kw(k, t) is essentially bounded measurable.

Absence of arbitrage can equivalently be stated as conditions on the shape of the total implied variance
as shown in Gatheral and Jacquier (2014); Guo et al. (2016a). In particular under proportional dividends,
absence of Calendar Spread arbitrage is equivalent to ∂tw(k, t) ≥ 0 for all k ∈ R and t > 0 (Gatheral and
Jacquier, 2014, Lemma 2.1). This is equivalent to the Call price surface being non-decreasing in maturity
for each strike. For fixed t, Butterfly Spread arbitrage is precluded if and only if the function g : R → R
defined by

(3.7) g(k) :=

(
1− k∂kw(k, t)

2w(k, t)

)2

− ∂2kw(k, t)

4

(
1

w(k, t)
+

1

4

)
+
∂kkw(k, t)

2
,

is a positive distribution, with ∂kkw(·, ·) defined in the distributional sense. This condition in turn is
equivalent to the Call price function being convex (Guo et al., 2016a, Proposition 4.8). Assumption 3.4
ensures that ∂tw(k, t) is well defined for all t > 0 and ∂kw(k, t) can be taken as right of left derivative at k
if w. Any valid extrapolation of the total implied variance for a fixed maturity must satisfy Roger Lee’s
conditions and be arbitrage-free. We start with the following simple result, proved in Appendix B.3:

Lemma 3.5. Fix a maturity t > 0.
• (Right wing) For fixed constants a0, a1 ∈ R+ consider the function w(k, t) → a1k + a0. Then
the function g is non-negative on [k∗(a0, a1),∞) if and only if a1 ∈ [0, 2], where k∗(a0, a1) is a
positive constant that depends on a0 and a1;

• (Left wing) For fixed constants a0, a1 ∈ R+ consider the function w(k, t) → a1|k| + a0. Then
the function g is non-negative on [−∞, k∗(a0, a1)] if and only if a1 ∈ [0, 2], where k∗(a0, a1) is a
negative constant that depends on a0 and a1.

Assumption 3.6. There exist p∗, q∗ > 0 such that there is at least one market model µ ∈ MC under
which S admits moments of order at least 1 + p∗ and negative moments of order at most q∗ up to T .

The set of martingale measures that satisfies Assumption 3.6 is defined as

(3.8) Mp∗,q∗ := M ∩
{
µ ∈ P(Ω) :

〈
ω1+p∗

+ ω−q
∗
, µ
〉
<∞

}
,

and the set of market models satisfying Assumption 3.6 is then defined as

(3.9) Mp∗,q∗

C := MC ∩Mp∗,q∗ .

Introduce the functions f(x) := x1+p∗
+ x−q

∗ on R+ and h : Ω → R as

(3.10) h(ω) :=
∑
t∈T

f(St(ω)).

The following assumptions allow us to define a proper extrapolation of the total implied variance:

Assumption 3.7 (Left wing). For any t ∈ T , Kt
1 > 0, and the left wing is extrapolated as

(3.11) w(k, t) := fL(k − kt1, t) + w(kt1, t), for all t ∈ T , k < kt1 := log(Kt
1),

where the function fL : R× T → R+ satisfies
(A) fL(0, ·) = 0;
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(B) fL(k, ·) = O(ψ(q)|k|) for small enough k and 0 < q < q∗ such that g is non-negative on (−∞, kt1);
(C) ∂tfL(·, t) ≥ 0, for any t ∈ T .

Assumption 3.8 (Right wing). For t ∈ T , Kt
∗ = ∞, and the right wing extrapolation reads

(3.12) w(k, t) := fR(k − ktκ(t), t) + w(ktκ(t), t), for all t ∈ T , k > ktκ(t) := log(Kt
κ(t))

where the function fR : R× T → R+ satisfies

(A) fR(0, ·) = 0;
(B) fR(k, ·) = O(ψ(p)k) for large enough k and 0 < p < p∗ such that g is non-negative on (ktκ(t),∞);
(C) ∂tfR(·, t) ≥ 0 for all t ∈ T .

Here, the function ψ : R → [0, 2] defined by ψ(z) := 2 − 4(
√
z(z + 1) − z) was introduced by Lee

(2004) and gives the precise slope of the total variance in the wings as a function of the highest (absolute)
moment of the underlying stock price. Assumptions 3.7 and 3.8 imply that extrapolation can be done
linearly as long as the resulting total implied variance surface is consistent with the observed market
prices (Assumptions 3.7(A) and 3.8(B)) and free of arbitrage, i.e. Assumptions 3.7(B)-(C) and 3.8(B)-
(C) are satisfied. In particular Assumptions 3.7(B) and 3.8(B) ensure the extrapolation is free of Butterfly
Spread arbitrage and can be checked using results in Lemma 3.5. Assumptions 3.7(C) and 3.8(C) ensure
the extrapolation is free of Calendar Spread arbitrage.

As the underlying can be treated as an option with moneyness equal to zero, one can interpolate
linearly between the traded option with the smallest available moneyness and the option with the zero
moneyness. Therefore Assumption 3.7 appears superfluous. However linear interpolation is only a crude
approximation of the marginal distribution’s behaviour near zero, whereas specifying extrapolation of the
left wing of the smile allows for a finer approximation (albeit parametric).

Lemma 3.9. Assume that the set of traded option prices C is free of strong model-independent arbitrage.
Then, under Assumptions 3.7 and 3.8, the Call price surface resulting from the total implied variance
extrapolation is free of weak free lunch.

Proof. For each maturity t ∈ T define a probability measure µt on the state space Ωt as

(3.13) µt([0,K]) = 1 + ∂+c(K, t) and µt([K,+∞)) = −∂−c(K, t).

Assumption 3.8 implies that limk↑∞ cBS(k,
√
w(k, t)) = 0 and limk↓−∞ cBS(k,

√
w(k, t)) = 1 for each

t ∈ T as a consequence of Assumption 3.7 and therefore the expectation of St under µt is equal to 1. The
authors in Breeden and Litzenberger (1978) showed that the risk-neutral measure of normalised asset
returns µt at maturity t ∈ T can indeed be constructed that way. Moreover as the Call price surface
resulting from the total implied variance extrapolation is free of Calendar spread arbitrage, then

(3.14)
∫ ∞
0

(x−K)+µt1(dx) ≤
∫ ∞
0

(x−K)+µt2(dx),

for any t1 ≤ t2, K ∈ R+ which is sufficient for µt1 and µt2 to be in convex order Baker (2012). Strassen’s
theorem Strassen (1965) then yields the existence of a martingale measure µ ∈ M with marginals µt for
all t ∈ T . Hence there exists at least one market model consistent with traded Call options prices and
the extrapolation of the total variance and absence of weak free lunch follow by Theorem 2.8. �

The extrapolation of the total implied variance restricts the feasible set of the dual problem 2.8. To
avoid emergence of a duality gap, the feasible sets of the primal problem 2.7 must be enlarged: untraded
Call options priced from the extrapolation must be added to the set of static positions S, and the set
becomes infinite-dimensional. Addition of untraded options does not create a duality gap as the resulting
set of traded options is free of weak free lunch and the duality results above still apply.
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3.3. Weak arbitrage and duality. As above, absence of week free lunch implies that a market model
µ ∈ MC corresponds to a strictly positive linear functional and hence 〈m,µ〉 > 0 for all m ∈ M++. This
is a rather strict assumption as it is possible to have Butterfly Spreads traded on the market at zero
price and find a corresponding market model as shown in (Davis and Hobson, 2007, Theorems 3.1, 4.2).
Moreover, as we shall explore semi-infinite approximations to the primal 2.7 and dual 2.8 problems in
the next section 4, when only finitely many options are available for each maturity t ∈ T the notion of
weak free lunch does not appear to be helpful. We thus introduce a notion of weak arbitrage as in (Cox
and Obłój, 2011, Definition 2.3).

Definition 3.10. The pricing functional ρ in (3.5) admits weak arbitrage on M if for any model µ ∈ M,
there exists m ∈ M such that ρ(m) ≤ 0, but µ({ω ∈ Ω : m(ω) ≥ 0}) = 1 and µ({ω ∈ Ω : m(ω) > 0}) > 0.

Under weak arbitrage, MC is empty. Clearly, strong model-independent arbitrage opportunities are
also weak arbitrage opportunities. This definition of weak arbitrage allows the use of the result (Davis
and Hobson, 2007, Theorem 4.2) stating that when only finitely many options are traded on the market,
absence of weak arbitrage is equivalent to existence of a market model. It is easily seen that absence of
weak arbitrage implies that if there exists a claim m ∈ M+ with market price ρ(m) = 0 then µ({ω ∈ Ω :

m(ω) > 0}) = 0 for any market model µ ∈ MC. With F0 := {m ∈ M : ρ(m) = 0} denoting the set of all
traded claims available on the market at price zero, we introduce the convex cone

(3.15) W := F0 ∩ (Ch)+(Ω).

This cone highlights a fundamental issue in strong model-independent arbitrage: assume that this cone
is generated by finitely many traded Butterfly Spreads traded at zero price for each t ∈ T . For fixed
t ∈ T and any three strikes Kt

i−1 < Kt
i < Kt

i+1 (with 1 < i < κ(t)) the payoff of a Butterfly Spread is

α(St −Kt
i−1)+ − (α+ β)(St −Kt

i )+ + β(St −Kt
i+1)+,

where α := 1/(Kt
i −Kt

i−1) and β := 1/(Kt
i+1 −Kt

i ). If it is traded at zero price, then absence of weak
arbitrage implies that any market model µ ∈ MC places no mass on the open interval (Kt

i−1,K
t
i+1).

