Correction Note to Pathwise Large Deviations for the Rough Bergomi Model

Stefan Gerhold, Thomas Wagenhofer
TU Wien
1040 Vienna, Austria
sgerhold@fam.tuwien.ac.at

Antoine Jacquier, Mikko Pakkanen, Henry Stone Imperial College, South Kensington Campus, London SW7 2AZ, UK a.jacquier@imperial.ac.uk

October 13, 2020

Abstract

This note corrects an error in the definition of the rate function in [Jacquier et al., Pathwise large deviations for the rough Bergomi model, J. Appl. Prob. 2018] and slightly simplifies some proofs.

1 Corrected rate function

Note that the correct rate function also appears in the PhD thesis [3] (see Proposition 1.4.18), but with a different proof. We first give a slightly simplified proof of Theorem 3.1 in [1]. Any unexplained notation is as in [1]. Let $Y := \int_0^{\cdot} \varphi(u, \cdot) dW_u$ be the Gaussian process from that theorem, and $K_Y : \mathcal{C}^* \to \mathcal{C}$ its covariance operator (definition on p. 5 of [2]). As noted in [1], \mathcal{I}^{φ} is injective by Titchmarsh's convolution theorem. By the factorization theorem (Theorem 4.1 in [2]) and the discussion on pp. 32–33 of [2], it suffices to verify the factorization identity $\mathcal{I}^{\varphi}(\mathcal{I}^{\varphi})^* = K_Y$ to conclude that the RKHS is the image $\mathcal{I}^{\varphi}(L^2([0,1]))$. By Fubini's theorem, we have $(\mathcal{I}^{\varphi})^*\mu = \int_{\cdot}^{1} \varphi(\cdot,t)\mu(dt)$ for any measure $\mu \in \mathcal{C}^*$. We then compute, for

 $\mu, \nu \in \mathcal{C}^*$

$$\mu(\mathcal{I}^{\varphi}(\mathcal{I}^{\varphi})^*\nu) = \int_0^1 \int_0^t \varphi(u,t) \int_u^1 \varphi(u,s) \, \nu(ds) \, du \, \mu(dt)$$
$$= \int_0^1 \int_0^1 \int_0^{s \wedge t} \varphi(u,t) \varphi(u,s) \, du \, \nu(ds) \, \mu(dt)$$
$$= \int_0^1 \int_0^1 \mathbb{E}[Y_t Y_s] \, \nu(ds) \, \mu(dt) = \mathbb{E}[\mu(Y)\nu(Y)],$$

which proves the theorem.

The second definition in (2.3) of [1] should be replaced by the following one.

Definition 1.1. For $\Phi: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^{2\times 2}$, define $\mathcal{I}^{\Phi}: L^2([0,1],\mathbb{R}^2) \to L^2([0,1],\mathbb{R}^2)$ by

$$\mathcal{I}^{\Phi} f := \int_{0}^{\cdot} \Phi(u, \cdot) f(u) du.$$

The following theorem replaces Theorem 3.2 of [1].

Theorem 1.2. Let φ_1, φ_2 satisfy Assumption 3.1 of [1], and define $Y_i := \int_0^{\cdot} \varphi_i(u,\cdot) dW_u^i$, i = 1, 2, where W^1 and W^2 are standard Brownian motions with correlation $\rho \in (-1,1)$. Then the RKHS of (Y_1, Y_2) is

$$\mathcal{H}^{\Phi} := \{ \mathcal{I}^{\Phi} f : f \in L^2([0,1], \mathbb{R}^2) \},$$

with inner product $\langle \mathcal{I}^{\Phi} f, \mathcal{I}^{\Phi} g \rangle = \langle f, g \rangle$, where

$$\Phi = \begin{pmatrix} \varphi_1 & 0\\ \rho \varphi_2 & \sqrt{1 - \rho^2} \varphi_2 \end{pmatrix}.$$

Proof. Analogous to the proof above. Injectiveness of \mathcal{I}^{Φ} follows from the Titchmarsh convolution theorem. For a measure $\mu \in (\mathcal{C}^2)^*$, we have $(\mathcal{I}^{\Phi})^*\mu = \int_{\cdot}^{1} \Phi^{\top}(\cdot,t)\mu(dt)$. The factorization identity $\mathcal{I}^{\Phi}(\mathcal{I}^{\Phi})^* = K_{Y_1,Y_2}$ is verified as above.

Theorem 1.2 implies the following corollary, which replaces Corollary 3.2 of [1].

Corollary 1.3. The RKHS of the measure induced on C^2 by the process (Z, B) is \mathcal{H}^{Ψ} , where

$$\Psi = \begin{pmatrix} K_{\alpha} & 0\\ \rho & \sqrt{1 - \rho^2} \end{pmatrix}.$$

Consequently, $\|\cdot\|_{\mathcal{H}^{\Psi}}$ should replace $\|\cdot\|_{\mathcal{H}^{K_{\alpha}}_{\rho}}$ in line 4 of p. 1083 and in the proof of Theorem 2.1 of [1] on p. 1088. The special case $\rho = 0$ requires no separate treatment, and the result agrees with Section 5 of [1].

2 Minor corrections

- 1. p. 1079, last line of the introduction: replace \int_0^1 by \int_0^{\cdot} .
- 2. p. 1084, definition of topological dual: add "continuous" before "linear functionals".
- 3. p. 1085, second displayed formula: After the second =, replace f by $\Gamma(f^*)$.
- 4. In the statement of Theorem 3.4, $\varepsilon\mu$ should be replaced by $\mu(\varepsilon^{-1/2}\cdot)$. The speed $\varepsilon^{-\beta}$ resulting from the application of the theorem on p. 1088 is correct, though.
- 5. First line of p. 1089: Replace $v_0^{1+\beta}$ by $v_0\varepsilon^{1+\beta}$. To make the estimate work for t=0, confine ε to the finite interval [0,1] instead of \mathbb{R}^+ in line -4 of p. 1088.

References

- [1] A. Jacquier, M. S. Pakkanen, and H. Stone, *Pathwise large deviations for the rough Bergomi model*, J. Appl. Probab., 55 (2018), pp. 1078–1092.
- [2] M. Lifshits, *Lectures on Gaussian processes*, SpringerBriefs in Mathematics, Springer, Heidelberg, 2012.
- [3] H. Stone, Rough volatility models: small-time asymptotics and calibration, PhD thesis, Imperial College, 2019.