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Abstract. We study the small-time behaviour of the rough Bergomi model, introduced by Bayer, Friz

and Gatheral [4], and prove a large deviations principle for a rescaled version of the normalised log stock

price process, which then allows us to characterise the small-time behaviour of the implied volatility.

1. Introduction

The extension of the Black-Scholes model, in which volatility is assumed to be constant, to the case

where the volatility is stochastic has proved to be successful in explaining certain phenomena observed

in option price data, in particular the implied volatility smile. The main shortcoming of such stochastic

volatility models, however, is that they are unable to capture the true steepness of the implied volatility

smile close to maturity. While choosing to add jumps to stock price models, for example modelling

the stock price process as an exponential Lévy process, does indeed produce steeper implied volatility

smiles, see for example [16], the question of the presence of jumps in stock price processes remains

controversial [7, 12].

As an alternative to exponential Lévy and classical stochastic volatility models, one may choose a

fractional Brownian motion, or a process with similar fine properties, to drive the volatility process,

rather than a standard Brownian motion. Since volatility is neither directly observable nor tradable,

the issue of arbitrage that is sometimes associated to fractional Brownian motion does not arise in this

case. A fractional Brownian motion is a centred Gaussian process, whose covariance structure depends

on the Hurst parameter H ∈ (0, 1). If H ∈ (0, 1/2), then the fractional Brownian motion has negatively

correlated increments and “rough” sample paths, and if H ∈ (1/2, 1) then it has positively correlated

increments and “smooth” sample paths, when compared with a standard Brownian motion, which is

recovered by taking H = 1/2. There has been a resurgent interest in fractional Brownian motion and

related processes within the mathematical finance community in recent years. In particular, Gatheral,

Jaisson and Rosenbaum [24] carry out an empirical study that suggests that the log volatility behaves at

short time scales in a manner similar to a fractional Brownian motion, in terms of its covariance structure,

with Hurst parameter H ≈ 0.1. This finding is corroborated by Bennedsen, Lunde and Pakkanen [9],

who study over a thousand individual US equities and find that the Hurst parameter H lies in (0, 1/2)

for each equity. In addition, such so-called “rough” volatility models are able to capture the observed

steepness of small-time implied volatility smiles and the term structure of at-the-money skew much better

than classical stochastic volatility models.

Following [24], Bayer, Friz and Gatheral [4] propose the so-called rough Bergomi model, which they

then use to price options on integrated volatility and on the underlying itself. The advantage of their

model is that it captures the “rough” behaviour of log volatility, in accordance with [9, 24], as well

as fits observed implied volatility smiles better than traditional Markovian stochastic volatility models,

most notably in the close-to-maturity case. The works [3, 20, 21] study short time implied volatility

in rough volatility models. At the moment, the only known method for pricing mere vanilla options,
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and computing the corresponding implied volatility smiles, in this setting is Monte Carlo simulation.

Despite recent advances in simulation methods for the rough Bergomi model [8, 28], it is clearly fruitful

to seek more profound analytical understanding of option pricing and implied volatility under this model.

Specifically, in the present paper we characterise the small-time behaviour of implied volatility using large

deviations theory. We note that related results, concerning the small-time near-the-money skew, have

been recently obtained by Bayer, Friz, Gulisashvili, Horvath and Stemper [5]. Large deviations theory is

a commonly used tool for analysing small-time and large-time implied volatility smiles, and has been used

both for classical stochastic volatility models [13, 17, 19, 27, 29], and for rough volatility models [5, 18].

The structure of the paper is the following. In Section 2, we present the correlated rough Bergomi

model, together with its main properties, and lay out the main results of the paper; specifically a small-

time large deviations principle for a rescaled version of the normalised log stock price process, and

the corresponding small-time implied volatility behaviour for the rough Bergomi model where the log-

moneyness is time dependent. In Section 3, we present several elements from the theory of Gaussian

measures and large deviations that are required to prove the main results of the paper. In Section 4, we

give the proofs of the main results. Finally, Section 5 elucidates the analogous large deviations result for

the uncorrelated rough Bergomi model.

Notations: The notation L2 := L2(T ,R) stands for the space of real-valued square integrable func-

tions on some index set T . and Cd := C(T ,Rd) the space of Rd-valued continuous functions on T . We

shall further denote BV the space of paths of finite variations on T , and R+ := [0,∞). For two paths x

and y belonging to C = C1, we denote by zxy the two-dimensional path (x, y)⊤. Now, I(zxy)(t) repre-

sents the integral (whenever well-defined)
∫ t

0

√
x(s)dy(s); the expression I(zxy) shall be used whenever the

integral is taken over the whole time period [0, 1], and x · y :=
∫ 1

0
x(s)dy(s).

2. Model and main results

We assume a given filtered probability space (Ω,A , (Ft)t≥0,P), where the filtration satisfies the usual

conditions, and all stochastic processes here will be assumed to live on this probability space.

2.1. Rough Bergomi Model and main properties. Bayer, Friz and Gatheral [4] introduce a non-

Markovian generalisation of Bergomi’s “second generation” stochastic volatility model, which they dub

the “rough Bergomi” model. Let Z be the process defined pathwise as

(2.1) Zt :=

∫ t

0

Kα(s, t)dWs, for any t ≥ 0,

where α ∈
(
− 1

2 , 0
)
, W a standard Brownian motion, and where the kernel Kα : R+ × R+ → R+ reads

(2.2) Kα(s, t) := η
√
2α+ 1(t− s)α, for all 0 ≤ s < t,

for some strictly positive constant η. Note that, for any t ≥ 0, the map s 7→ Kα(s, t) belongs to L2, so

that the stochastic integral (2.1) is well defined. The rough Bergomi model is then defined as

(2.3)
St = S0 exp

(∫ t

0

√
vsdBs −

1

2

∫ t

0

vsds

)
, S0 > 0,

vt = v0 exp

(
Zt −

η2

2
t2α+1

)
, v0 > 0,

where the Brownian motion B is defined as B := ρW +
√
1− ρ2W⊥ for ρ ∈ [−1, 1], for some standard

