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Abstract
1 We rigourize the work of Lewis[Lewis07] and Durrleman[Durr05] on the small-time asymp-

totic behaviour of the implied volatility under the Heston stochastic volatility model (Theo-
rem 1.1). We apply the Gärtner-Ellis theorem from large deviations theory to the exponential
affine closed-form expression for the moment generating function of the log forward price, to
show that it satisfies a small-time large deviation principle. The rate function is computed as
Fenchel-Legendre transform, and we show that this can actually be computed as a standard
Legendre transform, which is a simple numerical root-finding exercise. We establish the corre-
sponding result for implied volatility in Theorem 2.4, using well known bounds on the standard
Normal distribution function. In Theorem 2.5 we compute the level, the slope and the cur-
vature of the implied volatility in the small-maturity limit At-the-money, and the answer is
consistent with that obtained by formal PDE methods by Lewis[Lewis00] and probabilistic
methods by Durrleman[Durr04].

Introduction

In recent years there has been an explosion of literature on small-time asymptotics for stochastic
volatility models, see Hagan et al.[HKLW02], Berestycki et al.[BBF02],[BBF04], Henry-Labordère
[HL05],[HL07] and Laurence[Laur08]. All these articles are essentially higher order corrections
and/or applications of the seminal work of Varadhan[VarI],[VarII], who showed that the small-
time behaviour of a diffusion process can be characterized in terms of an Energy/distance function
on a Riemmanian manifold, whose metric is given by the inverse of the diffusion coefficient (see
also Dembo&Zeitouni[DeZ98]).

For a local volatility model, Berestycki,Busca&Florent[BBF02] showed that the implied volatil-
ity in the small-maturity limit is the harmonic mean of the local volatility. For a general stochastic
volatility model satisfying certain growth conditions, Berestycki et al.[BBF04] show that the im-
plied volatility in the small-maturity limit can be characterized as a viscosity solution to a first
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order non-linear eikonal PDE. Viscosity solutions are a weak formulation for solutions to PDEs in-
troduced by Crandall&Lions[CL84]. Viscosity solutions can be non-differentiable, but are in some
sense sandwiched between a differentiable sub- and super- solution, which we call test functions
(see Fleming&Soner[FS93]). In general, for optimal control problems, the value function is not
smooth enough to satisfy the dynamic programming equation in the classical sense, but it is the
unique viscosity solution to that equation.

The solution to this eikonal equation is the length of the shortest geodesic from a point
to a line under the aforementioned metric i.e. it is a variable endpoint variational problem.
Durrleman[Durr05] applied the Legendre transform to the eikonal equation for this shortest geodesic
distance under the Heston model, and then solved the resulting ODE. Durrleman did not ad-
dress the highly non-trivial issue of existence and uniqueness of solutions to this eikonal equation.
Lewis[Lewis07] generalized the work of Durrleman, providing a formal derivation of the small-time
implied volatility asymptotics for a general CEV(p)-volatility model, which nests the Heston model.
Lewis computed the length of the aforementioned geodesics using conserved energy and momentum
arguments that arise from integrating the geodesic equations, and a transversality condition for
the variable endpoint problem.

Feng,Forde&Fouque[FFF09] consider the asymptotic behaviour of the Heston model in a regime
where the maturity is small, but large compared to the mean reversion time for the volatility
process. Using the fact that the Gärtner-Ellis theorem generalizes under Mosco convergence,
they establish a Large deviation principle for the log Stock price in this small-time, fast mean-
reverting regime, and derive corresponding results for call option prices and implied volatility.
Medvedev&Scaillet[MS04] consider a general stochastic volatility model and derive an asymptotic
formula for small maturities in terms of a certain modified moneyness; this parametrization does
not capture the effect of large deviations because the strike is forced to converge to the spot price
as the maturity goes to zero. Alòs&Ewald[AE08] take a very novel approach, and use Malliavin
calculus to derive an approximate pricing formula for European options under the Heston model
when the maturity and the volatility-of-variance are ¿ 1.

