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Abstract

We elucidate physical aspects of path signatures by formulating randomised path developments within
the framework of matrix models in quantum field theory. Using tools from physics, we introduce a new
family of randomised path developments and derive corresponding loop equations. We then interpret uni-
tary randomised path developments as time evolution operators on a Hilbert space of qubits. This leads to
a definition of a quantum path signature feature map and associated quantum signature kernel through a
quantum circuit construction. In the case of the Gaussian matrix model, we study a random ensemble of
Pauli strings and formulate a quantum algorithm to compute such kernel.

Contents

1 Introduction 2

2 Background 5
2.1 Quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Wilson lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Path signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Signature kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Universal Limit of Matrix Model Unitary Developments 11
3.1 Non-commutative laws and Schwinger-Dyson equations . . . . . . . . . . . . . . . . . . . 12
3.2 Path loop equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Quantum algorithm 18
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Quantum circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Quantum signature kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion 26

References 27

A Technical proofs 30

B Proof of Theorem 4.8 32

C Proofs of Theorem 4.11 and Theorem 4.12 41
C.1 Quantum algorithm: Proof of Theorem 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.2 Classical Monte Carlo algorithm: Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . . 42

1These authors contributed equally to this work.

1

ar
X

iv
:2

50
8.

05
10

3v
1 

 [
qu

an
t-

ph
] 

 7
 A

ug
 2

02
5

https://arxiv.org/abs/2508.05103v1


1 Introduction
On sufficiently fine time scales, many types of sequential data, such as audio, video, time series, or text, can
naturally be modelled as paths γ : [0, 1]→ Rd. The idea that such paths can be characterised (up to reparam-
eterisation) by their path signature was first introduced by Chen [Che57] for smooth paths, and later extended
to more irregular paths in the context of rough path theory [Lyo98; HL10; Boe+16]. In this work, we elucidate
a connection between quantum field theory (QFT) and the theory of path signatures. Adopting the language
of QFT, refined later in Section 2, we treat a path γ as a Wilson line and interpret its signature as arising from
parallel transport in gauge theory. This perspective allows us to draw on tools from high-energy theoretical
physics to study a class of differential equations driven by random vector fields sampled from so-called matrix
model distributions, which develop the path into a unitary group. An important instance of this framework
is the Gaussian unitary development, whose physical interpretation naturally leads to a representation of the
control system as a quantum circuit acting on a Hilbert space of qubits. This construction, in turn, gives rise
to a quantum algorithm whose output approximates the associated quantum signature kernels.

The path signatureS(γ) is formally defined as the solution to the tensor differential equationdy = y⊗dγ
in the free tensor algebra T ((Rd)) :=

∏∞
n=0(Rd)⊗n, and thereby can be seen as a non-commutative analogue

of the exponential function. By applying Picard iteration, one recovers the familiar formulation of the sig-
nature as the sequence of iterated integrals

(
∫

0<t1<···<tn<1 dγt1 ⊗ · · · ⊗ dγtn

)
n∈N

. It is a classical result

that linear functionals on T ((Rd)), when restricted to the image of the signature map, form a unital algebra
that separates points. Consequently, the classical Stone–Weierstrass theorem ensures that linear functionals
on signatures are dense in the space of continuous real-valued functions defined on compact subsets of unpa-
rameterised paths [CT24b]. This makes the signature a powerful representation, enabling the approximation
of arbitrary path-dependent functionals using linear models [Sal+23]. Indeed, signature methods have seen a
rapid rise in popularity in recent years, finding applications across a broad range of domains in data science,
including deep learning for sequence modelling [Kid+19; Mor+21; SLG22; Hog+23; Muç+24; Iss+24; BHS24;
MS25a], quantitative finance [ASS20; Sal+21b; Hor+23; PS24; MS25b], cybersecurity [Coc+21], and compu-
tational neuroscience [HS24], among many others. The interested reader is referred to [CS24] for a detailed
and pedagogical account on the subject and to [Fer+23] for an overview of recent applications.

In practice, the paths encountered in data-driven applications are typically constructed via piecewise linear
interpolation of discrete time series. By combining Chen’s identity with the fact that the signature of a linear
segment is given by the tensor exponential of its increment, one obtains a concise formula for the signature
of a piecewise linear path γ = γ1 ∗ · · · ∗ γL as S(γ) = exp

(
∆γ1

)
⊗ · · · ⊗ exp

(
∆γL

)
. This expression

underlies the implementation of signature computations in standard Python libraries such as esig [La10],
iisignature [RG18], and signatory [KL21]. It enables an efficient and exact evaluation of the signature,
with time complexityO(Ldn), where n ∈ N denotes the truncation level. However, due to the exponential
growth in the dimension d, the method becomes computationally prohibitive as n increases. A commonly-
taken approach solution to this dimensionality issue making use of signature kernel methods has become pop-
ular [Lem+21b; Sal21; Lem+21a; Man+24; SS24]. These allow for efficient computation of kernels of the form
⟨S(γ),S(σ)⟩, for various choices of inner product ⟨·, ·⟩ on T ((Rd)), without the need for computing S(γ)
directly, for example leveraging the recent result that the signature kernel satisfies a Goursat PDE [Sal+21a].