Brownian motion W⊥ independent of W . The filtration (Ft)t≥0 can here be taken as the one generated

by the two-dimensional Brownian motion (W,W⊥). The stock price process S is clearly then a local

(Ft)t≥0-martingale and a supermartingale, therefore integrable. We conjecture that S is also a true

martingale, but this question is far from trivial and beyond the scope of the present paper.
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Proposition 2.1. The two-dimensional Gaussian process (Z,B) is centred with covariance structure

cov

((
Zt

Bt

)
,

(
Zt

Bt

))
=

(
η2t2α+1 ϱtα+1

ϱtα+1 t

)
,

E(ZsZt) =

∫ s∧t

0

Kα(u, s)Kα(u, t)du

=
η2(2α+ 1)

α+ 1
(s ∧ t)1+α(s ∨ t)α2F1

(
1,−α, 2 + α,

s ∧ t

s ∨ t

)
,

for any s, t ≥ 0, where ϱ := ρη
√
2α+1

α+1 and 2F1 is the Gauss hypergeometric function [35, Chapter 5,

Section 9].

Proof. Without loss of generality, let us begin by assuming that s < t. This then implies that E(ZsZt) =

η2(2α + 1)
∫ s

0
(t − u)α(s − u)αdu = tαs1+α

∫ 1

0
(1 − v)α(1 − sv/t)αdv, where the second equality follows

from a change of variables. Using Euler’s integral representation of the Gauss hypergeometric function

2F1, it follows that
∫ s

0
(t− u)α(s− u)αdu = 1

α+12F1(−α, 1;α+ 2; s/t), from which the result then clearly

follows. �

Proposition 2.1 implies in particular that the process Z is not stationary, and that the following holds:

Corollary 2.2. The process Z is (α + 1
2 ) self-similar: for any a > 0, the processes (Zat)t≥0 and

(aα+
1
2Zt)t≥0 are equal in distribution.

Note then that the parameter α determines both the local and long-term behaviour of Z.

Remark 2.3. The process Z in (2.1) is the Holmgren-Riemann-Liouville fractional Brownian motion

introduced by Lévy [33], modulo some constant scaling, rather than the more commonly known fractional

Brownian motion characterised by Mandelbrot and Van Ness [34, Definition 2.1] as

WH
t =

1

Γ(H + 1/2)

(∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2)dW̃s +

∫ t

0

(t− s)H−1/2dW̃s

)
,

where W̃ is a standard Brownian motion, and Γ the standard Gamma function. Note that the Mandelbrot-

Van Ness representation of WH
t requires the knowledge of W̃ from −∞ to t; in comparison we only need

to know W from 0 to t to compute the value of Z. Finally, both Z and WH are self-similar, but WH has

stationary increments whereas the increments of Z are non-stationary.

Proposition 2.4. The process log v has a modification whose trajectories are almost surely locally γ-

Hölder continuous, for all γ ∈
(
0, α+ 1

2

)
.

Proof. We first prove that Z has a modification whose trajectories are γ-Hölder continuous, for all

γ ∈ (0, α + 1
2 ). Firstly, E(|Zt − Zs|2) ≤ η2(2α + 1)

(∫ t

s
|t− u|2αdu+

∫ s

0
|(t− u)α − (s− u)α|2du

)
=

η2|t− s|2α+1 + η2(2α+ 1)
∫ s

0
|(t− u)α − (s− u)α|2du. Following the change of variables s− u = (t− s)y

the integral becomes |t − s|2α+1
∫ s

t−s

0 |(y + 1)α − yα|2dy, and hence
∫ s

t−s

0 |(y + 1)α − yα|2dy is finite

since α ∈ (− 1
2 , 0). Therefore there exists K > 0 such that E(|Zt − Zs|2) ≤ K|t− s|2α+1 for any s, t ≥ 0.

Applying the Kolmogorov continuity theorem [31, Theorem 3.22] then yields that the Gaussian process Z

has a modification whose trajectories are locally γ-Hölder continuous where γ ∈ (0, α+ 1
2 ), thus proving

the claim. Now, for the process log v, we have

| log vt − log vs| =
∣∣∣∣Zt −

η2

2
t2α+1 −

(
Zs −

η2

2
s2α+1

)∣∣∣∣
≤ |Zt − Zs|+

η2

2

∣∣t2α+1 − s2α+1
∣∣ ≤ C|t− s|γ +

η2

2

∣∣t2α+1 − s2α+1
∣∣ ,

where C is a strictly positive constant, and γ ∈ (0, α + 1/2). Since the map t 7→ t2α+1 is also locally

γ-Hölder continuous for all γ ∈ (0, 2α + 1] and in particular for all γ ∈ (0, α + 1/2), it follows that the

process log v has a modification with locally γ-Hölder continuous trajectories, for all γ ∈ (0, α+ 1
2 ). �
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As a comparison, the fractional Brownian motion has sample paths that are γ-Hölder continuous

for any γ ∈ (0,H) [6, Theorem 1.6.1], so that the rough Bergomi model also captures this roughness

by identification α = H − 1/2; in particular these trajectories are rougher than those of the standard

Brownian motion, for which H = 1/2.

2.2. Main results. From now on, without loss of generality, we shall fix T = [0, 1]. For any functions

φ1, φ2 : R+ × R+ → R, introduce the L2 operators Iφ1 and Iφ1
φ2

defined as

(2.4) Iφ1f :=

∫ ·

0

φ1(u, ·)f(u)du and Iφ1
φ2

f :=

(
Iφ1f

Iφ2f

)
.