In this article, we provide a rigorous analysis of the small-time Heston stochastic volatility
model. The Heston model is problematic because the singular coefficient

√
y in the volatility-of-

variance function is not Lipschitz with respect to the usual Euclidean metric, so we cannot readily
apply the standard Freidlin-Wentzell(FW) theory of large deviations for stochastic differential
equations. Moreover, it is non-trivial to establish whether the comparison principle holds for the
Hamiltonian associated with the Heston process. We require the comparison principle to hold
if we wish to apply the extensions of FW theory outlined in Feng&Kurtz[FK06] to establish a
trajectory-level Large deviation principle. In this article we take a simpler route, by analyzing the
well known closed-form expression for the moment generating function of the log Stock price for
the Heston model, and using the Gärtner-Ellis theorem from large deviations theory to show that
the log forward price satisfies a small-time large deviation principle (Theorem 1.1). In this way,
we sidestep the problem of existence/uniqueness of classical or viscosity solutions to the eikonal
equation and/or the variable endpoint calculus of variations problem associated with the Heston
model. The rate function is computed as a Fenchel-Legendre transform, and we prove that this
can actually be computed more efficiently as a Legendre transform. Using well known bounds on
the standard Normal distribution function, we then convert this result into a statement about the
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limiting behaviour of the implied volatility of a call option in the small-time regime (Theorem 2.4).
It is not obvious how one might extend this approach to other stochastic volatility models e.g. the
SABR model in [HKLW02], where the log Stock price mgf is not known in closed-form.

This article is similar in spirit to Feng et al.[FFF09]; in this article the term involving y0 in the
log Stock price mgf dominates in the small-time regime, but in the [FFF09] regime the asymptotics
are dominated by the ergodic behaviour of the variance process which is independent of y0.

1 A small-time Large deviation principle for the log Stock
price under the Heston model

We work on a model (Ω,F ,P) with a filtration (Ft)t≥0 supporting two Brownian motions, and
satisfying the usual conditions. All expectations are taken under P unless otherwise stated, and
we assume that the interest rate r is constant.

Theorem 1.1 Consider the Heston stochastic volatility model for a log forward price process Xt
2, defined by the following stochastic differential equations





dXt = − 1
2Ytdt +

√
YtdW 1

t ,
dYt = κ(θ − Yt)dt + σ

√
YtdW 2

t ,
dW 1

t dW 2
t = ρdt ,

(1)

with X0 = x0, Y0 = y0, κ, y∞, σ > 0, |ρ| < 1 and 2κy∞ > σ2, so that Y = 0 is an unattainable
barrier, where W and B are two correlated Brownian motions. 3 Then Xt − x0 satisfies a Large
deviation principle (LDP) as t → 0, with rate function Λ∗(x) equal to the Legendre transform of
the continuous function Λ : R→ R+ ∪ {∞} given by

Λ(p) =
y0p

σ(
√

1− ρ2 cot( 1
2σp

√
1− ρ2)− ρ)

for p ∈ (p−, p+)

= ∞ for p /∈ (p−, p+) , (2)

where the following table shows how to compute the values of p− and p+

ρ p− p+

< 0
arctan(

√
1−ρ2
ρ )

1
2 σ
√

1−ρ2

π+arctan
(√

1−ρ2
ρ

)
1
2 σ
√

1−ρ2

= 0 −π
σ

π
σ

> 0
−π+arctan

(√
1−ρ2
ρ

)
1
2 σ
√

1−ρ2

arctan
(√

1−ρ2
ρ

)
1
2 σ
√

1−ρ2
.

2The interest rate does not materially affect any of the results in the article because we are only dealing with
European-style contracts, so we work directly with the forward rate process.