Clearly the collection of such open sets is closed under taking finite intersections and unions. Basically,
any market model consistent with butterflies priced at zero places no mass on the open interval where
the payoff of a butterfly is strictly positive. In that case, there is strong model-independent arbitrage
and one cannot use strictly positive linear functionals and extensions thereof, but rather just positive
functionals, which also implies that the ordering on the space of claims needs to be amended. Let us
introduce such an ordering on Ch(Ω) by defining a ‘trans-positive’ closed convex cone

(3.16) J := (Ch)+(Ω)−W ,

where the closure is taken with respect to the norm topology on Ch(Ω). This set was introduced by
Clark (2006) in order to provide an infinite-dimensional generalisation of the classical Farkas condition
regarding the feasibility of finite-dimensional linear programmes. Since 0 ∈ J , we can introduce a new
ordering “�” on Ch(Ω) such that the relation f1 � f2 holds if and only if f1 − f2 ∈ J . The following
lemma shows how the negative polar J ∗ ⊂ Ph(Ω) (Definition A.4) characterises weak arbitrage.

Lemma 3.11. Absence of weak arbitrage implies that Mp∗,q∗

C ⊂ J ∗.

Proof. For any µ ∈ Mp∗,q∗

C , the inequality 〈f, µ〉 ≥ 0 holds for all f ∈ (Ch)+(Ω), and for any w ∈ W ,
〈w, µ〉 is null by absence of weak arbitrage. So for any f ∈ (Ch)+(Ω) and w ∈ W we have 0 ≤ 〈f, µ〉 =
〈f, µ〉−〈w, µ〉 = 〈f−w, µ〉. Since f−w ∈ J , the lemma follows by definition of the negative polar J ∗. �

The above analysis also remains the same for any j on the boundary of J . In particular let j :=

limn↑∞ jn = limn↑∞(fn − wn) and by linearity of the inner product for any µ ∈ MC we have

(3.17) 〈j, µ〉 =
〈
lim
n↑∞

(fn − wn), µ

〉
= lim

n↑∞
〈(fn − wn), µ〉 =

〈
lim
n↑∞

fn, µ

〉
= 〈f, µ〉 ,

where f ∈ (Ch)+(Ω) as the positive cone is closed in the weak topology.
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For an option with payoff Φ ∈ Cl(Ω) (note that as we consider the case when finitely many options are
available for hedging, only options with payoffs that grow at most linearly can be superhedged. Of course,
if the state space is restricted to be a compact subset of Ω, superlinear payoffs can only be considered),
define now the super-hedging problem

(3.18) ∗ϑp(Φ) := inf
{
ρ(m) : m ∈ M, m− Φ ∈ J

}
,

and its associated dual

(3.19) ∗ϑd(Φ) := sup
{
〈Φ, µ〉 : µ ∈ Mp∗,q∗

C

}
.

Symmetrically, the sub-hedging primal problem is defined as ∗ϑp(Φ) = −∗ϑp(−Φ) and the sub-hedging
dual problem as ∗ϑd(Φ) = −∗ϑd(−Φ). To state the required duality, we impose the following assumption:

Assumption 3.12. If there exists a continuous linear extension π : Ch(Ω) → R of ρ, then for all
(fn)n∈N ∈ Ch(Ω) decreasing pointwise to zero, limn↑∞ π(fn) = 0.

Theorem 3.13. Absence of weak arbitrage implies no duality gap between (3.18) and (3.19) on Cl(Ω),
and likewise for the sub-hedging problems.

Proof. We only prove the super-hedging case as the sub-hedging one follows by symmetry, and we follow
closely the arguments from Theorem 2.10. We assume that Φ /∈ M, otherwise the theorem is trivial.
Absence of weak arbitrage implies there exists a market model µ0 ∈ MC with Eµ0{Φ} := 〈Φ, µ〉 ≤ ∗ϑp(Φ)
and fix λ ∈ (Eµ0{Φ}, ∗ϑp(Φ)). Let G := Span {M,Φ} and define η : G → R as η(g) := η(m + tΦ) =

ρ(m) + tλ. We now show that η is positive on JG := J ∩ G. Let g = m + tΦ ∈ JG and consider three
cases. If t = 0 then η(g) = ρ(m) ≥ 0. If t < 0 then (−t)−1m � Φ and (−t)−1ρ(m) ≥ ∗ϑp(Φ) > λ.
Similarly if t > 0 then Φ � (−t)−1m and hence ρ(m) > −tλ. It also follows that if t 6= 0 then η(g) > 0.

As η is linear and dominated by a convex function ∗ϑp (as the function l defined in (3.4) is an element
of M, the function −∞ < ∗ϑp(f) <∞ for all f ∈ Cl(Ω)) hence by Hahn-Banach Extension Theorem there
exists a linear extension of π to the whole space Cl(Ω) such that π is dominated by ∗ϑp. For j ∈ J we
have 0 � −j and π(−j) ≤ ∗ϑp(−j) ≤ ρ(0) = 0 thus π(j) ≥ 0 by linearity of π. As 0 ∈W it implies that π
is a positive linear functional and as Cl(Ω) is a Banach lattice it follows by (Aliprantis and Tourky, 2007,
Theorem 1.36) that π is continuous and by Assumption 3.12 it can be represented as a Borel probability
measure, i.e. π ∈ Pl(Ω). Moreover π also extends ρ and hence gives a market model.

By construction π(Φ) = η(Φ) = λ. Since π is a market model, it is a feasible solution to (3.19) and
λ = π(Φ) ≤ ∗ϑd(Φ). As λ ∈ (Eµ0{Φ}, ∗ϑp(Φ)) was chosen arbitrarily, hence ∗ϑd(Φ) = ∗ϑp(Φ). �

The primal (3.18) and the dual (3.19) problems can be extended to the case when Φ ∈ Ul(Ω) by
defining the extension to the primal problem ϑp : Ul(Ω) → R, with R := [−∞,+∞], as

(3.20) ϑp(Φ) := inf {∗ϑp(f) : f ∈ Cl(Ω), f ≥ Φ on Ω} .

The corresponding extension to the dual problem ϑd : Ul(Ω) → R is defined as

(3.21) ϑd(Φ) := sup {〈Φ, µ〉 : µ ∈ MC} .

The sub-hedging primal problem can be extended to Φ ∈ Ll(Ω) in a similar way.
If the convex cone W in (3.15) is trivial, i.e. W = {0}, then the trans-positive cone is reduced to

the positive cone (Cl)+(Ω), i.e. J = (Cl)+(Ω)−W = (Cl)+(Ω) = (Cl)+(Ω). Then the definitions of the
primal (3.20) and the dual (3.21) coincide with the definitions of the primal (2.7) and the dual (2.8)
programmes. In particular the super-hedging primal problem for any Φ ∈ Cl(Ω) is written as

(3.22) ∗ϑp(Φ) := inf
{
ρ(m) : m ∈ M, m− Φ ∈ (Cl)+(Ω)

}
,

and coincides with ϑp(Φ). The sub-hedging problems are likewise reduced to (2.9) and (2.10).
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4. Reduction to the semi-infinite case

The literature on computational methods for sub- and super-hedging problems has been rather sparse,
with the recent exceptions A. Alfonsi and Jourdain (2019); Benamou et al. (2015); Guo and Obłój (2019).
Guo and Obłój Guo and Obłój (2019) devtelop computational methods to solve the martingale optimal
transport (MOT) problem via discretisation and optimisation techniques. In particular, they consider an
approximation of the MOT via a series of linear programmes. To do so, discretisation of the marginal
distributions is introduced along with approximation of the martingale condition on a finite number of
constraints. They introduce the notion of ε-approximating martingale measures, and obtain an upper
bound on the speed of convergence in the one-dimensional case. Assuming existence of moments of
the marginal distribution, the numerical implementation relies on computing the Wasserstein distance
between the marginal distribution and its approximation. They propose two generic approaches to solve
this, one in case where the density function of the marginal distribution is known and the second one
where one can sample from the marginal.

We discuss here a reduction of the infinite-dimensional problems (2.7)-(2.8) to the semi-infinite case,
with a view towards numerical implementation. We first select a finite subset of traded options approxi-
mating the set of static positions S from Definition 3.1. When only finitely many Call options are traded,
we perform extrapolation of the total implied variance according to Assumptions 3.7 and 3.8, and include
Call options with prices corresponding to such extrapolation. Note that those options may not be traded
on the market. We define a vector of Call option payoffs as

(4.1) C :=
(
(St −Kt

1)+, . . . , (St −Kt
κ(t))+

)
t∈T

∈ Rd,

where d :=
∑

t∈T κ(t) <∞, and the vector of corresponding market prices as before as

(4.2) C := (c(Kt
1, t), . . . , c(K

t
κ(t), t))t∈T ∈ Rd.

We shall also write C(ω) :=
(
(St(ω)−Kt

1)+, . . . , (St(ω)−Kt
κ(t))+

)
t∈T

to denote the evaluation of the
Call options payoffs at ω ∈ Ω.

Assumption 4.1. The prices C preclude weak arbitrage and W in (3.15) is trivial, i.e. W = {0}.