Whenever the function φ is constant, say equal to c, we shall write Ic without ambiguity. We also define

the space H φ1
φ2

:=
{
Iφ1
φ2

f : f ∈ L2
}
that is clearly a Hilbert space once endowed with the inner product⟨

Iφ1
φ2

f1, Iφ1
φ2

f2
⟩

H
φ1
φ2

:= ⟨f1, f2⟩L2 , where φ1, φ2 are such that the operator Iφ1
φ2

is injective therefore making

the inner product well-defined. Now let X be the normalised log stock price process Xt := log(St/S0),

where the stock price process S is the rough Bergomi model in (2.3). For t, ε ≥ 0, let us now define the

rescaled processes as follows:

(2.5) Xε
t := εβXεt, Zε

t := εβ/2Zt
d
= Zεt, vεt := ε1+βv0 exp

(
Zε
t − η2

2
(εt)β

)
, Bε

t := εβ/2Bt,

where β := 2α+ 1 ∈ (0, 1). Note in particular that, for any t, ε ≥ 0, Zε
t and Zεt are equal in law, and so

are vεt and ε1+βvεt, which in turn implies that the following representation holds for any t ≥ 0:

Xε
t := εβXεt

d
= εβ

(∫ εt

0

√
vsdBs −

1

2

∫ εt

0

vsds

)
d
= εβ

(∫ t

0

√
vεsdBεs −

ε

2

∫ t

0

vεsds

)
d
=

∫ t

0

√
ε1+2βvεsdBs −

1

2

∫ t

0

ε1+βvεsds
d
=

∫ t

0

√
vεsdB

ε
s −

1

2

∫ t

0

vεsds.(2.6)

We now state the main result of this section, namely a pathwise large deviations principle for the

sequence of rescaled processes (Xε)ε≥0. We recall first some facts about large deviations on a real,

separable Banach space (E , ∥ · ∥E ), following [15] as our guide.

Definition 2.5. A function Λ : E → [0,+∞] is said to be a rate function if it is lower semi-continuous,

that is, if, for all x0 ∈ E ,

lim inf
x→x0

Λ(x) ≥ Λ(x0).

Definition 2.6. A family of probability measures (µε)ε≥0 on (E ,B(E )) is said to satisfy a large deviations

principle (LDP) as ε tends to zero with speed ε−1 and rate function Λ if, for any B ∈ B(E ),

(2.7) − inf
x∈B◦

Λ(x) ≤ lim inf
ε↓0

ε logµε(B) ≤ lim sup
ε↓0

ε logµε(B) ≤ − inf
x∈B

Λ(x),

where B and B◦ denote respectively the closure and the interior of B.

Correspondingly, a stochastic process (Yε)ε≥0 is said to satisfy a LDP as ε tends to zero if the family

of probability measures (P(Yε ∈ ·))ε≥0 satisfies a LDP as ε tends to zero. Unless otherwise stated, all

LDP here shall be as ε tends to zero, so we shall drop this mention for simplicity.

To state our results, we now define the operator M : C2 → C(T × R+,R+ × R) as

(2.8) (Mzxy)(t, ε) :=

(
(mx)(t, ε)

y(t)

)
for all t ∈ T , ε > 0,

where the operator m : C → C(T × R+,R+) is defined by

(2.9) (mx)(t, ε) := v0ε
1+β exp

(
x(t)− η2

2
(εt)β

)
,

as well as the functions Λ∗,Λ : C2 → R+ defined by

Λ∗(zxy) :=
1

2
∥zxy∥2H Kα

ρ
and Λ(zx1

y1
) := inf

{
Λ∗(zx2

y2
) : zx1

y1
= Mzx2

y2

}
.
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Theorem 2.7. The sequence (Xε)ε≥0 satisfies a LDP on C as ε tends to zero, with speed ε−β and rate

function ΛX : C → [0,+∞] defined as ΛX(φ) := inf
{
Λ(zxy) : φ =

√
x · y, y ∈ BV ∩ C

}
.

Corollary 2.8. The rescaled log stock price process
(
tβXt

)
t≥0

satisfies a LDP on R as t tends to zero

with speed t−β and rate function ΛX
1 (u) := inf{ΛX(φ) : φ(1) = u}, u ∈ R.

Proof. Since Xε
1 and εβXε are equal in law, (εβXε)ε≥0 satisfies a LDP with speed ε−β and rate func-

tion ΛX by Theorem 2.7; mapping ε to t completes the proof. �

Remark 2.9. Recently, Forde and Zhang [18] derived pathwise large deviations for rough volatility

models, with application (by scaling) to small-time asymptotics of the corresponding implied volatility.

The model they consider is of the following form, for the log stock price process:{
dXt = − 1

2σ(Yt)
2dt+ σ(Yt)dBt,

Yt = WH
t ,

where B is a standard Brownian motion, WH a (possibly correlated) fractional Brownian motion. In

order to prove LDP, they consider a small-noise version of the SDE above, namely:{
dXε

t = −1
2εσ(Yt)

2dt+
√
εσ(Yt)dBt,

Y ε
t = εHWH

t .

It is of course tempting to apply their results to the rough Bergomi model. Unfortunately, the following

intricacies make this impossible: First, they assume the function σ to have at most linear growth,

whereas it is of exponential growth in rough Bergomi. Second, their scaling assumption, allowing them to

translate small-noise into small-time estimates crucially relies on the volatility process Y being driftless

[18, Equation (4.4)], which does not hold in rough Bergomi.

There is a degree of flexibility when defining the rescaled processXε. For example, we may defineXε
t :=

εαXεγt, where γ := α/(α/2 + 5/4). In this case define (Zε, Bε) := εγ(α+1/2)(Z,B), and vεt := εα+γvεγt,

so that Xε satisfies a LDP with speed ε−2γ(α+1/2) and rate function identical to that in Theorem 2.7.

This essentially falls in the category of moderate deviations, within the context of [25], for the original

process X, which is scaled by 1/(h(t)
√
t), where h(t) ∈ [1, t−1/2] for small enough t.