3The Y process is the Cox-Ingersoll-Ross (CIR) diffusion (also known as the square root process) and it satisfies
the Yamada-Watanabe condition (see page 291, Proposition 2.13 in Karatzas&Shreve[KS91]), so it admits a unique
strong solution. The X process can be expressed as a stochastic integral of the Y process, so the X process is also
well defined.
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We also have that

− lim
t→0

t logP(Xt − x0 > k) = − lim
t→0

t logP(Xt − x0 ≥ k) = inf
{x:x≥k}

Λ∗(x) = Λ∗(k) (3)

for k ≥ 0, because Λ∗(x) is continuous and strictly increasing when x ≥ 0, and

− lim
t→0

t logP(Xt − x0 < k) = − lim
t→0

t logP(Xt − x0 ≤ k) = inf
{x:x≤k}

Λ∗
′
(x) = Λ∗(k) (4)

for k ≤ 0, because Λ∗(x) is continuous and strictly decreasing when x ≤ 0.

Proof. From Albrecher,Mayer,Schoutens&Tistaert[AMST06], we have the following closed-form
expression for the characteristic function φ(k, t) of Xt − x0

φ(k, t) = E(eik(Xt−X0)) = exp

{
κθ

σ2

[
(κ− ρσik − d)t− 2 log(

1− g2e
−dt

1− g2
)

]}
exp

{
y0

σ2
(κ− ρσik − d)

1− e−dt

1− g2e−dt

}
,

(5)

where

g2 = g2(k) =
κ− ρσik − d(k)
κ− ρσik + d(k)

,

d = d(k) =
√

(κ− ρσik)2 + σ2(ik + k2) , (6)

and we take the principal branch for the complex log function. For the square root here, either of
the two roots may be chosen, because the characteristic function is even in d. We now recall the
following theorem

Theorem 1.2 (Lukacs[Lukacs70], Theorem 7.1.1). If a characteristic function ψ(k) is regular4

in the neighborhood of k = 0, then it is also regular in a horizontal strip and can be represented in
this strip by a Fourier integral. This strip is either the whole plane, or it has one or two horizontal
boundary lines. The purely imaginary points on the boundary of the strip of regularity (if this strip
is not the whole plane) are singular points of ψ(z).

(see also Lewis[Lewis00]). κ > 0 by assumption, so the square root function
√

z that appears in
the definition of d(.) is analytic at z = κ2. Also, for t sufficiently small and k = 0, the argument
being passed to the complex logarithm function in Eq 5 tends to 1 where the log function is
analytic. Thus, for t sufficiently small, the characteristic function of Xt − x0 is analytic at k = 0,
so substituting k = −ip for p ∈ R in Eq 5, we can apply Theorem 1.2 to obtain the analytic
continuation

E(ep(Xt−x0)) = exp {C(t, p) + D(t, p)y0} for t < T ∗(p) (7)
= +∞ for t ≥ T ∗(p) , (8)

4A characteristic function ψ(u) is regular if it is analytic and single-valued. ψ(u) is analytic if there exists a
function A : C → C which is analytic in some circle z : |z| < r, and A(z) = ψ(z) for z ∈ R in a neighborhood of
k = 0 on the real line.
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where

C(t, p) =
κθ

σ2

[
(κ− ρσp− d)t− 2 log(

1− g2e
−dt

1− g2
)
]

,

D(t, p) =
y0

σ2
(κ− ρσp− d)

1− e−dt

1− g2e−dt
,

g2 = g2(p) =
κ− ρσp− d(p)
κ− ρσp + d(p)

,

d = d(p) =
√

(κ− ρσp)2 + σ2(p− p2) (9)

and

T ∗(p) =
2√

σ2p(p− 1)− (κ− ρσp)2

[
π1{ρσp−κ<0} + arctan

(√
σ2p(p− 1)− (κ− ρσp)2

ρσp− κ

)
]

(10)

is the critical explosion time for the pth moment if

σ2p(p− 1) > (κ− ρσp)2 (11)

(the expression for T ∗(p) comes from Proposition 3.1, part (iii) in Andersen&Piterbarg[AP07], see
also Keller-Ressel[KR08]). The moment explosion is caused by b̄ cot(1

2 b̄t) + b tending to zero as
t ↘ 0. Setting p 7→ p

t and letting t ↘ 0 in Eq 10, we see that condition 11 is satisfied for t
sufficiently small, and we have