Another promising recent alternative to these ideas is a proposal to use the development of γ into a matrix
Lie group [LLN22]. In this formulation, the central object becomes not the signature but related representa-
tions obtained by the evolution

dU(γ;M)t = U(γ;M)t ·M(dγt) =
d∑

j=d

U(γ;M)tAjdγ
j , U(γ;M)0 = IN , (1)

where U(γ;M) belongs to a matrix Lie group GN , M is a map in Hom(Rd, gN ) such that
M(v) =

∑d
j=1Ajv

j for A1, · · · , Ad ∈ gN , with gN denoting the associated Lie algebra, the latter being
isomorphic to the space of left-invariant vector fields onGN , and in which · denotes matrix multiplication. In
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this work we consider the physical and geometrical interpretation of the development ofγ as a parallel transport
operator on aGN bundle. The solution to (1) can be expressed in terms of the signature as

U(γ;M)t =
∑

w∈Wd

i|w|AwSw0,t(γ), (2)

where the sum is taken over all words in d letters. An important example of this framework is when
GN = U(N) is the unitary group, whose corresponding Lie algebra gN = u(N) is the set of anti-Hermitian
matrices. We note that the critical issue of dimensionality outlined above is transferred, rather than resolved,
from the selection of a truncation parameter in the signature to the choice of a Lie group of sufficiently high
dimension for the method to be effective. A promising approach recently proposed in the literature [CT24a;
MLS23] consists of randomising the choice of vector fields M = (A1, . . . , Ad) ∼ µNV over a suitable class
of (Borel) probability measures µNV on the Lie algebra and study the limiting behaviour of (inner products of
such) path developments asN tends to infinity.

The physical perspective adopted in this work interprets path development as parallel transport in gauge
theory. This viewpoint leads to an interpretation of vector field randomisation as a zero-dimensional quan-
tum field theory, where integration over gauge fields is realised via a matrix-valued path integral. Conversely,
we introduce path developments as a novel class of observables in matrix model theory, interpolating between
zero-dimensional quantum field theory and Yang–Mills theory. More precisely, we will be interested in charac-
terising the large-N behaviour of the law of the random variables

⟨U(γ;M), U(σ;M)⟩HS := lim
N→∞

1

N
Tr
(
U(γ;M)U(σ; ·)†

)
underM ∼ µNV , (3)

where, importing tools from theoretical physics, we consider µNV a matrix model measure on u(N) given
by [GM06; GM07]

dµNV (M) ∝ exp
(
−Ntr

(
V (M)

))
dM, (4)

where tr
(
·
)

denotes the normalised trace defined by tr
(
·
)
:= 1

NTr
(
·
)

and V (A) denotes a Gaussian-
perturbed polynomial potential

V (A) = V (A1, · · · , Ad) =
1

2

d∑
i=1

A2
i +W, (5)

where W is a polynomial satisfying some suitable convexity conditions. By combining techniques from non-
commutative probability theory [Gui19] and rough path theory [CS24], we can define the limit

kµ
∞
V (γ, σ) := lim

N→∞
EM∼µN

V

[
tr
(
U(γ;M)U(σ;M)†

)]
, (6)

and moreover understand kµ∞
V (γ, σ) in terms of the signature of the path y = γ ∗←−σ :

kµ
∞
V (γ, σ) =

∑
w∈Wd

i|w| lim
N→∞

EµN
V

[
tr
(
Aw

)]
Sw(y) (7)

:=
∑

w∈Wd

i|w|τV (Aw)Sw(y), (8)

where τV (Aw) is a non-commutative law satisfying the Schwinger-Dyson equation (Theorem 3.9). We use
this structure to prove that kµ∞

V (γ, σ) = ky(1, 1), where ky : [0, 1]2 → R satisfies an integro-differential
equation of the form (Theorem 3.14)

⟨γs,t⟩µ∞
V

= 1−
∫

s≤u≤v≤t

⟨γs,u⟩µ∞
V
⟨γu,v⟩µ∞

V
⟨dγu,dγv⟩ −

d∑
k=1

∫ t

s
Dk

V ⟨γs,u⟩µ∞
V
dγku, (9)
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with the boundary condition ⟨γs,s⟩µ∞
V

= 1 for all s ∈ [0, T ], and where the pathwise derivativeDk
V will be

rigorously defined in Section 3.
This result generalises the findings in [CT24a], where the special case of quadratic potential

V = 1
2

∑d
i=1X

2
i was considered along with variants1 leading to the same limiting PDE, for which µNV cor-

responds to the classical Gaussian unitary ensemble (GUE). We show in addition that the integro-differential
equation (9) has a unique solution when the solution space is restricted to (infinite) linear functionals on the
signature.