As mentioned previously, when W = {0}, the super- and sub-hedging problems (3.20) and (3.21)
are equivalent to (2.7) and (2.9) respectively. The set of approximate static positions is now S̃ :=

R × Span {C}, the first component representing the cash position. We also discretise the set of trading
strategies H = R ×

∏n−1
j=1 Cb(Rj

+) from Definition 3.2. For a rational number α ∈ Q let Kj
α := [0, α]j

where j = 1, . . . , n − 1 and define a set of functions B := {θtji ∈ Cb(Rj
+), j = 1, . . . , n − 1, i ∈ N} such

that for each j and α the set {11Kj
α
θ
tj
i , i ∈ N} is dense in C(Kj

α). Let us also define a finite subset
Bj := {θtj1 , . . . , θ

tj
d(tj)

} with d(tj) < ∞ of elements in B for each j = 1, . . . , n − 1 (for instance, one can
take a set of monomials defined on Kj

α for each j and α and extend each element in the set to Rj
+ such

that the extension is equal to the maximum of the element on Kj
α on the complement of Kj

α and is equal
to the element itself otherwise). Then a discretised trading strategy Θ ∈ H̃ := R ×

∏n−1
j=1 Span {Bj} is

defined as follows and an element Θ ∈ H̃ reads

Θ(ω) :=
(
a0, 〈a1, θ1(ω)〉, . . . , 〈an−1θn−1(ω)〉

)
,

for each ω ∈ Ω, where a0 ∈ R, aj ∈ Rd(tj), and θj(ω) ∈ Rd(tj)
+ are the evaluation vectors of basis functions

for each time period tj . Note that θj(ω) := θj(Prω), where Prω is the projection of ω ∈ Ω onto Rj
+.

Note that we use the same notation 〈·, ·〉 to denote the Euclidean inner product, but this should hopefully
not create any confusion. The payoff of a discretised trading strategy Θ ∈ H̃ then reads

(4.3) (Θ • S)T = a0(St1 − s0) +

n−1∑
j=1

d(tj)∑
i=1

ajiθ
j
i

(
Stj+1

− Stj

)
.

The initial cost (3.2) of a discretised hedging portfolio (̃f,Θ) ∈ S̃ × H̃ now reads Πt0 (̃f,Θ) = 〈C,w〉+ λ,
where λ ∈ R, the vector w = (wt

1, . . . , w
t
κ(t))t∈T ∈ Rd with entries denoting portfolio weights in available
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options and 〈·, ·〉 is the inner product in Rd. We also write the payoff of the hedging portfolio (̃f,Θ) at
the final maturity, ΠT (̃f,Θ) = AΘ

λ (w), where the linear map A is defined as

(4.4) AΘ
λ (w) := λ+

∑
t∈T

κ(t)∑
i=1

wt
i(St −Kt

i )+ + (Θ • S)T = λ+Cw+ (Θ • S)T .

We can then write a problem of super-hedging an option with the upper semi-continuous payoff Φ ∈ Ul(Ω)

bounded above by a linear function l defined in (3.4) as

(4.5) ϑp(Φ) := inf
{
λ+ 〈C,w〉 : (w, λ,Θ) ∈ F p

}
.

Even though this definition, because of the discretisation, is different from its infinite-dimensional coun-
terpart (3.20), we keep the same notation without confusion. The feasible set F p is defined as

(4.6) F p :=
{
(w, λ,Θ) ∈ Rd+1 × H̃ : AΘ

λ (w;ω)− Φ(ω) ≥ 0 for all ω ∈ Ω
}
,

and the associated dual problem has the form

(4.7) ϑd(Φ) := sup
{
〈Φ, µ〉 : µ ∈ M̃p∗,q∗

C

}
,

where the set of Borel probability measures that re-price the discretised portfolios in S̃ × H̃ reads

M̃p∗,q∗

C :=
{
µ ∈ Ph(Ω) : 〈ΠT (̃f,Θ; ·), µ〉 = Π0(̃f,Θ), (̃f,Θ) ∈ S̃ × H̃

}
,

with the function h defined in (3.10), and the real constants p∗, q∗ > 0 in Assumption 3.6. The sub-
hedging primal and dual problems can be defined in a similar manner. We now show that the primal and
their corresponding dual problems in the sub- and super-hedging cases admit no duality gap.

Proposition 4.2. Under Assumptions 3.6 and 4.1, there is no duality gap between (4.5) and (4.7).

Proof. By Lemma 3.9, Assumptions 3.6 and 4.1 imply absence of weak free lunch. Moreover as the
riskless bond satisfies Assumption 2.3, the statement follows from Theorem 2.10. �

Remark 4.3. As the sub-hedging primal problem can be represented as ϑp(Φ) = −ϑp(−Φ) and the
sub-hedging dual problem is represented in terms of the super-hedging dual problem (4.7) as ϑd(Φ) =

−ϑd(−Φ), Proposition 4.2 can be applied to sub-hedging problems as well.

This discretisation setting is justified by the following result, proved in Appendix B.4, which shows
that when the number of elements in the basis of the set of discretised trading strategies H̃ increases to
infinity, the semi-infinite primal (4.5) and the dual (4.7) problems converge to the values of the infinite-
dimensional problems defined in (2.7) and (2.8) respectively.

Theorem 4.4. Under Assumptions 3.6 and 4.1, as r := mint∈T {d(t)} tends to infinity, the values of
both semi-infinite programmes converge to the values of their infinite-dimensional counterparts.

The form of the discretisation provides information about the convergence: as the latter is refined, the
feasible set (4.6) for the super-hedging problem becomes larger, and the infimum (4.5) decreases.

5. Perturbation analysis of model-independent hedging problems

Extrapolation of the total implied variance in Section 3.2 restricts the feasible sets of the dual prob-
lem (3.21) as well as the feasible set of its semi-infinite approximation (4.7). On the other hand the
feasible sets of the primal problem (4.5) is enlarged by adding non-traded Call options with prices con-
sistent with extrapolation. As this assumption is exogenous, we study now the sensitivity of the optimal
values of the dual problems to extrapolation of the total implied variance. We embed the semi-infinite
approximations to the primal and dual problems into a family of perturbed problems, where the pertur-
bations are changes in input Call option prices, and use the language of directional derivatives to provide
a rigorous sensitivity analysis.
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5.1. Perturbation analysis. We embed the primal (4.5) and dual (4.7) problems into a family of
perturbed problems by introducing a vector u := (ut1, . . . , u

t
κ(t))t∈T ∈ Rd of price perturbations. Given

an option with payoff Φ ∈ Uh(Ω), let ϑ̃p : Rd → R denote the value of the perturbed super-hedging primal
problem

(5.1) ϑ̃p(u) := inf
{
λ+ 〈C+ u,w〉 : (w, λ,Θ) ∈ F p

}
,

where F p is the feasible set defined in (4.6). The explicit dependence on the payoff Φ in the notations
is dropped for simplicity, since our aim here is to focus more on the perturbation u of the initial input,
rather than on the final payoff. The value function ϑ̃p is convex and ϑ̃p(0) coincides with the value of the
unperturbed primal problem (4.5). Defining the Lagrangian function

(5.2) LΘ
λ (w, µ) := λ+ 〈C,w〉 −

〈
AΘ

λ (w)− Φ, µ
〉
,

we can then write, by definition of F p,

(5.3) sup
µ∈(Mh)+(Ω)

{
LΘ
λ (w, µ) + 〈u,w〉

}
=

{
λ+ 〈C+ u,w〉 , if (w, λ,Θ) ∈ F p,

+∞, otherwise,
which yields the equivalent formulation of the primal problem:

(5.4) inf
(w,λ,Θ)∈Rd+1×H̃

sup
µ∈(Mh)+(Ω)

{LΘ
λ (w, µ) + 〈u,w〉}.

On the other hand if the infimum is taken over (w, λ,Θ) ∈ Rd+1 × H̃ first, we obtain

inf
(w,λ,Θ)∈Rd+1×H̃

{
LΘ
λ (w, µ) + 〈u,w〉

}
= inf

(w,λ,Θ)∈Rd+1×H̃

{
〈Φ, µ〉+ λ+ 〈C+ u,w〉 −

〈
AΘ

λ (w), µ
〉}
.

The expression on the right is not equal to −∞ if λ+〈C+ u,w〉 =
〈
AΘ

λ (w), µ
〉

for all (w, λ,Θ) ∈ Rd+1×H̃.
Expanding the right-hand side according to Definition (4.4) and comparing the terms on the left and the
right of the equality we see that it holds if

〈λ, µ〉 = λ, 〈(Θ • S)T , µ〉 = 0 and 〈Cw, µ〉 = 〈C+ u,w〉 .

In particular the last equality can be re-written as

0 = 〈Cw, µ〉 − 〈C+ u,w〉 = 〈w,C∗µ〉 − 〈C+ u,w〉 = 〈C∗µ− C− u,w〉 ,

where C∗µ defines the adjoint map of C : w 7→ Cw ∈ Ch(Ω). Since the inner product on the right-hand
side is null for all w ∈ Rd, then C∗µ = C+ u. The perturbed dual problem thus reads

(5.5) ϑ̃d(u) := sup {〈Φ, µ〉 : µ ∈ Mu} ,

where Mu is the feasible set of all non-negative Borel measures that integrate h to a finite constant

(5.6) Mu := {µ ∈ (Mh)+(Ω) : 〈(Θ • S)T , µ〉 = 0, C∗µ = C+ u}

satisfying the martingale condition for all Θ ∈ H̃ and which are consistent with the perturbed Call prices.
The value ϑ̃d(0) corresponds to that of the unperturbed dual problem (4.7).