T ∗(
p

t
) ∼ 2t

σ|p|
√

1− ρ2

[
π1{ρp≤0} + sgn(p) arctan

(√
1− ρ2

ρ

)
]

as t → 0 for ρ 6= 0, p 6= 0 ,

∼ πt

σ|p| as t → 0 for ρ = 0, p 6= 0 ,

= ∞ for p = 0 , (12)

where we have used the fact that arctan(x) → − 1
2π as x → −∞ to deal with the case ρ = 0, p 6= 0

(also note that we are not letting ρ → 0, but rather we are fixing ρ = 0 and letting t → 0). By
careful examination of the entries of Table 1.1 we see that for any p ∈ (p−, p+) we have T ∗(p

t ) > t
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for t sufficiently small, so Eq 7 is valid. Letting t ↘ 0 and θ = σρ̄p, we find that

d(
p

t
) ∼ iσρ̄p

t
,

g2(
p

t
) ∼ ρ + iρ̄

ρ− iρ̄
,

ty0D(
p

t
) ∼ −y0p

σ2
(ρσ + iσρ̄) · 1− e−iσρ̄p

1− ρ+iρ̄
ρ−iρ̄ e−iσρ̄p

,

= −y0p

σ
(ρ + iρ̄) · (ρ− iρ̄)(eiθ/2 − e−iθ/2)

(ρ− iρ̄)eiθ/2 − (ρ + iρ̄) e−iθ/2

= −y0p

σ
· (ρ + iρ̄)(ρ− iρ̄)(eiθ/2 − e−iθ/2)
ρ(eiθ/2 − e−iθ/2)− iρ̄(eiθ/2 + e−iθ/2)

=
y0p

σ
· 1
iρ̄ coth( 1

2 iθ)− ρ

= Λ(p) ,

tC(
p

t
, p) ∼ t

κθ

σ2

[
(−ρ− iρ̄)σp− 2 log(

1− ρ+iρ̄
ρ−iρ̄ e−iθ

1− ρ+iρ̄
ρ−iρ̄

)

]
, (13)

where ρ̄ =
√

1− ρ2. Thus
lim
t→0

t logE(e
p
t (Xt−x0)) = Λ(p) (14)

for p ∈ (p−, p+) (see Table 1.1 for a definition of p− and p+), where Λ(.) is defined in Eq 2. By
direct verification, we see that Λ(p) → ∞ as p ↗ p+ and as p ↘ p−. We also need to verify that
limt→0 t logE(e

p
t (Xt−x0)) = ∞ for p /∈ (p−, p+) . But this follows from the monotonicity result in

Lemma B.1 when we let t → 0. Thus Assumption A.1 is satisfied. Λ is smooth in (p−, p+) and

Λ
′
(p) =

y0

σ (
√

1− ρ2 cot θ
2 − ρ)

+
σy0p(1− ρ2) csc2 θ

2

2σ(
√

1− ρ2 cot θ
2 − ρ)2

,

Λ
′′
(p) =

y0(1− ρ2) csc2 θ
2 (1− θ

2 cot θ
2 )

(
√

1− ρ2 cot θ
2 − ρ)2

+
y0θ (1− ρ2)

3
2 csc4 θ

2

2(
√

1− ρ2 cot θ
2 − ρ)3

. (15)

The first term in Eq 15 is non-negative on (p−, p+) because θ
2 cot θ

2 ≤ 1 if θ in (−2π, 2π), which
will be the case when p lies in the interval (p−, p+) (by careful checking of the entries in the table
in Theorem 1.1). The second term is also non-negative because it is a non-negative multiple of
Λ(p) itself which is non-negative, so Λ′′(p) > 0 for p ∈ (p−, p+). By direct inspection, we also have
that Λ(p) →∞ and |Λ′(p)| → ∞ as p ↗ p+ and p ↘ p−. Thus Λ(p) is convex, essentially smooth
and lower semi-continuous, so (by the Gärtner-Ellis Theorem in Theorem A.1), Xt − x0 satisfies
the Large deviation principle with rate function equal to the Fenchel-Legendre transform of Λ(p).
By the essential smoothness property of Λ(p), the equation