In Section 4 we turn our attention to the GUE ensemble and piecewise linear paths γ : [0, T ] → Rd

given asL specified increment vectors {∆1
l ,∆

2
l , . . . ,∆

d
l }Ll=1. We consider the path development as a unitary

operator onH = (C2)⊗n, a Hilbert space of n qubits. A linear basis of generators of unitary operators on
qubits is given by Pauli strings: length n tensor products of the Pauli matrices P = {σI , σX , σY , σZ}. We
define a random ensemble of linear combinations of Pauli strings

Aν =
∑
w∈P

αw
ν σw, ν = 1, . . . , d, (10)

where the coefficients are randomly distributed as defined precisely in Definition 4.6.
We first demonstrate that the GUE randomised path development may be approximated by a development

driven by this sparse ensemble of random Pauli strings (Theorem 4.8). We then consider a Trotterisation of
this path development into K subdivisions and thereby define a random quantum circuit approximating the
unitary development. The circuit depends on the parameters: K Trotter subdivisions, m densities of Pauli
ensemble and n qubits, and is given by

UQ
γ (α(m), n,K) =

L∏
l=1

 d∏
ν=1

m∏
i=1

Pwi,ν (∆
ν
l α

wi
ν /K)

K

, (11)

where Pw(θ) is a Pauli rotation of angle θ associated to the Pauli string σw. Finally, we use this circuit to
propose an efficient quantum algorithm (Theorem 4.11) in the one clean qubit model of quantum computation
to approximate the GUE path development and the associated kernel.

Outline and summary. This work lies at the intersection of matrix models in quantum field theory (QFT)
and the theory of path signatures, with a particular focus on their applications in machine learning and data
science. Our aim is to make this work accessible to researchers from both communities. To that end, we provide
a concise introduction to the relevant background and establish our notation in Section 2. In Section 3, we apply
classical tools from non-commutative probability theory to derive the integro-differential equation (9) satisfied
by ⟨γs,t⟩µ∞

V
under small perturbations of the Gaussian potential defined by matrix models. Finally, in Section 4,

we introduce quantum analogues of the classical path signature and signature kernel. The main results of this
section demonstrate that the path development driven by the random Pauli ensemble approximates well the
unitary path development and that the associated quantum algorithm is efficient.
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2 Background
In this section, we provide a brief introduction to quantum field theory (QFT) in zero dimensions and path
signatures and set the notation for the rest of the work. We also introduce a novel geometric-physical interpre-
tation of path signatures and signature kernels as matrix model Wilson line correlation functions.

2.1 Quantum field theory

The physical context of our work is that of zero-dimensional QFT in the form of Hermitian matrix models. A
thorough introduction to zero-dimensional QFT aimed at a mathematical audience may be found in [Hor03]
and we refer the reader to [EKR15] for a comprehensive review of matrix model theory. The theory of matrix
models is a classical subject in theoretical Physics [t H93] with deep connections to enumerative geometry via
topological recursion [EO07] and quantum gravity in two dimensions [GM90]. We provide a cursory overview
of the subject and focus on reviewing the basic aspects of loop operators that the present work generalises.

We consider matrix-valued fields fluctuating on a zero-dimensional spacetime. Let us consider the unitary
matrix Lie group

UN = {U ∈MN (C) : U †U = IN}, (12)

whereMN (C) denotesN ×N complex matrices, and the corresponding Lie algebra

uN = {A ∈MN (C) : A† = −A}. (13)

We now consider a connection (or gauge field in the Physics terminology); a Lie algebra-valued one-form which,
in coordinates, may be expressed as an N × N matrix A ∈ uN . Global gauge transformations act on these
matrices by the adjoint action g ·A = g−1Ag with g ∈ UN . In QFT, the Feynman path integral averages over
fluctuating field configurations weighted by a gauge-invariant action. In the present context we integrate over
anti-HermitianN ×N matrices and the measure we choose is a so-called matrix model measure

dµV (A) = exp
(
−Ntr

(
V (A)

))
dA.

We study interacting polynomial potentials of the form

V (A, {gk}) =
1

2
A2 +

m∑
k=3

gk
k!
Ak,

depending on a set of coupling constants{gk}k≥3 andA ∈ uN . We will provide a more mathematically precise
exposition of such matrix model measures in the context of non-commutative probability theory in Section 3.
Finally, we should specify the set of (gauge-invariant) observables we are interested in computing. We write
expectation values as 〈

tr
(
f(A)

)〉
:=

1

Z

∫

dµV (A) tr
(
f(A)

)
, (14)

for a matrix function f(A) and where Z := ⟨1⟩ denotes the partition function. Solving the matrix model
corresponds to determining the moment generating function. In the matrix model context, this object is the
multi-trace correlation function2