Remark 2.10. The structure of the Hilbert space H Kα
ρ , see Corollary 3.11, precisely determines the

rate function ΛX . In the uncorrelated case ρ = 0, H Kα
ρ (and its inner product) is degenerate, and

clearly Λ∗ does not make sense. This case needs to be treated separately and is analysed in Section 5.

From (2.4), every zxy ∈ H Kα
ρ has the representation zxy = IKα

ρ f , for some f ∈ L2. Therefore the rate

function in Theorem 2.7 can be rewritten as

(2.10) ΛX(φ) = inf
f∈L2

{
1

2

∫ 1

0

f2(u)du : φ = I
(
M
(
IKα
ρ f

))}
.

With this formulation, it is easy to see that ΛX(0) = 0: denoting zx̃y := Mzxy and using that x̃ > 0,

it follows that if I(x̃, y) = 0, then y ≡ 0, which in turn implies that f ≡ 0, and hence ΛX(0) = 0.

Furthermore, since clearly ΛX cannot take negative values, its minimum value is attained at the origin.

2.3. Asymptotic behaviour of the implied volatility. Let σ̂ denote the implied volatility, that is,

for a given log-moneyness x ∈ R and maturity t ≥ 0, σ̂(x, t) is the unique non-negative solution to

the equation BS(x, t, σ̂(x, t)) = C(x, t), where BS denotes the Black-Scholes price of a vanilla Call price,

and C the corresponding Call price in a given (here the rough Bergomi) model. Following the methodology

developed in [17], or more generally in [22], it is possible to translate the asymptotic behaviour of the log

stock price in Corollary 2.8 into small-time behaviour of the implied volatility, as follows:

Corollary 2.11. The following limit holds for all x ̸= 0:

(2.11) lim
t↓0

t1+β σ̂
(
xt−β , t

)2
=


x2

2 infy≥x ΛX
1 (y)

, if x > 0,

x2

2 infy≤x ΛX
1 (y)

, if x < 0.
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This corollary, and the definition of the implied volatility itself, only make sense in a true martingale

model, which is conjectured here. When the stock price fails to be a true martingale, and is only a

(positive) strict local martingale, a different notion of implied volatility can still be characterised, as

explained in [26], but is outside the scope of the present analysis.

3. Gaussian Measures on Banach Spaces and Large Deviations

In this section, we gather several elements from the theory of Gaussian measures and large deviations

in order to prove Theorem 2.7. This proof shall require a certain number of steps, in particular the

precise characterisation of the reproducing kernel Hilbert spaces associated to the different processes

under consideration.

3.1. Gaussian measures on Banach spaces. Let T ⊆ R be some index set. A centred process (Zt)t∈T
is called Gaussian if for all n ∈ N and any t1, . . . , tn ∈ T , the random variables Zt1 , . . . , Ztn are

jointly Gaussian; any such process is then completely characterised by its covariance function. We recall

some basic facts, needed later, on Gaussian measures on Banach spaces, mostly following Carmona and

Tehranchi [10, Chapter 3]. Let (E , ∥ · ∥E ) be a real, separable Banach space, and E ∗ its topological dual

(i.e., the space of all linear functionals on E ), with duality relationship ⟨·, ·⟩E ∗E . The bilinear functional

⟨·, ·⟩E ∗E : E ∗ × E → R is such that if ⟨x∗, x⟩E ∗E = 0 for all x∗ ∈ E ∗ (resp. x ∈ E ) then x = 0 (resp.

x∗ = 0) [2, Page 195]. We shall further let B(E ) denote the Borel σ-algebra of E .

Definition 3.1. [10, Definition 3.1] A measure µ on (E ,B(E )) is (centred) Gaussian if every f∗ ∈ E ∗,

when viewed as a random variable via the dual pairing f 7→ ⟨f∗, f⟩E ∗E , is a (centred) real Gaussian

random variable on (E ,B(E ), µ).

The following proposition [10, Proposition 3.1] characterises Gaussian measures on Banach spaces.

Proposition 3.2. Any (centred) Gaussian measure µ on E is the law of some (centred) Gaussian process

with continuous paths, indexed by some compact metric space.

Note that every real-valued, centred Gaussian process on E induces some measure on C, the space of

continuous functions from T to R. By Proposition 3.2, one can construct a centred Gaussian probability

measure µ on E by constructing the corresponding Gaussian process. The above argument may be

extended to a d-dimensional centred Gaussian process, thereby inducing a Gaussian measure on E = Cd.

For a Gaussian measure µ on E , we introduce the bounded, linear operator Γ : E ∗ → E as

(3.1) Γ(f∗) :=

∫
E

⟨f∗, f⟩E ∗E fµ(df),

and note in particular that ⟨f∗, f⟩E ∗E f is an E -valued random variable on (E ,B(E ), µ).

Definition 3.3. [10, Definition 3.3] The reproducing kernel Hilbert space (RKHS) Hµ of µ is defined as

the completion of Γ(E ∗) with the inner product ⟨Γ(f∗),Γ(g∗)⟩Hµ
:=

∫
E

⟨f∗, f⟩E ∗E ⟨g∗, f⟩E ∗Eµ(df).

For the inclusion map ι : Hµ → E , the space ι(Hµ) is dense in E ; it follows then for the adjoint map

ι∗ : E ∗ → H∗
µ that ι∗(E ∗) is dense in H∗

µ. Recall also that Hµ and H∗
µ are isometrically isomorphic,

which we denote by H∗
µ ≃ Hµ, (by the Riesz representation theorem, as R is the underlying field). Now,

for a centred Gaussian random variable f∗ on E , by Definition 3.1, it follows that

E
(
⟨f∗, f⟩2E ∗E

)
=

∫
E

⟨f∗, f⟩E ∗E ⟨f∗, f⟩E ∗Eµ(df) = ∥f∥2Hµ
= ∥ι∗f∗∥2H∗

µ
.

This yields the following equivalent form of Definition 3.3 for the RKHS of µ [14, Page 88].