∂

∂p
(px− Λ(p))|p∗ = 0 (16)
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has a solution p∗ = p∗(x) in (p−, p+), which equivalently solves

x = Λ′(p∗) . (17)

But Λ′ is continuous and strictly monotonically increasing on (p−, p+), so there is a unique p∗(x).
The unique minimum x∗ of Λ∗ occurs at x∗ = (Λ∗

′
)−1(0) = Λ′(0) = 0, and Λ∗(0) = 0. For

p ∈ (p−, p+), Λ′(p) is negative when p < 0, and is positive when p > 0. By a convex analysis
result , x = Λ′(p) for p ∈ (p−, p+)) if and only if p = Λ∗

′
(x) (see the proof of Lemma 2.5 in Feng

et al.[FFF09] for a very similar analysis). Consequently, Λ∗ is strictly increasing when x > 0 and
strictly decreasing when x < 0, and Eqs 3 and 4 follow .

Remark 1.1 Note that Λ(p) does not depend on the drift terms κ or y∞, and this is typical in
the Freidlin-Wentzell theory of small-time large deviations for diffusion processes.

2 Small-time behaviour of Call options and Implied volatil-
ity

Two useful corollaries of Theorem 1.1 are the following rare event estimates for pricing out-of-the-
money call and put options of small maturity.

Corollary 2.1 We have the following small-time behaviour for out-of-the-money call options on
St = eXt

− lim
t→0

t logE(St −K)+ = Λ∗(x) , (18)

where x = log( K
S0

) ≥ 0 is the log-moneyness.

Corollary 2.2 We have the following small-time behaviour for out-of-the-money put options on
St = eXt

− lim
t→0

t logE(K − St)+ = Λ∗(x) , (19)

for x = log( K
S0

) ≤ 0.

Proof. (of Corollary 2.1)
(i) We first deal with the lower bound. From a drawing, we see that for any δ > 0, we have

E(St −K)+ ≥ δ P(St > K + δ) . (20)

Then by Theorem 1.1 we have that

lim inf
t→0

t logE(St −K)+ ≥ lim inf
t→0

[t log δ + t logP(St > K + δ)] ≥ −Λ∗(log
K + δ

S0
) . (21)

Take δ → 0+. By continuity of Λ∗(x), we have the desired lower bound.

(ii) To obtain the desired upper bound, we note (by Hölder’s inequality) that for any p, q > 1 with
p−1 + q−1 = 1, we have

E(St −K)+ = E
[
(St −K)+1{St≥K}

] ≤ [
E((St −K)+)p

]1/p E(1q
{St≥K})

1/q (22)

=
[
E

(
(St −K)+

)p ]1/p P(St ≥ K)1/q .

≤ [E(Sp
t ) ]1/p P(St ≥ K)1−1/p . (23)
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Taking logs and multiplying by t we obtain

t logE(St −K)+ ≤ t

p
logE(Sp

t ) + t(1− 1
p
) logP(St ≥ K). (24)

We claim that t logE(Sp
t ) → 0 as t → 0. Consider δ > 0. For t sufficiently small, δ

t > p. Then we
have

lim sup
t→0

t logE((
St

S0
)p) ≤ lim sup

t→0
t logE((

St

S0
)δ/t) = Λ(δ) , (25)

by Lemma B.1, and

lim inf
t→0

t logE((
St

S0
)p) ≥ lim inf

t→0
t log(E(

St

S0
))p = 0 = Λ(0) (26)

by Jensen’s inequality. But Λ is continuous, so the claim is verified. If we then take limp→∞ on
both sides of Eq 24, we have (by Theorem 1.1) the upper bound

lim sup
t→0

t logE(St −K)+ ≤ −Λ∗(log
K

S0
) . (27)

The proof of Corollary 2.2 follows by a similar argument.

Using the put-call parity, we can combine Corollaries 2.1 and 2.2 to obtain the following result.