Wn

(
x1, . . . , xn; {gk}

)
:=
〈
tr
(

1
x1I−A

)
· · · tr

(
1

xnI−A
)〉

µV ,c
(15)

2The right hand side of this expression is shorthand for the formal generating function of the single trace correlators
⟨tr

(
Al1

)
. . . tr

(
Aln

)
⟩c.
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where the subscript c denotes the connected part of the correlator. Correlation function with n insertions
enjoy a formal asymptotic expansion, the so-called genus expansion, of the form

Wn

(
x1, . . . , xn; {gk}

)
=
∞∑
g=0

N2−2g−nWg,n

(
x1, . . . , xn; {gk}

)
as N →∞. (16)

The single trace functionW0,1 satisfies an algebraic equation, known as the spectral curve of the matrix model.
Its Laplace transform, the so-called loop operator denoted Ŵ0,1, may be expressed as

Ŵ0,1(t) = lim
N→∞

1

N

〈
tr
(
etA
)〉
, (17)

and solves an integral equation known as the loop equation3

V ′
(
d/dt

)
· Ŵ0,1(t) =

(
Ŵ0,1 ⋆ Ŵ0,1

)
(t). (18)

In the present work we develop a generalisation of this matrix model. We study a d-dimensional Hermitian
matrix model together with a smooth path γ : [0, 1] → Rd and replace the exponentials in the loop operator
with path-ordered exponentials

Ŵ0,1(t) = lim
N→∞

〈
tr
(
etA
)〉
−→ Ŵ0,γ(t) = lim

N→∞

〈
tr
(

P exp

∫

γ
A
)〉

. (19)

In the following we derive corresponding loop equations generalising (18) for these path loop operators.

2.2 Wilson lines

We now turn to the study of smooth paths γ : [0, T ] → Rd. In the context of learning and kernel methods,
such paths could be, for example, trajectories of the price a collection of financial instruments or patient heart
rate data. In the present context we think of them as the world line of a charged particle moving through a
gauge field—a so-called Wilson line in the physical terminology—we now explain this construction.

We consider V = Rd as a smooth Riemannian manifold with the Euclidean metric.4 We consider a (topo-
logically trivial) principalG = UN bundle P = V ×G π−→ V . A connection on P is then uniquely specified
by a Lie algebra valued one-form, writtenA ∈ Ω1(V, g), and we consider the case whereA is constant on V .
A path γ : [0, T ] → V then has a unique horizontal lift5 γ̃ : [0, T ] → P where γ̃(t) = (γ(t), g(t)) is
determined by the solution to the ODE

ġ(t) = g(t) ·A(γ̇(t)), g(a) = e. (20)

We now consider a finite-dimensionalG-representationH. We will take throughoutG = UN withH = CN

the fundamental representation and therefore, in a minor abuse of notation, conflateAwith its representation.
Following the Dirac notation convention, vectors in the associated bundle are written as |ψ⟩ ∈ H. We then
define the topologically trivial associated bundle by H = V × H and write the fibre at x ∈ V asHx. The
parallel transport of a vector |ψ⟩ ∈ Hγ(a) along γ from γ(0) ∈ V to γ(T ) ∈ V is then determined by the
solution to (20). In coordinates this equation reads

dU0,t(γ) = U0,t(γ) ·Aµdγ
µ, U0,0 = IN ,

and the solution to this equation defines the path-ordered exponential

U0,T (γ) = P exp

 d∑
µ=1

∫ T

0
Aµdγ

µ

 . (21)

3⋆ denotes convolution. (f ⋆ g)(t) =
∫ t

0
ds f(s)g(t− s).

4The following construction applies more generally to parallelisable manifolds.
5A horizontal lift of a path γ ∈ V is a path γ̃ ∈ P such that π(γ̃) = γ and ˙̃γ lies in the horizontal subspace V ∼= TV .
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Figure 1: The path development as parallel transport in aG = U(N) bundle along a Wilson line.

The setup is illustrated in Fig. 1. Later, in Section 4, the associated bundle will be further interpreted physically
as aN = 2n dimensional Hilbert space of qubitsH = (C2)⊗n and |ψ⟩will represent the state of a register of
qubits. The developmentU0,T (γ) is then a time-dependent many-body time evolution operator.

In the physical terminology γ : [0, T ] → V describes the worldline of a charged particle moving from
γ(0) to γ(T ) through a (constant) electromagnetic field described by the connectionA, that is a Wilson line.
The charge of the particle is described by a vector inH and the parallel transport operator (21) describes how the
charge changes throughout the motion. The constant connection has non-trivial curvature and thus introduces
a path-dependence in this charge evolution. In the data science context, this vector may thus be used as a feature
associated to the path.

In the context of defining kernels on path space, we will later be interested in the expectation values of the
trace of this quantity, tr

(
U0,T (γ)

)
. In summary, we are interested in integrating over the choice of connection

using d-dimensional generalisations of the matrix model integrals discussed in the previous subsection.