Definition 3.4. A real, separable Hilbert space Hµ such that Hµ ⊂ E is the RKHS of µ if the following

two conditions hold:

• there exists an embedding I : Hµ → E , i.e. an injective continuous map whose image is dense

in E ;

• any f∗ ∈ E ∗ is a centred Gaussian random variable on E with variance ∥I∗f∗∥2H∗
µ
.
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Remark 3.5. The embedding I need not necessarily be the inclusion map.

Remark 3.6. Given a triplet (E ,Hµ, µ), consider the inclusion map I∗ : E ∗ → L2(E , µ) (we think of E ∗

as a dense subset in H∗
µ ≃ Hµ by ι∗). Since I∗ preserves the Hilbert space structure of L2(E , µ), it can

be extended to an isometric embedding Ī∗ : H∗
µ → L2(E , µ) such that ∥Ī∗f∗∥H∗

µ
= ∥f∗∥L2(E ,µ).

We now explicitly characterise the RKHS of the measures induced by (Zt)t∈T (introduced in (2.1))

on C, and by ((Zt, Bt))t∈T on C2. In fact, we first prove a more general result, using the operators in (2.4).

Introduce the following assumption on the function φ defining the operator Iφ:

Assumption 3.7. There exists ϕ ∈ L2(T ,R) such that
∫ ε

0
|ϕ(s)|ds > 0 for some ε > 0 and φ(·, t) =

ϕ(t− ·) for any t ∈ T .

Theorem 3.8. Let φ satisfy Assumption 3.7, which makes Iφ injective on L2. The RKHS of the

measure induced by the process
∫ ·
0
φ(u, ·)dWu on C is given by H φ = {Iφf : f ∈ L2}, with inner product

⟨Iφf1, Iφf2⟩H φ := ⟨f1, f2⟩L2 .

Corollary 3.9. The RKHS of the Gaussian measure induced (on C) by (Zt)t∈T in (2.1) is H Kα .

We need to extend Theorem 3.8 (and Corollary 3.9) to find the RKHS of the Gaussian measure on

the space C2 induced by the two-dimensional process ((Zt, Bt))t∈T , where Z and B are defined in (2.1)

and (2.3) respectively.

Theorem 3.10. Let φ1, φ2 satisfy Assumption 3.7, which makes Iφ1
φ2

injective on L2. Introduce the

R2-valued process (Y 1, Y 2) as Y i :=
∫ ·
0
φi(s, ·)dW i

s for i = 1, 2, where W 1 and W 2 are two standard

Brownian motions with correlation ρ ∈ [−1, 1]\{0}. Then the RKHS of the measure induced by (Y 1, Y 2)

on C2 is H φ1
φ2

=
{
Iφ1
φ2

f : f ∈ L2
}
, with inner product

⟨
Iφ1
φ2

f1, Iφ1
φ2

f2
⟩

H
φ1
φ2

:= ⟨f1, f2⟩L2 .

Corollary 3.11. The RKHS of the measure induced (on C2) by the process ((Zt, Bt))t∈T is H Kα
ρ .

3.2. Large deviations for Gaussian measures. We now concentrate on large deviations for Gaussian

measures. As before, E denotes a real, separable Banach space with norm ∥ · ∥E , and we introduce a

centred Gaussian measure µ on (E ,B(E )) such that, for any y ∈ E ∗,∫
E

e−i⟨y,x⟩E∗E µ(dx) = exp

(
−Cµ(y, y)

2

)
,

where Cµ : E ∗ × E ∗ → [0,+∞) is a bilinear, symmetric map. We define Λ∗
µ : E → R as Λ∗

µ(x) :=

sup
{
⟨y, x⟩E ∗E − 1

2Cµ(y, y) : y ∈ E ∗} on E . The following lemma is proved in [14, Lemma 3.4.2].

Lemma 3.12. The following three statements hold for the measure µ:

(1) There exists α > 0 such that

∫
E

exp
(
α∥x∥2E

)
µ(dx) is finite;

(2) For all y ∈ E ∗, Cµ(y, y) =

∫
E

⟨y, x⟩2E ∗Eµ(dx) ≤ ∥y∥2E ∗

∫
E

∥x∥2Eµ(dx) ∈ (0,+∞);

(3) Λ∗
µ defines a rate function on E and satisfies Λ∗

µ(ay) = a2Λ∗
µ(y) for all a ∈ R.

For a Gaussian random variable X on E with distribution µ, define Xε := ε1/2X, with law µε. Then

the following holds [14, Theorem 3.4.5]:

Theorem 3.13. The sequence of probability measures (µε)ε≥0 satisfies a LDP on E with speed ε−1 and

rate function Λ∗
µ.

Remark 3.14. Theorem 3.13 implies in particular that the standard Brownian motion (Wt)t≥0 satisfies

a LDP on R with speed t−1, since Wt and
√
tW1 are equal in law.

Corollary 3.15. For any t ∈ T , let νt be the law of Zt defined in (2.1). Then the sequence (νt)t>0

satisfies a LDP on R as t tends to zero with speed t−β and rate function Λ∗
µ(x) :=

x2

2η2 , for x ∈ R.

Proof. Here, E = R and ⟨u, v⟩E ∗E = uv. Since Zt and tβ/2Z1 are equal in law, and
∫
R eiyxP(Z1 ∈ dx) =

exp(−y2η2/2), taking Cµ(x, y) ≡ xyη2, the proof follows from Theorem 3.13 and Remark 4.1. �
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The following two results will be essential for establishing a LDP for the rough Bergomi model. The

first one, the contraction principle, states that continuous mappings preserve large deviations principles,

while the second one is a universal LDP result for general Gaussian measures on Banach spaces.

Proposition 3.16 (Theorem 4.2.1. in [15] (Contraction Principle)). Let E and Ẽ be two Hausdorff

topological spaces and let f : E → Ẽ be a continuous mapping. Let (νε)ε≥0, (ν̃ε)ε≥0 be two families of

probability measures on (E ,B(E )) and (Ẽ ,B(Ẽ )) respectively, such that ν̃ε = νε ◦ f−1 for each ε > 0. If

(νε)ε≥0 satisfies a LDP on E with rate function Λ, then (ν̃ε)ε≥0 satisfies a LDP on Ẽ with rate function

Λ̃(y) := inf {Λ(x) : y = f(x)} .