We now show that weak arbitrage prevents duality gap:

Theorem 5.1. Suppose that for some perturbation u ∈ Rd, the prices u + C satisfy Assumption 4.1.
Then there is no duality gap between (5.1) and (5.5).

Proof. Our proof relies on (Bonnans and Shapiro, 2000, Theorem 5.99), which characterises absence of
duality gap as a condition on the range of the adjoint map C∗, defined as the moment cone

(5.7) M :=
{
u ∈ Rd : there exists µ ∈ (Mh)+(Ω), u = C∗µ− C, 〈(Θ • S)T , µ〉 = 0 for all Θ ∈ H̃

}
.

If u ∈ int M, then there is no duality gap between the primal (5.1) and the dual (5.5) super-hedging
problems. Absence of weak arbitrage is equivalent (Davis and Hobson, 2007, Theorem 4.2) to the existence
of a model µ ∈ Mu for prices C+ u. Moreover following (Davis et al., 2014, Proof of Proposition 3.1), in
order to show u ∈ int M, it is sufficient to note that for any entry c(Kt

i , t) + uti of the vector C+ u, the
inequalities (1−Kt

i )+ < c(Kt
i , t)+u

t
i < 1 hold for all i = 1, . . . , κ(t) and t ∈ T as perturbed prices satisfy
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Assumption 4.1. As µ 7→ C∗µ is a continuous function on Ph(Ω) by (Beiglböck et al., 2013, Lemma 2.2)
one can also find a real positive constant ε > 0 such that any vector v in the open ball Bε(C+u) centred
around C+ u satisfies Assumption 4.1, and therefore u ∈ int M and the theorem follows. �

The condition on the moment cone in the proof goes back to (Karlin and Studden, 1966, Chapter XII,
Theorem 2.1) in the context of generalised Tchebycheff inequalities, and can also be found in (Anderson
and Nash, 1987, Theorem 4.4). A similar result was used in Davis et al. (2014) to prove absence of duality
gap under absence of weak arbitrage opportunities. Having established absence of duality gap between
the primal (5.1) and the dual (5.5), we now discuss sensitivity of the programmes to the perturbation.
In particular, the dual is continuous at u; moreover if the primal is finite at u we have the following:

Proposition 5.2. Assume there is no duality gap between the primal and the dual problems for some
u ∈ Rd. If the value of the primal at u is finite, then the dual is Hadamard directionally differentiable
at u, and the derivative in any direction h ∈ Rd reads

(ϑ̃d)
′(u, h) = inf

{
〈w, h〉 : w ∈ S̃u

}
and (ϑ˜d)′(u, h) = sup

{
〈w, h〉 : w ∈ S˜ u

}
,

where S̃u,S˜ u ⊂ Rd+1 × H̃ denote the set of optimal solutions of the primal problem at u in the super-
and sub-hedging problems.

Proof. We only prove the super-hedging case, as the sub-hedging one is analogous. By a change of
variables µ 7→ −µ we turn the dual problem into the minimisation problem

(5.8) ϖ(u) := inf {〈Φ, µ〉 : −µ ∈ Mu} ,

and of course ϖ(u) = −ϑ̃d(u). Let us now calculate the convex conjugate of ϖ at u∗ ∈ Rd

ϖ∗(u∗) = sup
u∈Rd

{〈u, u∗〉 −ϖ(u)} = sup
µ∈(Mh)+(Ω)

sup
u∈Rd

{〈u, u∗〉 − 〈Φ, µ〉 − χMu
(−µ)}

= sup
µ∈(Mh)+(Ω)

sup
u∈Rd

{〈u, u∗〉 − 〈Φ, µ〉 − 〈u + C+C∗µ, u∗〉+ 〈u + C+C∗µ, u∗〉

+ 〈(Θ • S)T , µ〉 − 〈(Θ • S)T , µ〉+ 〈λ, µ〉 − λ− 〈λ, µ〉+ λ− χMu(−µ)}

= sup
µ∈(Mh)+(Ω)

{LΘ
λ (−u∗,−µ) + sup

u∈Rd

{〈u + C− C∗(−µ), u∗〉 − λ+ 〈λ+ (Θ • S)T ,−µ〉 − χMu
(−µ)}},

where L is the Lagrangian from (5.2), χ the indicator function, and we also used (4.4). Hence the convex
conjugate reads ϖ∗(u∗) = sup

{
LΘ
λ (−u∗,−µ) : −µ ∈ Mu

}
, and

ϖ∗∗(u) = sup
u∗∈Rd

{〈u, u∗〉 −ϖ∗(u∗)} = sup
u∗∈Rd

inf
−µ∈Mu

{
〈u, u∗〉 − LΘ

λ (−u∗,−µ)
}

= − inf
u∗∈Rd

sup
µ∈Mu

{
〈u,−u∗〉+ LΘ

λ (−u∗, µ)
}
= − inf

u∗∈Rd
sup
µ∈Mu

{
〈u, u∗〉+ LΘ

λ (u
∗, µ)

}
= −ϑP(u).

The Young-Fenchel inequality implies thatϖ ≥ ϖ∗∗, and we recover weak duality between the primal (5.1)
and the dual (5.5) problems: ϑ̃p(u) ≥ ϑ̃d(u).

By assumption there is no duality gap (ϑ̃d(u) = ϑ̃p(u)), hence ϖ(u) = ϖ∗∗(u) and ϖ is lower semi-
continuous by Fenchel-Moreau Theorem (Rockafellar, 1970, Section 31). Since u ∈ int M, then ϖ is
continuous at u by (Zălinescu, 2002, Theorem 2.2.9). By Proposition A.8(i) the sub-differential ∂ϖ(u) is
non-empty and by Proposition A.8(iii), ϖ is Hadamard directionally differentiable at u in any direction
h ∈ Rd, such that

ϖ′(u, h) = sup
u∗∈∂ϖ(u)

〈u∗, h〉 .

Young-Fenchel inequality (Rockafellar, 1970, Section 12) then yields ϖ(u) = 〈u, u∗〉−ϖ∗(u∗) if and only
if u∗ ∈ ∂ϖ(u) and hence it follows that ϖ∗∗(u) = ϖ(u). The primal problem (5.1) can be expressed as
−ϖ∗∗(u) by the discussion above and it is finite by assumption. Hence ∂ϖ(u) = −Su (the set of optimal
solutions of the primal problem (5.1) at u), and

ϖ′(u, h) = sup
u∗∈−Su

〈u∗, h〉 = − inf
u∗∈Su

〈u∗, h〉 .
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The proposition then follows since ϖ(u) = −ϑ̃d(u) and

(ϑ̃d)
′(u, h) = lim

ε↓0

ϑ̃d(u + εh)− ϑ̃d(u)

ε
= lim

t↓0

−ϖ(u + εh) +ϖ(u)

ε
= −ϖ′(u, h).

�

If the perturbation u is itself parametrised by a vector p ∈ Rn for some n < ∞ and it is continuously
differentiable with respect to this parameter then we have the following application of the Chain Rule A.7.

Corollary 5.3. With the same assumptions as in Proposition 5.2, if u := u(p) is continuously differen-
tiable with respect some parameter p ∈ Rn, then the equalities

(ϑ̃d ◦ u)′(p, h) = inf
{
〈u∗,∇u(p)h〉 : u∗ ∈ S̃u

}
and (ϑ˜d ◦ u)′(p, h) = sup

{
〈u∗,∇u(p)h〉 : u∗ ∈ S˜ u

}
hold, where ∇u(p) is the Jacobian matrix evaluated at p.

Proof. As u is continuously differentiable it is Fréchet differentiable and (u)′(p, h) = ∇u(p)h. Since ϑ̃d is
Hadamard differentiable at u by Proposition 5.2, the Chain Rule A.7 concludes the proof. �

If the super-hedging primal problem (5.1) admits unique solutions at ũ0 ∈ Rd and u˜0 ∈ Rd, then
S̃u0

= {ũ∗} and S˜ u0
= {u˜∗} are singletons and the derivatives in Proposition 5.2 and Corollary 5.3 are

linear in h. Thus, as in (Goberna and López, 2014, Section 4.1) there exist neighbourhoods Bũ0
,Bu˜0 ⊂ Rd

of ũ0 and u˜0 such that for all u ∈ Bũ0
and all v ∈ Bu˜0 the values of the perturbed dual problems can be

approximated as

ϑ̃d(u) = ϑ̃d(ũ0) + 〈ũ∗, u− ũ0〉+ o(u− ũ0) and ϑ˜d(v) = ϑ˜d(u˜0) + 〈u˜∗, v − u˜0〉+ o(v − u˜0)
This approximation can be naturally extended to the case where the perturbation is itself parametrised.
In particular for all p in the neighbourhood of p0, the approximation of the perturbed dual problem (5.5)

(5.9)
{

ϑ̃d ◦ ũ(p) = ϑ̃d ◦ ũ(p0) + 〈ũ∗,∇ũ(p0)(p− p0)〉+ o(p− p0),

ϑ˜d ◦ u˜(p) = ϑ˜d ◦ u˜(p0) + 〈u˜∗,∇u˜(p0)(p− p0)〉+ o(p− p0).