Corollary 2.3 For all x ∈ R
t log

(
E(St −K)+ − (S0 −K)+

)
= t log

(
E(K − ST )+ − (K − S0)+

)
= Λ∗(x) , (28)

where x = log K
S0

.

We can also compute the asymptotic implied volatility as follows

Theorem 2.4 We have the following asymptotic behaviour for the implied volatility σt = σt(x) of
a European call option on St = eXt , with strike K = S0e

x and x ∈ R, x 6= 0, as t → 0

I(x) = lim
t→0

σt(x) =
x√

2Λ∗(x)
. (29)

Proof. We first assume that x > 0. We first establish the lower bound for σt(x). Let n(z) =
1√
2π

e−
1
2 z2

, and Φ(z) =
∫ z

−∞ n(u)du denote the standard cumulative Normal distribution function.

Using the classical notation for the Black-Scholes formula, we set d1 = −x+ 1
2 σ2

t t

σt

√
t

, d2 = d1 − σt

√
t.

By Corollary 2.1 and the definition of implied volatility, we know that for all δ, C > 0, there exists
a t∗ = t∗(δ) > 0 such that for all t < t∗ we have

e−(Λ∗(x)+δ)/t ≤ E(St −K)+

= S0Φ(d1)− S0e
xΦ(d2)

≤ S0Φc(−d1)

≤ S0 · 1
|d1| n(d1)

≤ S0C · n(d1) , (30)
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The last two lines follow from the standard estimate on the normal distribution in section 14.8 of
Williams[Will91] (see Appendix C), and the fact that the dimensionless implied variance σ2

t t → 0
as t → 0, because the call price tends to zero as t → 0. Taking logs of both sides and multiplying
by t, we can find a t∗∗ = t∗∗(δ) ≤ t∗ such that for all t < t∗∗ we have

−(Λ∗(x) + δ) ≤ t log(S0C)− t

2
log(2π)− (x− 1

2σ2
t t)2

2σ2
t

≤ − x2

2σ2
t

+ δ ,

and the lower bound follows. For the upper bound, consider δ > 0. Again, by Corollary 2.1, there
exists an t(δ) > 0 such that for all t < t(δ) we have

e−(Λ∗(x)−δ)/t ≥ E(St −K)+

= S0Φ(d1)− S0e
xΦ(d2)

= S0Φc(−d1)− S0e
xΦc(−d2) . (31)

Set d2,δ = −x−δ− 1
2 σ2

t t

σt

√
t

. Similar to Corollary 2.1 or by drawing a picture, we can now use the fact
that one call option of strike K is worth more than K(eδ − 1) digital call options of strike Keδ,
and invoke the lower bound on the Normal distribution in Appendix C and the fact that σ2

t t → 0
as t → 0 to see that

e−(Λ∗(x)−δ)/t ≥ K(eδ − 1)Φc(−d2,δ)

≥ K(eδ − 1)n(d2,δ)(
1

|d2,δ| + |d2,δ|)−1

≥ K(eδ − 1)n(d2,δ) · σt

√
t

x + δ
(1− δ)

≥ K(eδ − 1)n(d2,δ) · e−δ x+δ

σt
√

t (1− δ). (32)

Taking logs of both sides and multiplying by t, we can further find a t∗∗ ≤ t∗ such that for all
t < t∗∗ we have

−(Λ∗(x)− δ) ≥ t log(K) + t log(eδ − 1)− t

2
log(2π)− (x + δ + 1

2σ2
t t)2

2σ2
t

−
√

t δ
(x + δ)

σt
+ t log(1− δ)

≥ − (x + δ)2

2σ2
t

− δ . (33)

We proceed similarly for x < 0.
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Figure 1: Here we have plotted Λ(p), the rate function Λ∗(x) and the asymptotic implied volatility
I(x) for the Heston model with the parameters y0 = .04 = y∞ = .04, σ = .20 and ρ = −0.4, 0.0.4.
We have used the bisection method to numerically compute the Legendre transform Λ∗(x).
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2.1 The level, slope and curvature of the small-time implied volatility
At-the-Money

Note that Theorem 2.4 does not deal with the At-the-money case x = 0, because the LDP bounds
are useless in this case. Here, we can either first set x = 0, and then let t → 0, or vice versa. The
former requires a Central limit theorem type argument using Lévy’s convergence theorem which
does not involve large deviations theory; we omit the details for brevity. For the latter, we can
appeal to the following result.