Theorem 3.17 (Theorem 3.4.12 in [14]). Let B be a d-dimensional Gaussian process, inducing a mea-

sure µ on (Cd,B(Cd)) with RKHS Hµ. Then (εµ)ε≥0 satisfies a LDP with speed ε−1 and rate function

Λ∗
µ(x) :=


1

2
∥x∥2Hµ

, if x ∈ Hµ,

+∞, otherwise.

In order to deal with the stochastic differential equation (2.6), we have to consider the stochastic

integral
∫ ·
0

√
vεsdB

ε
s . Assuming that the sequence (

√
vεs , B

ε
s) converges weakly as ε tends to zero yields,

under some conditions, a weak convergence for the stochastic integral [30, 32]. However, in order to

state a large deviations principle, we need a stronger result, proved by Garcia [23]. Before stating it

(Theorem 3.19 below), though, we introduce the following class of sequences of stochastic processes:

Definition 3.18 (Definition 1.1 in [23]). Let U denote the space of simple, real-valued, adapted pro-

cesses Z such that supt≥0 |Zt| ≤ 1. A sequence of semi-martingales (Y ε)ε≥0 is said to be uniformly

exponentially tight (UET) if, for every c, t > 0, there exists Kc,t > 0 such that

lim sup
ε↓0

ε log

(
sup
Z∈U

P
(
sup
s≤t

∣∣∣∣∫ s

0

Zu−dY
ε
u

∣∣∣∣ ≥ Kc,t

))
≤ −c.

Theorem 3.19 (Theorem 1.2 in [23]). Let (Xε)ε≥0 be a sequence of adapted, càdlàg stochastic processes,

and (Y ε)ε≥0 a sequence of uniformly exponentially tight semi-martingales. If the sequence ((Xε, Y ε))ε≥0

satisfies a LDP with rate function Λ, then the sequence of stochastic integrals (Xε · Y ε)ε≥0 satisfies a

LDP with rate function Λ̂(φ) := inf
{
Λ(zxy) : φ = x · y, y ∈ BV

}
.

4. Proof of the main results

Proof of Theorem 3.8. Let Assumption 3.7 hold for a given function φ ∈ L2. The operator Iφ in (2.4) is

surjective on H φ. Let f1, f2 ∈ L2 be such that Iφf1 = Iφf2. Then
∫ t

0
φ(u, t)[f1(u)−f2(u)]du = 0 for any

t ∈ T . Titchmarsh’s convolution theorem [36, Theorem VII] then implies that f1 = f2 almost everywhere,

so that Iφ is a bijection. The linearity of Iφ implies that ⟨Iφf1, Iφf2⟩H φ := ⟨f1, f2⟩L2 defines an inner

product on H φ, and hence (H φ, ⟨·, ·⟩H φ) is a real inner product space. In order for H φ to satisfy

Definition 3.4, we first need to show that it is a separable Hilbert space. Let {fn}n∈N be a sequence

of functions in L2 such that {Iφfn}n∈N converges to Iφf in H φ. Therefore ∥Iφfn − Iφfm∥H φ =

∥fn − fm∥L2 tends to zero as n and m tend to infinity. Since L2 is a complete (Hilbert) space, there

exists a function f̃ ∈ L2 such that the sequence {fn}n∈N converges to f̃ . Assume for a contradiction that

f ̸= f̃ , then, since Iφ is a bijection, the triangle inequality yields

0 <
∥∥∥Iφf − Iφf̃

∥∥∥
H φ

≤ ∥Iφf − Iφfn∥H φ +
∥∥∥Iφf̃ − Iφfn

∥∥∥
H φ

,

which converges to zero as n tends to infinity. Therefore f = f̃ , Iφf ∈ H φ and H φ is complete, hence

a real Hilbert space. Since L2 is separable with countable orthonormal basis {ϕn}n∈N, then {Iφϕn}n∈N
is an orthonormal basis for H φ, which is then separable.

We now wish to find a dense embedding I : H φ → C as in Definition 3.4. Since H φ ⊂ C, take the

embedding to be the inclusion map I = ι. By [11, Lemma 2.1], the conditions on ϕ in Assumption 3.7

imply that H φ is dense in C. Finally, for f∗ ∈ C∗, the measure µ induced by the process
∫ ·
0
φ(u, ·)dWs
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is a Gaussian probability measure on (E ,B(E )), and f∗ is a centred, real Gaussian random variable on

(E ,B(E ), µ) by Definition 3.1 . In turn, Remark 3.6 implies that I∗, the dual of I, admits an isometric

embedding Ī∗ such that ∥Ī∗f∗∥2(H φ)∗ = ∥f∗∥2L2(E ,µ) =
∫

E (f
∗)2dµ = V(f∗), and hence H φ is the RKHS

of µ. �

Proof of Theorem 3.10. We proceed in a similar manner to the proof of Theorem 3.8. Let φ1, φ2 satisfy

Assumption 3.7. Clearly the operator Iφ1
φ2

in (2.4) is surjective on H φ1
φ2

⊂ C2. By Titchmarsh’s convolu-

tion Theorem [36, Theorem VII], if Iφ1
φ2

f1 = Iφ1
φ2

f2 on T , then f1 = f2 and Iφ1
φ2

is a bijection. Furthermore

⟨Iφ1
φ2

f1, Iφ1
φ2

f2⟩H φ1
φ2

:= ⟨f1, f2⟩L2 is a well-defined inner product and, following the proof of Theorem 3.8,