Remark 2.1. The quantum theory we define interpolates between zero-dimensional QFT and d-dimensional
Yang-Mills theory. The unitary developmentU0,T (γ)may be considered more generally as a Wilson line in Yang-
Mills theory on Rd where Aµ now varies over spacetime. Instead, we simplify the setup and consider a constant
off-shell gauge field on a parallel manifold averaged over a matrix model.

2.3 Path signatures

When analysing the path-ordered exponentials appearing in (21), it will be convenient to consider power series
expansions. The terms involving the pathγ will be given by its iterated integrals, the collection of which is called
its path signature.6 Arising in the work of K.T. Chen in the 1950s [Che54; Che57] and forming a central part of
Lyons’ rough path theory [Lyo98], the signature has more recently found success both as a theoretical and as a
practical tool in modern machine learning. The signature forms the analogue of the collection of monomials
for vector valued data: under certain conditions, linear functionals of the signature are dense in continuous
functions on compact subsets of (unparameterised) path space [LLN16; CT24b]. Before we give the definition
of a signature we require some basic definitions.

Definition 2.2 (Words). Ford ∈ N, letWd denote the set of words in thed-letters{1, . . . , d} and let∅ ∈ Wd

denote the empty word. DefineAd to be the algebra overWd with base field C and multiplication defined by

wu := w1 · · ·wnu1 · · ·um,
6In fact, the path signature itself fits into the geometric setup of Section 2.2 as a parallel transport on a principal T ((V )) bun-

dle. The corresponding Lie algebra L(V ) has a universal property meaning its g-representations are determined by homomorphisms
ϕ : V → g. Hence connections on G-bundles determine representations of T ((V )) uniquely.
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for w,u ∈ Wd. Define also the map |·| :Wd → N to be the length of a word.

Definition 2.3 (Time-Simplex). For any n ∈ N, define the n-simplex over an interval [a, b] by

∆n
[a,b] :=

{
(t1, . . . , tn) : a ≤ t1 ≤ · · · ≤ tn ≤ b

}
.

Throughout, we will take V ≡ Rd equipped with the standard Euclidean inner product. The signature
of a path γ : [0, T ]→ V is then defined as follows.

Definition 2.4 (Paths and Signatures). Let X := C 1-var([0, T ], V ) be the space of continuous 1-variation
paths γ : [0, T ]→ Rd with γ0 = 0. For γ ∈ X , the signature of γ is a function

S·,·(γ) : ∆2
[0,T ] → T ((V )) :=

∞∏
m=0

V ⊗m,

where Ss,s(γ) = (1, 0, . . .) for all s ∈ [0, T ] and

Ss,t(γ)m :=

∫

∆m
[s,t]

dγt1 ⊗ · · · ⊗ dγtm ∈ V ⊗m,

for m ≥ 1 with Ss,t(γ)0 := 1 ∈ R. For a word w ∈ Wd with |w| = m, we also define the coordinate
iterated integral

Sws,t(γ) :=
∫

∆m
[s,t]

dγw1
t1
· · · dγwm

tm ∈ R,

where S∅s,t(γ) := Ss,t(γ)0 = 1. We will commonly write S(γ) := S0,T (γ) for the signature over the entire
interval.

Proposition 2.5 (Chen’s identities). We define the concatenation of two paths γ, σ ∈ X by

(γ ⋆ σ)t :=

{
γ2t, t ∈ [0, T/2],

γT + σ2(t−T/2), t ∈ [T/2, T ].

Then
S(γ ⋆ σ) = S(γ)⊗ S(σ).

Additionally, we may define the reversal of the path γ by

←−γ t := γT−t − γT .

Then
S(γ ⋆←−γ ) = S(γ)⊗ S(←−γ ) = 1.

Chen’s identities imply that the space of signatures S(X ) ⊂ T ((V )) forms a group with multiplication
given by path concatenation and inverse given by path reversal. Using the signature, we may expand (21) as

U0,T (γ) = P exp

 d∑
i=1

∫ T

0
Aidγ

i
u

 =
∑

w∈Wd

i|w|AwSwa,b(γ), (22)

where i denotes the imaginary unit. In this work, particularly later in the context of kernels, we are interested
in computing the expectation value of this quantity over the matrix models in the large N limit discussed in
the previous subsection. Provided the quantities exist, we introduce the notations

8



⟨γ0,T ⟩µN :=
∑

w∈Wd

i|w|EµN

[
tr
(
Aw

)]
Swa,b(γ), (23)

⟨γ0,T ⟩µ∞ :=
∑

w∈Wd

i|w| lim
N→∞

EµN

[
tr
(
Aw

)]
Swa,b(γ). (24)

Finally, we note that in the cased = 1whenγt = t is a straight line, the signature becomesS0,T (γ)n = Tn/n!.
The right-hand side of (23) then becomes the matrix model moment generating function of trace correlators
discussed in the previous section

⟨10,T ⟩µN =
∞∑
n=0

⟨tr
(
An
)
⟩µN

Tn

n!
=WN (T ).