6. Application to Forward-Start Straddle

We perform a sensitivity analysis of the optimal values of robust hedging for Forward-Start Straddle
with payoff |St2 − KSt1 | for 0 < t1 < t2 and various strikes K > 0, with respect to extrapolation of the
total implied variance at t1 and t2. We assume that the primal perturbed problem (5.1) admits a unique
solution, and consider as inputs Calls maturing at t1 with strikes Kt1

1 , . . . ,K
t1
κ(t1)

, and Calls maturing
at t2 with strikes Kt2

1 , . . . ,K
t2
κ(t2)

, with κ(t1), κ(t2) both finite. The vector of normalised Calls then reads

(6.1) C =
(
c(Kt1

1 , t1), . . . , c(K
t1
κ(t1)

, t1), c(K
t2
1 , t2), . . . , c(K

t2
κ(t2)

, t2)
)
.

We parametrise the total implied variance surface w by a vector of parameters p ∈ Rl such that that the
resulting surface is arbitrage free and grows at most linearly in the wings, and we denote it by w(·, ·; p).

Assumption 6.1. The parametrisation w(·, ·; p) is continuously differentiable with respect to p.

We can then calculate the resulting total implied volatility Iti (p) :=
√
w(kti , t; p), where k = log(K),

and define the vector of perturbed prices as

C(p) := C+ u(p) :=
(
ct11 (p), . . . , ct1κ(t1)(p), c

t2
1 (p), . . . , ct2κ(t2)(p)

)
,

where for simplicity cti(p) := cBS(k
t
i , I

t
i (p)) for t ∈ {t1, t2}, i = 1, . . . , κ(t). We can compute sensitivities

of perturbed prices with respect to p.

Lemma 6.2. For any t ∈ {t1, t2}, i = 1, . . . , κ(t), j = 1, . . . , l, V t
i (·) denoting the Black-Scholes Vega,

(6.2) ∂cti(p)

∂pj
=

V t
i (p)

2Iti (p)
√
t

∂w(kti , t; p)

∂pj
.
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Proof. A simple application of the chain rule together with Assumption 6.1 yields, for t ∈ {t1, t2},

∂cti(p)

∂pj
= V t

i (p)
∂Iti (p)

∂pj
= V t

i (p)
∂w(kti , t; p)

∂pj

dIti (p)

dw(kti , t; p)
=

V t
i (p)

2Iti (p)
√
t

∂w(kti , t; p)

∂pj
.

�

The Jacobian matrix of the perturbed Call prices then reads

∇C(p) :=



∂p1
ct11 (p) . . . ∂pl

ct11 (p)
... . . . ...

∂p1
ct1κ(t1)(p) . . . ∂pl

ct1κ(t1)(p)

∂p1
ct21 (p) . . . ∂pl

ct21 (p)
...

...
...

∂p1c
t2
κ(t2)

(p) . . . ∂pl
ct2κ(t2)(p)


∈ Mκ(t1)+κ(t2),l(R),

where Mκ(t1)+κ(t2),l(R) is the space of matrices of size (κ(t1) + κ(t2)) × l with real entries. For the
numerics, we consider t1 = 1 year and t2 = 1.5 years; the set of trading strategies is discretised using a
monomial basis of degree at most 4 and there are 18 options available for each maturity for static hedging
with moneyness in {0.3, 0.4, 0.5, . . . , 2.0}. However we assume that only a subset of those options has
quotable market prices and the rest are priced by extrapolating the total implied variance. The state
space is taken to be [0, 5]× [0, 5] with 500 discretisation points for both maturities.

6.1. Application to the Black-Scholes model. If only prices of at-the-money Call options are ob-
servable for each maturity, it is not unreasonable to fit the Black-Scholes model dSt = ΣStdWt (S0 = 1).
The only parameter that needs calibration is Σ, and we let Σ = 20%. The resulting total implied variance
function w : R × T → R+ is constant in log-moneyness for each maturity and w(·, t) = Σ2t for t ∈ T .
Assume now that the actual shape of the total implied variance for each t ∈ T is

(6.3) w(k, t; p) = pt|k|+Σ2t,

where pt ∈ R is the symmetric slope on both sides of the smile, so that p = (pt1 , pt2) ∈ R2. For each
t ∈ T , the function g in (3.7) must be non-negative on (k∗t ,∞), which, by Lemma 3.5, is equivalent to
pt ∈ [0, 2] and the existence of a k∗t ∈ R+ as in the lemma. As we propose extrapolation of the total
implied variance to the right on (0,∞) and to the left on (−∞, 0), then k∗t = 0 (as g(0) = Σ2t > 0),
which places further restrictions on pt. In particular if Σ2t ≥ 2 −

√
2− p2t then g(k) ≥ 0 for all k > 0

by Lemma 3.5. This inequality places an upper bound on pt for each t ∈ T such that any extrapolation
with slope satisfying this bound is free of arbitrage. If Σ2t < 2−

√
2− p2t then

(6.4) g(k) > 0, for all k >
p2t (Σ

2t+ 2)− 8Σ2t+ 2pt
√
Σ4t2 − 4Σ2t+ p2t

pt(4− p2t )
.

It follows that the proposed extrapolation (6.3) is arbitrage free if the expression on the right-hand side
is equal to zero. The resulting quartic equation in pt does not have real roots for either t ∈ T when
Σ = 0.2 and T = {1, 1.5}. Hence the only viable values for pt are between 0 and

√
4− (2− Σ2t)2 for

each t ∈ T (where the upper bound is obtained by solving the quadratic equation Σ2t = 2−
√
2− p2t ).

Assumption 6.3. Both slopes are equal: pt1 = pt2 = a.

This assumption could be relaxed, but at the cost of checking absence of calendar spread arbitrage
∂tw(k, t) ≥ 0 (Gatheral and Jacquier, 2014, Lemma 2.1). Therefore a potential choice for the slopes
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would be to increase the value of the slope for each wing as maturity increases. The Jacobian now reads

∇C(p) =



∂pt1
ct11 (p)) 0
...

...
∂pt1

ct1κ(t1)(p) 0

0 ∂pt2
ct21 (p))

...
...

0 ∂pt2
ct2κ(t2)(p)


,

and by Lemma 6.2 and (6.3), we obtain, for each t ∈ T , i = 1, . . . , κ(t), ∂c
t
i(p))

∂pt
=

V t
i (p)|kti |

2Iti (p)
√
t
. Below

we present numerical results for the super- and sub-hedging primal programmes for the at-the-money
Forward-Start Straddle K = 1. Tables 1 and 2 summarise the results of the perturbation analysis for the
super- and sub-hedging problems introduced above. The column ‘Perturbation’ contains the values of
the slopes of extrapolation of the total implied variance. As expected the optimal values of the perturbed
problems converge to the optimal value of the unperturbed problem in the first row. The column ‘Est.
Value’ contains the first-order expansion (5.9), and the last column is the absolute difference between
the optimal value of the perturbed problem obtained by solving (5.1) and the value of the programme
estimated via (5.9). The estimation becomes increasingly better the smaller the perturbation becomes.
It confirms that the perturbation results presented in Section 5.1 are local in nature.

Perturbation Optimal Value Est. Value Abs. Diff.
0 0.149 0.149 0

5E-05 0.149 0.149 2.98E-10
1E-04 0.1490 0.149 1.19E-08
5E-03 0.1496 0.1496 1.57E-06
0.0476 0.1544 0.1552 7.75E-04
0.202 0.1563 0.1753 1.9E-02

Table 1. Perturbation of the super-hedging primal problem for the ATM Forward-Start
Straddle in the Black-Scholes case.

Perturbation Optimal Value Est. Value Abs. Diff.
0 0.0385 0.0385 0

5E-05 0.0385 0.0385 2.88E-07
1E-04 0.0385 0.0385 3.42E-07
5E-03 0.0383 0.0383 1.16E-05
0.0476 0.0365 0.0359 6.1E-04
0.202 0.0357 0.0272 8.53E-03

Table 2. Perturbation of the sub-hedging primal problem for the ATM Forward-Start
Straddle in the Black-Scholes case.

6.2. Application to the Heston model. Assume now that for each maturity, only Call options with
moneyness in K := {0.8, 0.9, . . . , 1.2} are traded, and that observed prices are consistent with the Heston
stochastic volatility model Heston (1993), where the stock price process is the unique strong solution to

(6.5) dSt = St

√
VtdWt, S0 = 1,

dVt = κ (θ − Vt) dt+ ξ
√
VtdZt, V0 = v > 0,

where W and Z are two one-dimensional standard Brownian motions with d〈W,Z〉t = ρdt, κ, θ, ξ > 0

and ρ ∈ [−1, 1]. We consider here (κ, θ, ξ, v, ρ) = (1, 0.07, 0.4, 0.07,−0.8). In principle calibrating Heston
provides an extrapolation of the total implied variance, however there is no closed-form expression, and



18 SERGEY BADIKOV, MARK H.A. DAVIS, AND ANTOINE JACQUIER

thus we make a simplifying assumption on the extrapolation of the implied variance beyond observable
strikes. We assume that the total implied variance is extrapolated linearly to the left and to the right
of the last observed strike for each maturity t ∈ T . Let L := min{i = 1, . . . , 18 : KL = minK} and
R := max{i = 1, . . . , 18 : KR = maxKmarket} denote the smallest and largest indices at which the options
are quoted. Then for a vector p := (qt1 , pt1 , qt2 , pt2), the wing extrapolations read, for t ∈ T ,

(6.6) w(k, t; p) =

{
ψ(qt)|k − kL|+ w(kL, t), for k ≤ kL,

ψ(pt)|k − kR|+ w(kR, t), for k ≥ kR,

where ψ(z) := 2− 4(
√
z(z + 1)− z) as introduced Lee (2004) and discussed above. The Jacobian reads

∇C(p) =



c′1(p) OL−1 OL−1 OL−1
− − − −

Oκ(t1)−R c′2(p) Oκ(t1)−R Oκ(t1)−R
OL−1 OL−1 c′3(p) OL−1
− − − −

Oκ(t2)−R Oκ(t2)−R Oκ(t2)−R c′4(p)


,

where the dashed lines are null matrices of size (R−L+1, 4) and correspond to the initial (unperturbed)
inputs, the O are null column vectors with size in subscript, and the c′(p) are column vectors of derivatives:

c′1(p) := (∂qt1 c
t1
i (p))i=1,...,L−1 and c′3(p) := (∂qt2 c

t2
i (p))i=1,...,L−1,

c′2(p) := (∂pt1
ct1i (p))i=R+1,...,κ(t1) and c′4(p) := (∂pt2

ct2i (p))i=R+1,...,κ(t2).