Theorem 2.5 The asymptotic implied volatility I(x) has the following expansion around x = 0

I(x) =
√

y0

[
1 +

1
4
ρz + (

1
24
− 5

48
ρ2)z2 + O(z3)

]
, (34)

where z = σx
y0

.

Remark 2.1 Note that I ′′(0) < 0 for ρ2 > 2
5 .

Proof. Λ′ is a diffeomorphism on (p−, p+) and near p = 0, we have

Λ(p) =
1
2
y0p

2 +
1
4
y0ρσp3 +

1
24

y0σ
2(1 + 2ρ2)p4 + O(p5) ,

Λ′(p) = y0p +
3
4
y0ρσp2 +

1
6
y0σ

2(1 + 2ρ2)p3 + O(p4) . (35)

Recall the following expressions for the first and second derivatives of the inverse of a smooth,
invertible function y(x)

dy

dx
=

1
dx
dy

.

d2y

dx2
= −d2x

dy2
(
dy

dx
)3 . (36)

Using these equations and setting x = Λ′(p∗(x)), we find that
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p∗
′
(0) =

1
Λ′′(Λ′−1(0))

=
1

Λ′′(0)
=

1
y0

,

p∗
′′
(0) = − Λ

′′′
(0)

(Λ′′(0))3
= −3ρσ

2y2
0

.

(37)

Thus
p∗ (x) =

1
y0

x− 3ρσ

4y2
0

x2 + O(x3) , (38)

and

I(x) =
x√

2Λ∗(x)
=

1√
2(p∗(x)x− Λ(p∗(x)))

=
√

y0

[
1 +

1
4
ρz + (

1
24
− 5

48
ρ2)z2 + O(z3)

]
.(39)

Remark 2.2 The O(x3) term for p∗(x) does not affect the final answer for I(x) up to O(z3).

Remark 2.3 If we set V (x) = I(x)2, then

V (x) = y0

[
1 +

1
2
ρz + (

1
12
− 7

48
z2) + O(z3)

]
(40)

and this agrees with the formula on page 127 in Lewis[Lewis00], and section 3.1.2. in Durrleman[Durr04].
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[SZ99] Schöbel, R. and J. Zhu (1999), “Stochastic volatility with an Ornstein-Uhlenbeck process:
An extension”, European Finance Review 3, 2346.

[VarI] Varadhan, S.R.S. (1967), “On the behavior of the fundamental solution of the heat equation
with variable coefficients”. Comm. Pure Appl. Math., 20, 431-455.

[VarII] Varadhan S.R.S. (1967), “Diffusion processes in a small time interval”, Communications
in pure and applied mathematics 20, 659-685.

[Will91] Williams, D. (1991), “Probability with Martingales”, Cambridge Mathematical Text-
books.

APPENDIX

A The Gärtner-Ellis theorem

Consider a sequence of random variables Xn ∈ Rd, where Xn possesses the law µn and logarithmic
moment generating function

Λn(λ) = logE(e〈λ,Xn〉) . (A-1)

Definition 1 (Definition 2.3.5 in Dembo&Zeitouni[DeZ98]).
Let DΛ = {λ ∈ Rd : Λ(λ) < ∞}. A convex function Λ : Rd → (−∞,∞] is said to be essentially
smooth if
• The interior D0

Λ of DΛ is non-empty.
• Λ(.) is differentiable throughout D0

Λ.
• Λ(.) is steep, namely limn→∞ |∇Λ(λn)| = ∞ whenever {λn} is a sequence in D0

Λ converging to
a boundary point of Do

λ.