The present article may then be considered a generalisation of traditional Physics matrix models to the case of d
multi matrices and the observable is upgraded to a Wilson line.

2.4 Signature kernels

We now discuss kernels on path space which are important from an applications perspective. Typically, one
considers a feature map φ : X → H that embeds the data X into a typically high-dimensional (possibly
infinite) Hilbert spaceH where linear methods may be applied. A kernel k : X × X → R is simply the inner
product of the feature map, namely

k(x, y) := ⟨φ(x), φ(y)⟩H. (25)

If one can access the Gram matrixGij = k(xi, xj) for all pairs of points in the dataset, then one can perform a
variety of linear separation techniques without ever evaluating φ. Such an ability is known as a “kernel trick”.
Conversely, every kernel corresponds to some feature map into some Hilbert space, known as the reproducing
kernel Hilbert space (RKHS). Indeed letH0 = span

{
k(x, ·) : x ∈ X

}
, and for functions

f =
n∑

i=1

αik(xi, ·) and g =
m∑
j=1

k(yj , ·),

define

⟨f, g⟩H0 :=

n∑
i=1

m∑
j=1

αiβjk(xi, yj),

thenH := H0 with respect to this inner product. This space satisfies the reproducing property

⟨f, k(x, ·)⟩H = f(x), for all f ∈ H and x ∈ X ,

and the feature map φ is simply given by the embedding x 7→ k(x, ·). By equipping (an appropriate subspace
of)T ((V ))with the standard Hilbert-Schmidt inner product, we arrive at the ordinary signature kernel defined
by

k
sig
s,t(γ, σ) := ⟨S0,s(γ),S0,t(σ)⟩ :=

∞∑
n=0

⟨S0,s(γ)n,S0,t(σ)n⟩V ⊗n ,

which is of the form (25) with feature map φ(·) = S(·). The ordinary signature kernel comes with a kernel
trick, being that ksig

s,t solves the integral equation [Sal+21a]

k
sig
s,t = 1 +

∫ s

0

∫ t

0
k

sig
u,v⟨dγu,dγv⟩. (26)

9



A variety of algorithms [LL24; CPP25; Sal+21a] have been proposed to solve (26), however, they all suffer from
quadratic complexity in the length of the input time series. An alternative approach is to compute the inner
product between low-dimensional random projections of the signature that approximately preserve their inner
products. Indeed, consider the differential equation

dZγ
t =

d∑
i=1

Zγ
t Aidγ

i
t , Zγ

0 = IN ,

where eachAi ∈ RN×N is a random matrix with i.i.d.N
(
0, 1

N

)
entries andN is large. ThenZγ is a GLN (R)-

valued random variable where

⟨Zγ
s , Z

σ
t ⟩ :=

1

N
Tr
(
(Zγ

s )
⊤Zσ

t

) N→∞→ k
sig
s,t(γ, σ),

see for example [MLS23; CT24a]. Solving forZγ is then only linear in the length of the input time series. Sup-
posing that γ = γ1⋆· · ·⋆γn is a piecewise linear paths valued inRd with linear incrementsγi for i = 1, . . . , n,
thenZγ

T is given exactly by the matrix product

Zγ
T = exp

( d∑
i=1

Aiγ
i
1

)
· · · exp

( d∑
i=1

Aiγ
i
n

)
.

Clearly, this exact solution becomes costly to compute whenN is large. An approach to circumvent this issue
might be to consider sparse approximations of the Ai. However, even for sparse Ai, each matrix exponential
is typically dense and so the products are still an obstacle. Supposing however, that the matrices Ai where
instead anti-Hermitian, then each matrix exponential would be a unitary matrix with sparse representation.
Such a setting naturally leads one to consider whether quantum algorithms are applicable, which is the study
of Section 4.3.

In alignment with the previous discussion, in the present work we are interested in kernels on paths induced
by unitary matrix path developments, that is the Wilson line observables introduced above averaged over matrix
models with potential V . The Lie group UN has a natural unitary inner product (the Hilbert-Schmidt inner
product) and we may define

kµ
N
V (γ, σ) := ⟨tr

(
UγU

†
σ

)
⟩µN

V
:=

1

N
⟨Tr
(
UγU

†
σ

)
⟩µN

V
, (27)

where we have replaced Zγ with Uγ to reflect the unitary nature of the developments. The particular case
where µV is the free Gaussian multi-matrix model, i.e. the Gaussian Unitary Ensemble (GUE), will be the
focus of Section 4 where we will discuss its interpretation as the kernel associated to a quantum feature map
built from an efficient quantum circuit. Further, in the case that µV is a free Gaussian multi-matrix model, a
governing integral for

kGUE(γ, σ) := lim
N→∞

kµ
N
V (γ, σ) = lim

N→∞
⟨tr
(
UγU

†
σ

)
⟩µN

V

was derived in [CT24a]. The derivation of the limiting functional equation relied heavily on the Schwinger-
Dyson equation that is asymptotically satisfied by the GUE ensemble. Section 3 is devoted to finding the cor-
responding functional equations in the case of a small perturbation of the Gaussian law. Such perturbations
asymptotically satisfy Schwinger-Dyson equations that are perturbations of the one asymptotically satisfied by
the GUE ensemble. Kernels like kGUE are examples of kernels where the feature map is not known explicitly,
and whose existence is only guaranteed through the construction of its RKHS.