Note that rows of zeros correspond to sensitivities of the traded Call option prices, which naturally do
not depend on the extrapolation of the wings.

Lemma 6.4. For w(k, t; p) in (6.6) for each t ∈ T , k ∈ R, the following holds for i = 1, . . . , 4:

∂w(k, t; p)

∂pi
= −

∣∣k − 11{i=1,3}(i)kL − 11{i=2,4}(i)kR
∣∣ψ(pi)√

pi(1 + pi)
.

Proof. The chain rule yields
∂w(k, t; p)

∂pi
=
∣∣k − 11{i=1,3}(i)kL − 11{i=2,4}(i)kR

∣∣ ∂ψ(pi)
∂pi

,

and
∂ψ(pi)

∂pi
=

∂

∂pi

[
2− 4

(√
pi(1 + pi)− pi

)]
=

4
(√

pi(1 + pi)− pi

)
− 2√

pi(1 + pi)
= − ψ(pi)√

pi(1 + pi)
.

�

Then by Lemmas 6.2 and 6.4 we have, for all j = 1, . . . 4, i = 1, . . . , κ(t) and t ∈ T ,

∂cti(p))

∂pj
= −

V t
i (p)

∣∣k − 11{j=1,3}(i)kL − 11{j=2,4}(i)kR
∣∣ψ(pj)

2Iti (p)
√
pj(1 + pj)t

.

As discussed in (Benaim and Friz, 2008, Section 6.3), the slope of the total implied variance for a fixed t
as k tends to infinity is equal to ψ(p∗) where p∗ is a root of a non-linear equation

(6.7) (κ− ρξp∗)2 +
(
ξ2p∗(p∗ − 1)− (κ− ρξp∗)2

)1/2
cot

(√
ξ2p∗(p∗ − 1)− (κ− ρξp∗)2t

2

)
= 0.

We can use the above equation to calculate the slope of the left wing of a slice of the total implied variance
as k ↓ −∞. The symmetric process 1/S follows the same SDE (6.5) with amended parameters: with
X := log(S) and Y = −X, Itô’s lemma implies dXt = − 1

2Vtdt +
√
VtdWt and dYt =

1
2Vtdt +

√
VtdBt,

where dBt :=
√
Vtdt − dWt is a Brownian motion with drift. Also note that Z = ρW +

√
1− ρ2W 1,

where W and W 1 are independent. Therefore

dZt = ρ
(√

Vtdt− dBt

)
+
√

1− ρ2W 1
t = ρ

√
Vtdt+ dW 2

t ,
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where W 2
t := −ρBt+

√
1− ρ2W 1

t and the instantaneous variance V satisfies dVt = κ̃(θ̃−Vt)dt+ξ
√
VtdW

2
t ,

with κ̃ := κ − ρξ and θ̃ := κθ/(κ − ρξ). Thus the inverse of S follows (6.5) with parameters κ̃, θ̃, ξ > 0

and ρ̃ := −ρ ∈ [−1, 1] only if κ > ρξ, which is automatically satisfied as ρ < 0 in our case. As the higher
moments of 1/S are the negative moments of S, the parameter q∗ of the slope ψ(q∗) of the left wing can
be calculated as a solution of the non-linear equation (6.7) with parameters κ̃ and ρ̃ substituted instead
of κ and ρ. Thus we can calculate the vector p using (6.7) and the discussion above.

Table 3 presents the sets of slopes used to extrapolate the total implied variance for both maturities.
The perturbation sets are numbered for ease of reference and Set 1 corresponds to the unperturbed case.
The parameters in this set are calculated by solving (6.7). As discussed in the Black-Scholes case in
Section 6.1, other perturbation sets were chosen so that the slices of the total implied variance do not
cross. Tables 4 and 5 show the perturbation analysis for the super- and sub-hedging problems respectively.
As in the Black-Scholes case in Section 6.1 the results are in line with expectations, as the approximation
becomes less accurate as the perturbation parameters deviate from the unperturbed case (presented in
the first row of each Table). It also confirms that the perturbation results obtained in Section 5.1 are
local in nature. It must be noted that the results in Black-Scholes and Heston imply that the at-the-
money Forward-Start Straddle is not very sensitive to errors in extrapolation of the spot total implied
variance. In particular, even if the extrapolation is very inaccurate, the price of Forward-Start options
close to at-the-money will not vary significantly. These confirm the results obtained in Badikov et al.
(2017) in the sense that European options cannot effectively hedge forward volatility claims, and instead
Forward-Start options should be viewed as input (when traded liquidly) into the calibration of forward
volatility-dependent exotics.

Perturbation Set 1 2 3 4 5 6
qt1 5.058 5.06 5.2 6 10 12
pt1 24.21 24.22 24.35 25.1 35 37

ψ(qt1) 0.0901 0.09011 0.0879 0.077 0.0476 0.04
ψ(pt1) 0.0202 0.02022 0.0201 0.0195 0.0141 0.0133
qt2 6.83 6.84 6.9 7.1 10 12
pt2 30.714 30.72 30.73 31.1 35 37

ψ(qt2) 0.0683 0.0682 0.0676 0.0659 0.0476 0.04
ψ(pt2) 0.016 0.01601 0.016 0.0158 0.0141 0.0133

Table 3. Perturbation parameters and corresponding total implied variance slopes.
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Perturbation set Optimal Value Est. Value Abs. Diff.
1 0.1616 0.1616 0
2 0.1616 0.1616 2.77E-08
3 0.1617 0.1617 5.16E-06
4 0.1624 0.1627 2.38E-04
5 0.1627 0.1654 2.65E-03
6 0.1625 0.1662 3.69E-03

Table 4. Perturbation of the super-hedging primal problem for the ATM Forward-Start
Straddle in Heston.

Perturbation set Optimal Value Est. Value Abs. Diff.
1 0.04455 0.04455 0
2 0.04455 0.04455 6.78E-09
3 0.04452 0.04451 4.83E-06
4 0.04437 0.04427 1.06E-04
5 0.04432 0.04353 7.90E-04
6 0.04436 0.04329 1.07E-03

Table 5. Perturbation of the sub-hedging primal problem for the ATM Forward-Start
Straddle in Heston.

Appendix A. Cones and directional derivatives

Let X be a normed topological vector space, and X ∗ its topological dual space. We first recall several
facts about Riesz spaces and convex cones in vector spaces, taking Aliprantis and Border (2007) as our
main guide.

Definition A.1. (Aliprantis and Border, 2007, Section 8.1) A positive convex cone X+ ⊂ X is closed
under operations of addition and multiplication by a non-negative real-valued scalar together with the
property X+ ∩ (−X+) = {0}. A strictly positive cone X++ is defined as X++ := X+ \ {0}.

For every application in this paper, X is endowed with a partial order induced by a positive convex
cone X+ ∈ X , i.e. for any two elements x1, x2 ∈ X we have x1 ≥ x2 if and only if x1 − x2 ∈ X+. If for
any two elements x1, x2 ∈ X their minimum x1 ∧ x2 and maximum x1 ∨ x2 also belong to X then it is a
Riesz space (Aliprantis and Border, 2007, Section 8.2). In a Riesz space X , order unit elements play a
special role:

Definition A.2. (Aliprantis and Border, 2007, Section 8.7) An element u ∈ X++ is called an order unit
if for all x ∈ X there exists λ > 0 such that −λu ≤ x ≤ λu.

If the Riesz space X is norm-complete then it becomes a Banach lattice, an important subset of locally
convex topological Riesz spaces.

Definition A.3. (Bichteler, 1998, Section IV.3, Definition 3.2) If a Riesz space X is endowed with a
norm ‖ · ‖X that makes it complete then it is called a Banach lattice.

As X admits a topological dual X ∗ we can define dual sets to the positive convex cone X+.

Definition A.4. The negative polar X∗+ := {x∗ ∈ X ∗ : 〈x, x∗〉 ≥ 0 for all x ∈ X+} is the dual of X+.

We now recall some useful notions on directional derivatives for convex functions needed for the
perturbation analysis in Section 5. Let g : X → R an extended real-valued function.