(H φ1
φ2

, ⟨·, ·⟩H φ1
φ2

) is a real, separable Hilbert space. To find a dense embedding I : H φ1
φ2

→ C2, take I as

the inclusion map ι; then the conditions on ϕ1, ϕ2 in Assumption 3.7 imply that H φ1
φ2

is dense in C2 by [11,

Lemma 2.1]. Finally, f∗ ∈ (C2)∗ is a real, centred Gaussian random variable on (C2,B(C2), µ), where µ

denotes the measure induced by (Y 1, Y 2), and V(f∗) =
∫
C2(f

∗)2dµ2 = ∥f∗∥2L2(C2,µ2)
= ∥ι∗f∗∥2

(H
φ1
φ2

)∗
, so

that by Definition 3.4, H φ1
φ2

is the RKHS of the measure induced by (Y 1, Y 2) on C2. �

Proof of Theorem 2.7. Let the two-dimensional rescaled process (Zε, Bε) be as in (2.5). From Theo-

rem 3.17 and Corollary 3.11 the sequence ((Zε, Bε))ε≥0 satisfies a LDP with speed ε−β and rate function

(with H Kα
ρ given in Corollary 3.11)

Λ∗(zxy) =


1

2

∥∥zxy∥∥2H Kα
ρ

, if zxy ∈ H Kα
ρ ,

+∞, otherwise.

Pathwise, we may view the map t 7→ (Zε
t , B

ε
t )

⊤ as an element of C2, and write(
vεt
Bε

t

)
= M

(
Zε

Bε

)
(t, ε).

We first verify that the operator M in (2.8) is continuous with respect to the C(T ×R+,R+×R) norm
∥ · ∥∞. For any (f, g)⊤ ∈ C2, introduce a small perturbation (δf , δg) ∈ C2. Then∥∥∥∥M(

f + δf

g + δg

)
−M

(
f

g

)∥∥∥∥
∞

= sup
t∈T ,ε>0

{∣∣∣(m(f + δf ))(t, ε)− (mf)(t, ε)
∣∣∣+ |δg(t)|

}
≤ sup

t∈T ,ε>0

{
v1+β
0 exp

(
−η2

2
(εt)β

) ∣∣∣ef(t)∣∣∣ ∣∣∣eδf (t) − 1
∣∣∣}+ sup

t∈T
|δg(t)|

≤ C sup
t∈T

∣∣∣eδf (t) − 1
∣∣∣+ sup

t∈T
|δg(t)|,

for some strictly positive constant C. The right-hand side clearly tends to zero as (δf , δg) tends to zero

with respect to the sup norm on C2, and hence M is a continuous operator. The Contraction Principle

(Proposition 3.16) therefore implies that the sequence ((vε, Bε))ε≥0 satisfies a LDP on C(T ×R+,R+×R),
with speed ε−β and rate function Λ. Since M is clearly a bijection, the rate function Λ may then be

expressed as Λ(zx1
y1
) = Λ∗ (M−1(zx1

y1
)
)
, for any (x1, y1) ∈ C2.

In the second step we will apply Theorem 3.19 to prove that the sequence of stochastic integrals

(I(vε, Bε)(·))ε≥0 := (
∫ ·
0

√
vεsdB

ε
s)ε≥0 satisfies a LDP. Since Bε = εα+1/2B by (2.6), we can write the

stochastic integral I(vε, Bε)(·) = I(ε2αvε,
√
εB)(·), which holds almost surely, and therefore [23, Example

2.1] the sequence of (semi)-martingales (
√
εB)ε≥0 is UET in the sense of Definition 3.18. Since the

sequence (
√
ε2αvε)ε≥0 consists of càdlàg, (Ft)-adapted processes, Theorem 3.19, implies that the sequence

of stochastic integrals (I(vε, Bε)(·))ε≥0 satisfies a LDP with speed ε−β and rate function

ΛX(z) = inf{Λ(zxy), z = I(x, y) and y ∈ BV ∩ C}.

The final step is to prove the LDP for Xε =
∫ ·
0

√
vεsdB

ε
s − 1

2

∫ ·
0
vεsds. To do this we show that the

sequences (Xε)ε≥0 and (I(vε, Bε))ε≥0 are exponentially equivalent. For any δ > 0 it follows that

P

(
sup

t∈[0,1]

|Xε
t − I(vε, Bε)(t)| > δ

)
≤ P

(∫ 1

0

vεsds > δ

)
≤ P

(∫ 1

0

exp(Zε
s )ds > bε

)
,
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where bε := δ/v0ε
1+β . Using that

∫ 1

0
exp(Zε

s )ds ≤ exp(supt∈[0,1] Z
ε
t ) almost surely, it follows that

P
(∫ 1

0

exp(Zε
s )ds > bε

)
≤ P

(
sup

t∈[0,1]

Zε
t > log bε

)
= P

(
sup

t∈[0,1]

Zt >
log bε
εβ/2

)
.

The process (Zt)t∈[0,1] is almost surely bounded [1, Theorem 1.5.4], and so we may apply the Borell-TIS

inequality; a consequence of which [1, Theorem 2.1.1 and discussion below], implies that

P

(
sup

t∈[0,1]

Zt >
log bε
εβ/2

)
≤ exp

−1

2

(
log bε
εβ/2

− E

(
sup

t∈[0,1]

Zt

))2
 .

This then implies that

εβ logP
(∫ 1

0

exp(Zs)ds > bε

)
≤ εβ

− (log bε)
2

2εβ
+

log bε
εβ/2

E

(
sup

t∈[0,1]

Zt

)
− 1

2
E

(
sup

t∈[0,1]

Zt

)2
 .

Note that εβ/2 log bε onverges to zero as ε tends to zero, which in turn implies that

lim sup
ε↓0

εβ/2 log bεE

(
sup

t∈[0,1]

Zt

)
= 0.