Geometric interpretation. The kernel also enjoys a geometric interpretation in the context of Section 2.2,
the setup is illustrated in Fig. 2. We begin with a charge vector |ψ⟩ living in the associatedN dimensional UN

bundleH. In Euclidean space Rd, we may identifyHτ(0) withHσ(0) andHτ(T ) withHσ(T ). The kernel is

10



Figure 2: The kernel as parallel transport along τ compared with parallel transport along σ.

then a measure of the difference between a charge vector |ψ⟩ being transported along τ , compared with the
same vector being transported along σ. That is we may compare the angles ofUτ |ψ⟩withUσ|ψ⟩ by taking the
Hermitian inner product. If we average the resulting product uniformly over a basis {|ψi⟩} ofH then we find

1

N

N∑
i=1

⟨ψi|U †σUτ |ψi⟩ =
1

N
tr
(
U †σUτ

)
,

the right-hand side is the definition of the kernel as the Hilbert-Schmidt inner product and thus we have a
geometrical interpretation of the path development signature kernel as the average change in angle between
charge vectors under two Wilson lines.

3 Universal Limit of Matrix Model Unitary Developments
This section is dedicated to deriving integro-differential equations satisfied by ⟨γs,t⟩µ∞

V
for small perturbations

of the Gaussian potential. We start by relating this to the quantity kµV (τ, σ). By standard properties of path
developments,UτUσ = Uτ⋆σ andU−1σ = U←−σ . Since the inverse of a unitary matrix is its conjugate transpose,
it holds that

kµV (τ, σ) = ⟨tr
(
Uτ⋆←−σ

)
⟩µV

As such, it is enough to understand the limiting functional ⟨γs,t⟩µ∞
V

for a single path γ and replace it by
γ = τ ⋆ ←−σ when conducting a kernel evaluation, which is what we do in this section. The case where V
corresponds to the Gaussian potential 1

2

∑d
i=1X

2
i was considered in [CT24a] along with variants leading to

the same limit. In the present work we extend these results to the matrix models discussed above in Section 2.
Recall that uN = ihN , where hN is the set ofN ×N Hermitian matrices and that for a path γ ∈ X , the uni-
tary path development of path segment γs,t with development map M ∈ Hom(V, un) is the time t-solution
to theMN (C)-valued controlled differential equation

dUs,u = Us,u ·M(dγu), Zs,s = IN , (28)

where · denotes matrix multiplication. Fixing a basis for V ∼= Rd and noting thatM(v) = i
∑d

j=1Ajv
j for

matricesAj ∈ hN , the differential equation reads

dUs,u =
d∑

j=1

Us,uAjdγ
j
u, (29)

whose solution is given by

Us,t = P exp

i d∑
j=1

∫ t

s
Ajdγ

j
u

 =
∑

w∈Wd

i|w|AwSws,t(γ),

11



where P exp is the path-ordered exponential along the curve γ. We may randomise the solution to (28)
via the randomisation of the collection (A1, . . . , Ad) ∼ µNV . In particular, our quantity of interest is
limN→∞ E

[
tr
(
Us,t

)]
.

3.1 Non-commutative laws and Schwinger-Dyson equations

In this section, we gather various notions both from the world of non-commutative probability theory and
from rough path theory, in particular following [Gui19] for the non-commutative definitions. We shall use ·
to denote complex conjugation

Definition 3.1 (C∗ algebra). A C∗ algebra A is a Banach algebra together with an involution ∗ : A → A
satisfying the following properties

1) (a∗)∗ = a;

2) (a+ b)∗ = a∗ + b∗;

3) (ab)∗ = b∗a∗;

4) (λa)∗ = λ̄a∗ for all λ ∈ C;

5) ∥a∗∥ = ∥a∥ and ∥a∗a∥ = ∥a∥2.

Definition 3.2. Let X1, . . . , Xd be non-commutative indeterminates. Define Cd := C⟨X1, . . . , Xd⟩ to be
the space of polynomials in the indeterminates with complex coefficients. Let ∗ be an involution on Cd such
that the indeterminates are self-adjoint with respect to ∗, i.e. X∗i = Xi. Given a word w ∈ Wd we will write
Xw := Xw1 · · ·Xwn , which may be extended by linearity to all w ∈ Ad with X∅ = 1. This induces an
algebra isomorphismAd → Cd.