Definition A.5. (Bonnans and Shapiro, 2000, Definition 2.45) The mapping g is directionally differen-
tiable at x ∈ X in the Hadamard sense if the directional derivative g′(x, h) exists for all h ∈ X and the
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equality

g′(x, h) = lim
n↑∞

g(x+ εnhn)− g(x)

εn
holds for any sequences (hn)n∈N ∈ X converging to h and (εn)n∈N ∈ R converging to zero. In addition if
g′(x, ·) is linear in h then it is said to be Hadamard differentiable at x.

If g is Hadamard differentiable at x ∈ X then g′(x, ·) is continuous on X (Bonnans and Shapiro,
2000, Proposition 2.46). Hadamard differentiability though, is a more restrictive notion of directional
differentiability, as opposed, for example, to Fréchet differentiability (Andrews and Hopper, 2011, Defi-
nition A.1). Nonetheless the following holds:

Proposition A.6. (Bonnans and Shapiro, 2000, Proposition 2.49) If g is directionally differentiable at x
and Lipschitz continuous (with constant L) in a neighbourhood of x, then it is directionally differentiable
at x in the Hadamard sense and the directional derivative g′(x, ·) is Lipschitz continuous (with same
constant L) on X .

If X is a finite dimensional, then the situation simplifies considerably. If g is also locally Lipschitz
continuous at x ∈ X then the Hadamard and the Fréchet derivatives are equivalent. In particular all
proper convex functions are locally Lipschitz ((Bonnans and Shapiro, 2000, Proposition 2.107)) and if the
underlying space is finite-dimensional then they are continuous on the relative interior of their effective
domains (Aliprantis and Border, 2007, Theorem 7.24). We now state some technical results needed in
the paper.

Proposition A.7. (Chain rule (Bonnans and Shapiro, 2000, Proposition 2.47)) If g : X → Y is
directionally differentiable at x and f : Y → Z is Hadamard differentiable at y = g(x), then f ◦ g is
directionally differentiable at x and (f ◦ g)′(x, h) = f ′(y, g′(x, h)). Moreover if g (resp. f) is Fréchet
differentiable at x (resp. y), then f ◦ g is Fréchet differentiable at x.

Proposition A.8. (Bonnans and Shapiro, 2000, Proposition 2.126 (iv-v)) If X is a Banach space
endowed with the norm topology and g : X → R is convex and continuous at x ∈ X , then
(i) g is sub-differentiable at x;
(ii) ∂g(x) is a non-empty, convex and weak* compact subset of X ∗;
(iii) g is Hadamard directionally differentiable at x and, for any h ∈ X , g′(x, h) = supx∗∈∂g(x) 〈x∗, h〉.

Of course, if ∂g(x) = {a}, then g′(x, h) = 〈a, h〉 and g is Hadamard differentiable at x. Similar results
are proved in (Rockafellar, 1970, Theorem 23.4) when X is a finite-dimensional vector space.

Appendix B. Proofs

B.1. Proof of Theorem 2.8. Suppose there exists a strictly positive linear functional π : Ch(Ω) → R
that extends ρ. As Ch(Ω) is a Banach lattice, then π is continuous by (Aliprantis and Tourky, 2007,
Theorem 1.36). It is also evident that it implies absence of weak free lunch. Conversely, assume that there
is no weak free lunch. It then follows that m0 /∈ F− (Ch)+(Ω) by Assumption 2.3. As {m0} is compact and
F− (Ch)+(Ω) is closed in the weak topology, the Strong Separating Hyperplane Theorem (Aliprantis and
Border, 2007, Theorem 5.79) implies that there exists a non-zero continuous linear functional π : Ch(Ω) →
R such that π(m0) > 0 and π(f−g) ≤ 0 for all f ∈ F and g ∈ (Ch)+(Ω). As 0 ∈ F it follows that π(−g) ≤ 0

for all g ∈ (Ch)+(Ω) and hence π is positive. Moreover π(g) > 0 for all g ∈ (Ch)++(Ω). Otherwise there
exists g ∈ (Ch)++(Ω) such that π(g) = 0, i.e. g ∈ F and hence g ∈ F− (Ch)+(Ω) ∩ (Ch)+(Ω) which
contradicts the absence of weak free lunch. Similarly as 0 ∈ (Ch)+(Ω) one has π(f) ≤ 0 for all f ∈ F.
Therefore there exists ξ ∈ R such that ξπ(m) = ρ(m) for all m ∈ M. As ξπ(m0) = ρ(m0) > 0 implies
that ξ > 0 and without loss of generality one can take ξ = 1. Thus we have shown existence of a strictly
positive continuous and linear functional π : Ch(Ω) → R that extends ρ.

Let us define a map T : Ch(Ω) → Cb(Ω) such that T (f) := f/h and note that it is an isometry.
Define a functional π̃ : Cb(Ω) → R by π̃(f) := Cπ(T−1(f)) for all f ∈ Cb(Ω), where C is a positive real
constant. Note that π̃ is continuous, linear and strictly positive by definition. The space Cb(Ω) can be
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identified with C̆(Ω), the space of continuous functions on Ω̆ which is the the Stone-Čech compactification
of Ω. As the dual of C(Ω̆) can be identified with the space of regular signed Borel measures of bounded
variation (Aliprantis and Border, 2007, Theorem 14.12), the following representation holds:

π̃ ◦ T (f) =
∫
Ω̆

T̆ (f)(ω)ν(dω),

where T̆ is the unique extension of T (f) ∈ Cb(Ω). Note that since Cb(Ω) is locally compact, we could
avoid Stone-Čech compactification arguments, using (Bogachev, 2007b, Theorem 7.11.3). Since our setup
was inspired by Acciaio et al. (2016), we instead followed their steps to prove our statement. Observe
that ν is positive as 0 < Cπ(f) = π̃ ◦ T (f) =

∫
Ω̆
T̆ (f)(ω)ν(dω) for all f ∈ (Ch)++(Ω). Let ν = νr + νs

where νr is a measure with support in Ω and νs is a measure with support in Ω̆ \Ω. For each i ∈ I, the
extension T̆ (φi) is continuous and hence by Assumption 2.1(3) we have that T̆ (φi)(ω) = 0 for all Ω̆ \ Ω.
Therefore we have

π̃ ◦ T (φi) =

∫
Ω̆

T̆ (φi)(ω)ν(dω) =

∫
Ω̆

T̆ (φi)(ω)ν
r(dω) +

∫
Ω̆\Ω

T̆ (φi)(ω)ν
s(dω) =

∫
Ω

T (φi)(ω)ν
r(dω),

for all i ∈ I. The last equality follows from the fact that the extension T̆ (f) coincides with T (f) on Ω

for all f ∈ Ch(Ω). Note also that νr 6= 0 otherwise one would have

0 < Cπ(m0) = π̃ ◦ T (m0) =

∫
Ω̆

T̆ (m0)(ω)ν
r(dω) +

∫
Ω̆\Ω

T̆ (m0)(ω)(ω)ν
s(dω) = 0,

where the last equality follows from the fact that m0 ∈ o(h) and we arrive at a contradiction. We
can then define a probability measure on Ω as η := νr/‖νr‖ and π̃ ◦ T (f) =

∫
Ω
f(ω)η(dω), for all

f ∈ Cb(Ω). Moreover defining the probability measure µ via dµ
dη := 1

h

(∫
Ω

1
h(ω)η(dω)

)−1
and setting

C :=
∫
Ω

1
h(ω)η(dω), we see that µ ∈ Ph(Ω) and π(g) = 〈g, µ〉, for any g ∈ Ch(Ω).

B.2. Proof of Theorem 2.10. We first prove the super-hedging case, and specialise to the case where
Φ ∈ Ch(Ω). Absence of weak free lunch and Assumption 2.1 imply the existence of a Borel probability
measure π0 ∈ Ph(Ω) that extends ρ. It is clear that ϑp(Φ) ≤ ϑp(Φ). If Φ ∈ M then ϑp(Φ) = ϑp(Φ) and
hence there is no duality gap between the primal (2.7) and the dual (2.8) programmes. Assume Φ /∈ M

and fix some α ∈ (π0(Φ), ϑp(Φ)). Let L := Span {M,Φ} ⊂ Ch(Ω), so that any l ∈ L can be represented as
l = m+λΦ for some m ∈ M and λ ∈ R. Define a functional η : L→ R as η(l) = η(m+λΦ) := ρ(m)+λα.
It is linear and we now show that it is strictly positive on L++ := L∩ (Ch)++(Ω). Let z = m+λΦ ∈ L++

where m ∈ M and λ ∈ R and consider three cases. If λ = 0, then η(z) = ρ(m) > 0. If λ < 0, then m >

−λΦ and ρ(m/(−λ)) ≥ ϑp(Φ) > α by assumption. Then η(z) = ρ(m) + λα = −λ((−λ)−1ρ(m)− α) > 0.
Finally if λ > 0, then (−λ)−1ρ(m) < α and η(z) > 0.

