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1 Black-Scholes and realised volatility

What happens when a trader uses the Black-Scholes (BS in the sequel) for-
mula to sell and dynamically hedge a call option, at a given constant volatility,
whereas the realised volatility will be what it will be, i.e. certainly not a con-
stant?
It is not difficult to show that the answer is the following: if the realised volatility
is lower than the managing volatility, the corresponding Profit and Loss (P&L)
will be non negative. Indeed, a simple-yet clever application of Itô’s formula
shows us that the instantaneous P&L of being short a delta-hedged option reads
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(1)

Where Γ is the Gamma of the option (the second derivative with respect to the
underlying, which is positive for a call option), and σt the spot volatility, i.e.

the volatility at which the option was sold and
(
dSt

St

)2

represents the realised
variance over the period [t, t+ dt]. Note that this holds without any assump-
tion on the realised volatility which will certainly turn out to be non constant.
This result is fundamental in practice: it allows traders to work with neither
exact knowledge of the behaviour of the volatility nor a more complex toolbox
than the plain Black-Scholes formula; an upper bound of the realised volatility
is enough to grant a profit (conversely, a lower bound for option buyers). This
way of handling the realised volatility with the Black-Scholes formula is of his-
torical importance in the option market. El Karoui, Jeanblanc and Shreve have
formalized it masterfully in [6].
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2 Superhedging strategies and the Uncertain Volatil-
ity Model (UVM)

2.1 The UVM framework

Fine. Assume you perform the previous strategy. You are certainly not alone in
the market, and you wish you have the lowest possible selling price compatible
with your risk aversion. In practice on derivatives desk (this is a big difference
with the insurance world where the risk is distributed among a large enough
number of buyers) the risk aversion is total, meaning that your managing policy
will aim at yielding a non negative P&L whatever the realised path. This ap-
proach is what is called the superhedging strategy (or superstrategy) approach
to derivative pricing. Of course, the larger the set of the underlying scenarii (or
paths) for which you want to have the superhedging property, the higher the
initial selling price.

The first set which comes to mind is the set of paths associated with an
unknown volatility, say between two boundary values σmin and σmax. That
is, we look for the cheapest price at which we can sell and manage an option,
without any assumption on the volatility except that it lies in the [σmin, σmax]
range. This framework is the Uncertain Volatility Model (UVM) introduced by
Avellaneda, Levy and Paras in [2].

If you take a call option (or more generally a European option with convex
payoff), the BS price at volatility σmax is a good candidate. Indeed it yields a
superhedging strategy by result (1). And should the realised volatility be con-
stantly σmax, then your P&L will be 0. It is easy to conclude from that the BS
σmax price is the UVM selling price for an option with a convex payoff.

Now very often traders use strategies (butterflies, callspreads,...) which are
not convex any longer. It is not at all easy to find a superstrategy in that
case. Except one: if you hedge at the selling time and does not rebalance your
hedge before maturity, the cheapest price associated to such a strategy will be
the value at the initial underlying value of the concave envelope of the payoff
function. It is easy to see that this value corresponds to the total uncertainty
case, or yet to the [0,∞] case in the UVM model. For a call option it will be
the value of the underlying.

2.2 The Black-Scholes Barenblatt equation

There comes into play the seminal work [2] and independently [4]. Going back
to (1), we are looking for a model with the property that the managing volatility
is σmin when the gamma is non negative, and σmax in the converse situation.
Should such a model exist, it will yield the optimal solution to the superhedging
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problem.

An easy way to approximate the optimal solution is to consider a tree (a
trinomial tree for instance) where the dependence upon the volatility lies in
the node probabilities and not in the tree grid. In the classical backward pric-
ing scheme one can then choose the managing volatility according to the local
convexity (since it is a trinomial tree, each node has three children and so a
convexity information) of the immediately forward price. Of course, it is not
the convexity of the current price since we are calculating it, but the related
error of replacing the current convexity by the forward one will certainly go to
zero when the time step goes to zero.