Similarly, lim supε↓0 ε
βE
(
supt∈[0,1] Zt

)2
= 0. Furthermore, it follows that

lim sup
ε↓0

εβ
(
− (log bε)

2

2εβ

)
= −∞,

and therefore

lim sup
ε↓0

εβ logP

(
sup

t∈[0,1]

|Xε
t − I(vε, Bε)(t)| > δ

)
= −∞,

which is precisely the definition of exponential equivalence [15, Definition 4.2.10]. Then, by [15, Theorem

4.2.13], the sequence (Xε)ε≥0 satisfies a LDP with speed ε−β and rate function ΛX . �

Proof of Theorem 3.13. Let X := (X1, . . . , Xn) be an n-dimensional random vector taking values on E n,

where each Xk has distribution µ, so that the average 1
n

∑n
k=1 X

k has distribution µ1/n. Lemma 3.12

implies that
∫

E exp(α∥x∥2E )µ1/n(dx) is finite for some α > 0, and [14, Theorem 3.3.11] yields a LDP for

the sequence (µ1/n)n≥1, with rate function Λ∗
µ. Define now n(ε) :=

⌊
1
ε

⌋
∨ 1 and ℓ(ε) := εn(ε) for ε > 0,

noting that ℓ(ε) ∈ [1−ε, 1) for ε ∈ (0, 1/2) and in [ 12 , 1] for ε ∈ [1/2, 1]; for a Gaussian random variable X

with distribution µ1/n(ε), it follows that ℓ(ε)1/2X has distribution µε. For a closed subset B of E , we

define the dilated set B̃ :=
{
ℓ−1/2x : for all ℓ ∈

[
1
2 , 1
]
, x ∈ B

}
, so that

lim sup
ε↓0

ε logµε(B) = lim sup
ε↓0

ℓ(ε)

n(ε)
logµ1/n(ε)

(
ℓ(ε)−1/2B

)
≤ lim sup

ε↓0

1

n(ε)
logµ1/n(ε)(B̃) = lim sup

n↑∞

1

n
logµ1/n(B̃) ≤ − inf

x∈B̃
Λ∗
µ(x).

The large deviations upper bound then follows from the obvious equalities

inf
x∈B̃

Λ∗
µ(x) = inf

ℓ∈[ 12 ,1]
inf
x∈B

Λ∗
µ(ℓ

−1/2x) = inf
ℓ∈[ 12 ,1]

ℓ−1 inf
x∈B

Λ∗
µ(x) = inf

x∈B
Λ∗
µ(x).

Now for any x in any open set C ⊂ E , we can find an open neighbourhood Ox such that Ox ⊆ ℓ(ε)−1/2C

for all 0 < ε < ε0 with ε0 ∈
(
0, 1

2

]
. The large deviations lower bound then follows from the inequalities

lim inf
ε↓0

ε logµε(C) = lim inf
ε↓0

ℓ(ε)

n(ε)
logµ 1

n(ε)

(
ℓ(ε)−1/2C

)
≥ lim inf

n↑∞

1

n
logµ 1

n
(Ox) ≥ − inf

y∈Ox

Λ∗
µ(y) ≥ −Λ∗

µ(x).

�

Remark 4.1. The proof of Theorem 3.13 stills holds for the case where tβ/2X ∼ µt with speed t−β , and

the proof can be easily adapted to confirm this case.
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5. Large deviations for the uncorrelated Rough Bergomi model

We treat here the special case of (2.3), where the Brownian motions W and B are independent (ρ = 0).

Following similar arguments to Corollary 3.11, and mimicking (2.4), we introduce the L2 operator I0 as

I0(f1, f2) :=

(
IKαf1
I1f2

)
, for any f1, f2 ∈ L2,

so that the RKHS (on C2) of the measure induced by (Z,B) is H :=
{
I0(f1, f2) : f1, f2 ∈ L2

}
, with

inner product
⟨
I0(f1, f2), I0(g1, g2)

⟩
H

:= ⟨f1, g1⟩L2 + ⟨f2, g2⟩L2 , for any f1, f2, g1, g2 ∈ L2. Similarly to

Theorem 2.7, [14, Theorem 3.4.12] yields a LDP on C2 for ((Zε, Bε))ε≥0 with speed ε−β and rate function

Λ(zxy) :=

{ 1

2

∥∥zxy∥∥2H , if(x, y)⊤ ∈ H ,

+∞, otherwise.

This in turn yields a LDP for ((vε, Bε))ε≥0 in (2.5) on C2 with speed ε−β and rate function Λ̃(zxy) :=

inf
{
Λ(zx

∗

y∗ ) : zxy = Mzx
∗

y∗

}
, where the operator M is defined in (2.8). In the same vein as Theorem 2.7,

Theorem 3.19 yields a LDP for (
∫ ·
0

√
vεsdB

ε
s)ε≥0 on C with speed ε−β and rate function Λ̂X , defined as

Λ̂X(φ) := inf
{
Λ̃(zxy) : φ = x · y, y ∈ BV ∩ C

}
= inf

{
Λ(zx

∗

y∗ ) : φ = x · y, zxy = Mzx
∗

y∗ , x∗, y∗ ∈ H
}

= inf
{
Λ(zxy) : φ = x · y, zxy = M(I0(f1, f2)), f1, f2 ∈ L2

}
= inf

f1,f2∈L2

{
1

2
∥f1∥2L2 +

1

2
∥f2∥2L2 : φ =

∫ ·

0

√
m ((IKαf1)(s))f2(s)ds

}
.

with m introduced in (2.9). Following identical an identical argument to that presented in Theorem 2.7,

we conclude that (Xε)ε>0 satisfies a LDP with speed ε−β and rate function Λ̂X .

References

[1] R.J. Adler and J.E. Taylor. Random Fields and Geometry. Springer-Verlag, New York, 2007.

[2] C.D. Aliprantis and K.C. Border. Infinite dimensional analysis: a hitchhiker’s guide, Third Edition. Springer-Verlag,

Berlin, Heidelberg, 2006.
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[16] J.E. Figueroa-López and M. Forde. The small-maturity smile for exponential Lévy models. SIAM Journal on Financial
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