Introduce now the set L := {l ∈ L : η(l) ≤ 0}, and note that L ∩ (Ch)+(Ω) = {0} since η is strictly
positive. We now show that m0 /∈ L− (Ch)+(Ω). Assume by contradiction that m0 ∈ L− (Ch)+(Ω).
Then there exists sequences (fn)n∈N ⊂ Ch(Ω) converging to m0 and (gn)n∈N ⊂ L with gn = mn+λnΦ for
(mn)n∈N ⊂ M, (λn)n∈N ⊂ R such that gn ≥ fn for all n ∈ N. Clearly mn+λnΦ−m0 ≥ fn−m0 converges
to zero, and hence lim infn η(mn + λnΦ −m0) ≥ 0 or equivalently lim supn −η(gn) + ρ(m0) ≤ 0. Thus
0 ≥ lim infn η(gn) ≥ ρ(m0) > 0, which is a contradiction. Therefore there exists a non-zero continuous
linear functional π : Ch(Ω) → R such that π(m0) > 0 ≥ π(g − f) for all g ∈ L, f ∈ (Ch)+(Ω) and by a
similar argument to that used in the proof of Theorem 2.8, π extends η, i.e. π(l) = η(l) = ρ(m) + λα

for all l ∈ L. In particular π extends ρ and hence is a feasible solution to the dual programme (2.8) and
π(Φ) = α. Moreover as π is a feasible solution it follows that α ≤ ϑd(Φ). As α ∈ (π0(Φ), ϑp(Φ)) was
chosen arbitrarily it implies that ϑd(Φ) = ϑp(Φ).

Any Φ ∈ Uh(Ω) can be expressed as an infimum over continuous functions (fn)n∈N that dominate it
and, by Assumption 2.9 we can take them such that ϑp(fn) < ∞ for all n ∈ N. As shown above, the
no-duality gap holds for all f ∈ Ch(Ω) with ϑp(f) < ∞, and hence the duality result carries over to the
upper semi-continuous case.
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For the sub-hedging case, if Φ is lower semi-continuous then −Φ is upper semi-continuous and ϑp(Φ) =
−ϑp(−Φ), and the result follows by the Super-Replication Theorem 2.10.

B.3. Proof of Lemma 3.5. Fix a0 ∈ R+ and a1 ∈ [0, 2]. If a1 = 0 then w(k, t) = a0 for all k ∈ R and g

is constant equal to 1. We thus assume a1 ∈ (0, 2]. Since w(·, t) is linear, the function g reads

(B.1) g(k) =

(
1− a1k

2w(k, t)

)2

− a21
4

(
1

w(k, t)
+

1

4

)
=

(
w(k, t) + a0
2w(k, t)

)2

− a21
4

(
4 + w(k, t)

4w(k, t)

)
.

Let us denote x := w(k, t). Then the above expression becomes

(B.2) g

(
x− a0
a1

)
=

1

16x2
(
4x2 + 8a0x+ 4a20 − 4a21x− a21x

2
)
=

(4− a21)x
2 + 4(2a0 − a21)x+ 4a20

16x2
.

If a1 = 2 then the numerator is linear in x. Solving for x yields the root x =
−4a2

0

8(a0−2) . Clearly g is
non-negative for a0 < 2 and substituting k back produces the expression

(B.3) k∗(a0, a1) =
a0(8− 6a0)

8(a0 − 2)
,

which is positive if a0 ∈ (4/3, 2). Consider now the case when a1 ∈ (0, 2). The numerator in the expression
for g above is quadratic in x, and solving for x yields two roots

x± =
−2(2a0 − a21)± 2a1

√
a20 − 4a0 + a21

4− a21
.

As x = a1k + a0 the corresponding values of k are

(B.4) k± =
a1(a0 + 2)− 8a0

a1
± 2
√
a20 − 4a0 + a21

4− a21
,

and both roots are real if and only if a0 ∈ R\(2−
√

4− a21, 2+
√
4− a21) for a1 ∈ (0, 2]. If a0 ≥ 2−

√
4− a21

then substituting the lower bound for a0 into the expression for g above we get

g

(
x− a0
a1

)
≥ (4− a21)x

2 + 4(4− 2
√

4− a21 − a21)x+ 4(4− 4
√
4− a21 + 4− a21)

16x2

=
(4− a21)(x+ 2)2 − 8x

√
4− a21 + 16

16x2
=

(x
√

4− a21 − 4)2

16x2
≥ 0,

for all k > 0. On the other hand if a0 < 2−
√

4− a21 then g is strictly positive for all k > k+ and setting
k∗(a0, a1) = k+ we obtain the result.

Suppose now that g(k) ≥ 0 for all k ∈ [k∗(a0, a1),∞). The second derivative of the Black-Scholes
formula with respect to ek gives for any k ∈ [k∗(a0, a1),∞) the Call price c(k, t) expressed as

(B.5) c(k, t) =
g(k)√

2πw(k, t)
exp

−

(
d(k,

√
w(k, t))−

√
w(k, t)

)2
2

 ,

which is non-negative by assumption on g. As k ↑ ∞ by assumption we have that w(k, t) ∼ a1k and note
that d(k,

√
a1k) −

√
a1k = −(1/

√
a1 +

√
a1/2)

√
k. Recalling the bound (Lee, 2004, Theorem 2.1) that

holds for all p ≥ 0 (with p = 0 being the trivial bound), we obtain that a1 = ψ(p), i.e. a1 ∈ [0, 2].

B.4. Proof of Theorem 4.4. We start with the convergence of the sets of martingale measures:

Lemma B.1. Let r := min{d(t) : t ∈ T }. As r tends to infinity, the set M̃p∗,q∗

C converges to the set of
martingale measures consistent with the traded Call option prices C.

Proof. It is sufficient to show that the limit of sets M̃p∗,q∗

r defined as

(B.6) M̃p∗,q∗

r :=

{
µ ∈ Ph(Ω) :

∫
Ω

(Θ • S(ω))T µ(dω) = 0, for all Θ ∈ H̃
}
,

the set of probability measures in Ph(Ω) that integrate (Θ•S)T to zero for all Θ ∈ H̃ (where H̃ is dependent
on r via the choice of l(tj), j = 1, . . . , n− 1), converges to the set of martingale measures Mp∗,q∗ defined
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in (3.8) For any j = 1, . . . , n−1, define the setB∞j := liml(tj)↑∞Bj and let H̃∞ := R×
∏n−1

j=1 B
∞
j . It is clear

that B = ∪n−1
j=1B

∞
j . Define further the limit M̃p∗,q∗

∞ := limr↑∞ M̃p∗,q∗

r . It is clear that Mp∗,q∗ ⊆ M̃p∗,q∗

∞ .
To show the reverse inclusion define the gain of the trading strategy Θ ∈ H̃ at time t ≤ T as

(Θ • S)t := a0(St1 − s0) +

max{k:t<tk∈T }∑
j=1

l(tj)∑
i=1

a
tj
i θ

tj
i

(
Stj+1 − Stj

)
.

Introduce the stopping time τα := min{t ∈ T : St > α}. The set M̃p∗,q∗

∞ consists of all measures
µ ∈ Ph(Ω) such that 〈(Θ • S)T∧τα , π〉 = 0 for each α ∈ Q. By definition of the set B, for each α and j

any function f ∈ Cb(Kj
α)—in particular the indicator function 11Kj

α
—can be approximated by elements

in B; hence 〈(Θ0 • S)T∧τα , π〉 = 0, where Θ0 := (a0, 11K1
α
, . . . , 11Kn−1

α
) and as for all α ∈ Q and each j the

sets Kj
α generate Borel sigma algebra on Rj

+ it follows that ST∧τα is a martingale under π, and therefore
(Stj )j=1,...,n is a π-local martingale. Since ST is integrable with respect to any µ ∈ Ph(Ω) it follows
from (Jacod and Shiryaev, 1998, Theorem 2(b)) that it is a martingale under any π ∈ M̃p∗,q∗

∞ , and hence
M̃p∗,q∗

∞ ⊆ Mp∗,q∗

∞ . �

As in the proof of Lemma B.1, let H̃∞ be a countable subset of H. The sequence of nested sets
(H̃r)r∈N with H̃r ⊂ H̃r+1 represents the discretised trading strategies as the bases Bj increase for each
j = 1, . . . , n − 1 simultaneously, and clearly H̃∞ = limr↑∞ H̃r. For any r ∈ N, let ϑrp(Φ) be the primal
problem (4.5) over the set of primal variables Rd+1×H̃r. Likewise, we denote ϑrd(Φ) the dual problem (4.7)
over the set of probability measures in Ph(Ω) that re-price given Call options C and satisfy the martingale
condition for all Θ ∈ H̃r. By assumption there is no duality gap between the primal and the dual problems,
i.e. ϑ

r

p(Φ) = ϑ
r

d(Φ) for all r ∈ N; since both sequences (ϑ
r

p(Φ))r∈N and (ϑ
r

d(Φ))r∈N are non-increasing,
their limits exist and limr↑∞ ϑ

r

p(Φ) = limr↑∞ ϑ
r

d(Φ). We also define ϑ∞d (Φ) := limr↑∞ ϑ
r

d(Φ) > −∞ with

(B.7) ϑ
∞
d (Φ) := sup

{∫
Ω

Φ(ω)µ(dω) : µ ∈ M̃p∗,q∗

∞ ,
∫
Ω

C(ω)µ(dω) = c

}
,

where the set M̃p∗,q∗

∞ is defined in the proof of Lemma B.1. Therefore the value of the semi-infinite dual
problem (4.7) converges to the value of the infinite-dimensional dual problem (3.21) by Lemma B.1. It
follows that the value of the semi-infinite primal problem (4.5) also converges to the value of the infinite-
dimensional primal problem (3.20) as limr↑∞ ϑ

r

p(Φ) = limr↑∞ ϑ
r

d(Φ) and there is no duality gap between
the infinite-dimensional primal (3.20) and the dual (3.21) problems.
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