The related continuous-time object is the Black-Scholes partial differential
equation (PDE) where the second order term is replaced by the non-linear:

1
2
S2
t

(
σ2

maxΓ+ − σ2
minΓ−

)
Where as usual x+ and x− denotes the posive and negative parts. This PDE
has been named Black-Scholes-Barenblatt since it looks like the Barenblatt PDE
occuring in porosity theory. More precisely, in case of no arbitrage, assume that
the stock price dynamics satisfy dSt = St (rdt+ σtdWt), where Wt is a standard
Brownian motion, r is the risk-free interest rate. This being valid under the class
P of all the probability measures such that σmin ≤ σt ≤ σmax. Let Πt denote
the value of a derivative at time t written on St with maturity T and final payoff
Φ (ST ), then at any time 0 ≤ t ≤ T , we must have

W− (t, St) = inf
P∈P

EPt
[
e−r(T−t)Φ (ST )

]
≤ Πt ≤ sup

P∈P
EPt
[
e−r(T−t)Φ (ST )

]
= W+ (t, St)

Where the two bounds satisfy the following non-linear PDE, called the Black-
Scholes-Barenblatt equation (which obviously reduces to the classical Black-
Scholes one in the case σmin = σt = σmax):
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With terminal condition
W± (S, T ) = Φ (ST )
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Observe that in case Φ is convex, then the Black-Scholes price at volatility σmax

is convex for any time t, so that it solves the Black-Scholes-Barenblatt equation.
Conversely, if Φ is concave, so is its Black-Scholes price at volatility σmax for
any time t, which yields the unique solution to the Black-Scholes-Barenblatt
equation.
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2.3 Superstrategies and stochastic control

Note that this PDE is also a classical Hamilton-Jacobi-Bellman equation oc-
curing in stochastic control theory. Indeed a related object of interest is the
supremum of the risk neutral prices over all the dynamics of volatility that
satisfy the range property:

sup
P∈P

EP f

Where P is the set of risk-neutral probabilities, each of them corresponding to a
volatility process with value at each time in [σmin, σmax]. In fact such an object is
not that easy to define in the classical probabilistic modelling framework, since
two different volatility processes will typically yield mutually singular proba-
bility measures on the set of possible paths. A convenient framework is the
stochastic control framework. In such a framework, the managing volatility be-
ing interpreted as a control, one tries to optimize a given expectation-the risk
neutral price in that case. It turns out that stochastic optimal control will yield
the optimal superstrategy price.

Nevertheless, the connection between the superstrategy problem and stochas-
tic control is not that obvious, and things have to be written carefully in this
respect. Recall that the stochastic control problem is the maximization of an
expectation over a set of processes, whereas the superstrategy problem is the
almost sure domination of the option payoff at maturity by a hedging strategy.

3 Open questions: towards theoretical approach
to model risk

Note that even in the UVM case, there are still plenty of open questions. In
fact, a neat formulation of the superhedging problem is not a piece of cake. The
issue is avoided in [2], handled partially in [4], and more formally in [7], where
the model uncertainty is specified as a set of martingale probabilities on the
canonical space, and also in [8]. Once this is done, a natural theoretical problem,
given such a ”model set”, is to find out a formula for the cheapest superhedging
price. The supremum of the risk neutral prices over all the probabilities of the
set will in general be strictly smaller than the cheapest price, even if they match
in the UVM setting. The precise property of the ”model set” which makes this
equality remains to be clarified. Some partial results in this direction, with
progresses towards a general theorem, are available in [5], where the case of
path-dependent payoffs in the UVM framework is also solved.
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4 UVM in practice

4.1 Lagrangian UVM

In practice, the UVM approach is easy to implement for standard options by
using the tree scheme described above, for example. It can be extended in the
same way for path-dependent options. Nevertheless, when the price pops up,
the usual reaction of the trader or risk officer is that the price is too expensive,
especially too expensive to explain the observed market price.

The fact that the price is expensive is a direct consequence of the total
aversion approach in the superstrategy formulation, and also of the fact that
the price corresponds to the worst-case scenario where the Gamma changes
signs exactly when the volatility switches regimes. This will hardly happen for
real-even if it could.