Assumption A.1 (Assumption 2.3.2 in Dembo&Zeitouni[DeZ98]).
For each λ ∈ Rd, we assume that the logarithmic moment generating function, defined as the limit

Λ(λ) = lim
n→∞

1
n

Λn(nλ) (A-2)

exists as an extended real number. Further, the origin belongs to the interior of D = {λ ∈ Rd :
Λ(λ) < ∞}.
We now recall the Gärtner-Ellis theorem:

Theorem A.1 (see Theorem 2.3.6 in Dembo&Zeitouni[DeZ98]).
Let Assumption 1.1 hold. Then if Λ(λ) is essentially smooth and lower semicontinuous, the se-
quence of random variables Xn satisfies the Large deviation principle with rate function Λ∗(x),
which is the Fenchel-Legendre transform of F , defined by the variational formula

Λ∗(x) = sup
λ∈R

(λx− Λ(λ)). (A-3)
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Lemma A.2 (Lemma 2.3.9 (a) in Dembo&Zeitouni[DeZ98]).
Let Assumption 1.1 hold. Then Λ is a convex function, Λ(λ) > −∞ everywhere, and Λ∗(x) is a
good convex rate function. In one dimension, this means that Λ∗(x) is non-decreasing in the region
x > 0.

Remark A.1 Since µn(Ω) = 1, it is necessary that infx I(x) = 0. If Λ∗(x) is a good rate function,
then the level set {x : Λ∗(x) ≤ α} is compact, so we know that the infimum is attained on this
compact set because Λ∗ is lower semicontinuous, i.e. there exists at least one point x∗ for which
Λ∗(x∗) = 0 (see pages 5 and 6 in Dembo&Zeitouni[DeZ98]).

B Monotonicity of the logarithmic transform

Lemma B.1 Let St = eXt be a non-negative martingale with S0 = 1, and let |p1| < |p2| with
sgn(p1) = sgn(p2). Then

E(e
p1
t Xt) ≤ E(e

p2
t Xt) (A-4)

for t sufficiently small.

Proof. (i) We first consider 0 < p1 < p2 < ∞. Let St = eXt and assume St is a martingale and
S0 = 1. For t sufficiently small, by the monotonicity of the Lp norm, we have

E(S
p1
t

t )
t

p1 < E(S
p2
t

t )
t

p2 , (A-5)

or
E(S

p1
t

t ) < E(S
p2
t

t )
p1
p2 . (A-6)

For t sufficiently small, p2
t > 1, so by Jensen’s inequality, we have

E(S
p2
t

t ) ≥ E(St)
p2
t = 1. (A-7)

Thus
E(S

p2
t

t )
p1
p2 ≤ E(S

p2
t

t ) , (A-8)

and we are done.

(ii) We now consider −∞ < p2 < p1 < 0. We wish to prove that

E(e
p1
t Xt) ≤ E(e

p2
t Xt) (A-9)

for t sufficiently small. For t sufficiently small, by the monotonicity of the Lp norm, we have

E((
1
St

)
|p1|

t )
t
|p1| < E((

1
St

)
|p2|

t )
t
|p2| , (A-10)

or
E((

1
St

)
|p1|

t ) < E((
1
St

)
|p2|

t )
|p1|
|p2| . (A-11)
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For t sufficiently small, |p2|
t > 1, so by Jensen’s inequality, we have

E((
1
St

)
|p2|

t ) ≥ E(
1
St

)
|p2|

t ≥ 1 , (A-12)

because 1
St

is a submartingale. Thus

E((
1
St

)
|p2|

t )
|p1|
|p2| ≤ E((

1
St

)
|p2|

t ) , (A-13)

and we are done.

C Estimates for the standard normal distribution function

Let x > 0, and n(z) = 1√
2π

e−z2/2. Then we have the following estimate for Φc(x) =
∫∞

x
n(z)dz

(x +
1
x

)−1n(x) ≤ Φc(x) ≤ 1
x

n(x) (A-14)

(see section 14.8 in Williams [Will91]).