To lower the price and fit in the traditional setting where one wants to fit
the observed market price of liquid European calls and puts (so called vanillas),
Avellaneda, Levy and Paras propose a constrained extension of the UVM model
where the price of the complex products of the trader is handled with the UVM
framework with the additional constraint of fitting the vanilla prices. By dual-
ity, this reduces to computing the UVM price for a portfolio parameterised by a
Lagragian multiplier and then minimising the dual value function over the La-
grangian parameter. Mathematically speaking, let us consider an asset St and
a payoff Φ (ST ). m European options with payoffs F1 (ST1) , . . . , Fm (STm) with
maybe different strikes and maturities are available for hedging; let f1, . . . , fm
their respective market prices at the time of the valuation t ≤ min (T, T1, . . . , Tm).
Consider now an agent who buys quantities λ1, . . . , λm of each option. His total
cost of hedging then reads

Π (t, St, λ1, . . . , λm) = sup
P∈P

{
e−r(T−t)Φ (ST )−

m∑
i=1

λie
−r(Ti−t)Fi (STi

)

}
+

m∑
i=1

λifi

Where the supremum is calculated within the UVM framework as presented
above, and we must specify a range Λ+

i ≤ λi ≤ Λ−i (Λ±i represent the quantities
available on the market). The optimal hedge is then defined as the solution of
the problem

Π∗ (t, St) = inf
λ1,...,λm

Π (t, St, λ1, . . . , λm)

In fact, the first-order conditions read ∂Π
∂λi

=
m∑
i=1

fi−EP∗
(
e−r(Ti−t)Fi (STi

)
)

= 0,

where P ∗ realises the sup above. These conditions fit exactly the model to ob-
served market prices. The convexity of Π (t, St, λ1, . . . , λm) wrt λi ensures that
if a minimum exists, then it is unique.

This approach is very seducing from a theoretical point of view, but it is much
harder to implement. The consistency of observed vanilla prices is a crucial step
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which is rarely met in practice. Even if numerous robust algorithms exist to
handle the dual problem, their implementation is quite tricky. In fact this con-
strained formulation implies a calibration property of the model, and the design
of a stable and robust calibration algorithm is one of the greatest challenges in
the field of financial derivatives.

4.2 The curse of non-linearity

Another issue for practitioner is the inherent non-linearity of the UVM formula-
tion. Most traditional models like Black-Scholes, Heston, or Lévy-based models
are linear models. The fact that that an option price should depend on the whole
portfolio of the trader is a no-brainer for risk officers, but this non-linearity is a
challenge for the modularity and the flexibility of pricing systems. This is very
often a no-go feature in practice.

The complexity of evaluating a portfolio in the UVM framework is real, as
studied thorougly by Avellaneda and Buff in [1]. Following [1], let us consider a
portfolio with n options with payoffs f1, . . . , fn and maturities t1, . . . , tn. The
computational problem becomes tricky when the portfolio consists of barrier
options. Indeed, this means that, at any time step, the portfolio we are trying
to value might be different (in case the stock price has reached the barrier of any
option) than the one at the previous time step. Because of the non-linearity, a
PDE specific to this portfolio has to be solved in this case. In [1], Avellaneda
and Buff addressed this very specific issue : a naive implementation would
require solving the 2n − 1 non-linear PDE, each representing a subportfolio.
They provide an algorithm to build the minimal number Nn of subportfolios
(i.e. of non-linear PDE to solve) and show that

• If the initial portfolio consists of barrier (single or double) and vanilla
options, then Nn ≤ n(n+1)

2

• If the initial portfolio only consists of single barrier options (nu up-and-
out and nd = n − nu down-and-out), then Nn = nd + nu + ndnu. This
assumes that all the barrier are different. If some are identical, then the
number of required computations decreases.

Numerically speaking, the finite-difference pricing is done on a lattice matching
almost exactly all the barriers. Still in [3], they provide an optimal construction
of the lattice to solve the PDEs.
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