Definition 3.3 (Non-commutative law). A non-commutative law τ ∈ C∗d is a linear functional on
C⟨X1, . . . , Xd⟩ taking values in C such that

1) Positivity: for all P ∈ C⟨X1, . . . , Xd⟩, τ(P ∗) = τ(P ) and τ(PP ∗) ≥ 0.

2) Mass: τ(1) = 1.

3) Trace: for all P,Q ∈ C⟨X1, . . . , Xd⟩, τ(PQ) = τ(QP ).

A general non-commutative probability space is a pair (A, φ) of a unital C∗ algebra A equipped with a
sate φ. However, given d non-commuting random variables a1, . . . , ad living in (A, φ), there exists a unique
non-commutative law τ on the free ∗-algebra Cd such that τ

(
P (X1, . . . , Xd)

)
= φ

(
P (a1, . . . , ad)

)
for any

polynomial P . As such, Definition 3.3 is enough for our purposes.

Definition 3.4. A sequence (τn)∞n=1 of non-commutative laws is said to converge weakly to τ ∈ Cd if

lim
n→∞

τn(P ) = τ(P ), for all P ∈ Cd.

It can readily be checked that the properties defining a non-commutative law are closed under weak conver-
gence, and so any weak limit of non-commutative laws is itself a non-commutative law. It turns out that several
important non-commutative laws are characterised by various integration by parts formulae. To motivative
this perspective, we mention the famous example from the commutative world: the Gaussian integration by
parts formula. Consider a vector (X1, . . . , Xd) ∼ N (0, Id) of commutative Gaussian random variables, and
a sufficiently smooth function f : Rd → R. Then it is known that

E[Xif(X1, . . . , Xd)] = E[∂if(X1, . . . , Xd)]. (30)

Now, taking f to be some (commutative) monomialXn
i Xw, where w is devoid of the letter i, then

E[Xn+1
i Xw] = nE[Xn−1

i Xw]. (31)
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This inductive relation is exactly the defining property of Wick’s formula:

E[Xw] =
∑

π∈P|w|
2

∏
(i,j)∈π

E[XwiXwj ],

wherePn
2 denotes the set of pair partitions on n letters. Indeed, the factor of n in (31) is exactly the number of

ways of pairing the newXi with oneXi fromXn
i . Thus, combinatorial characterisation of the Gaussian law,

Wick’s formula, and the integration by parts characterisation, (30), are equivalent. To extend this observation
to non-commutative laws we first need suitable notions of non-commutative derivatives. In the following,
Cd ⊗ Cd is the usual tensor product of vector spaces.

Definition 3.5 (Free Difference Quotient). For d ∈ N and 1 ≤ i ≤ d we define the free difference quotient
∂i : Cd → Cd ⊗ Cd by

∂iPQ := ∂iP ×
(
1⊗Q

)
+
(
P ⊗ 1

)
× ∂iQ,

with P ⊗Q×R⊗ S := PR⊗QS and ∂iXj := (1⊗ 1)δij . In particular, for a word w ∈ Wd we have

∂iXw =
∑

w=uiv

Xu ⊗Xv. (32)

Definition 3.6 (Cyclic Derivative). Definem : Cd⊗Cd → Cd bym(P⊗Q) := QP , then the cyclic derivative
Di : Cd → Cd is given by

DiP := (m ◦ ∂i)P.
In particular, for a word w ∈ Wd, we have

DiXw =
∑

w=uiv

XvXu.

Via the bijection Cd → Ad, the operators ∂i and Di induce well-defined maps onAd → Ad ⊗ Ad and
Ad → Ad respectively. As such, we will often write ∂iXw = X∂iw orDiXw = XDiw. We are now ready to
give the non-commutative version of an integration by parts rule.

Definition 3.7 (Schwinger-Dyson Equations). Let τ : Cd → C be a non-commutative law. We say that τ
satisfies a Schwinger-Dyson equation with conjugates Pi ∈ Cd if, for all 1 ≤ i ≤ d,

τ ⊗ τ
(
∂iP

)
= τ

(
PPi

)
, (33)

where τ ⊗ τ(P ⊗Q) := τ(P )τ(Q).

Perhaps the most well-known and important example of a Schwinger-Dyson equation is the one satisfied
by freely independent semicircular random variables. Free independence is a non-commutative notion of inde-
pendence, where joint moments are determined by non-crossing partitions rather than the usual product rule
for classically independent random variables. To illustrate this, suppose that X1 and X2 are freely indepen-
dent with mean zero and law τ , then τ(X1X2X1X2) = 0, whereas in the commutative world with ordinary
independence, it would be equal to E[X2

1 ]E[X2
2 ] ̸= 0 as long asX1 andX2 are non-trivial.

Example 3.8 (Semicircular Variables). The law τ of d-free semicircular random variables satisfies the
Schwinger-Dyson equation

τ ⊗ τ
(
∂iP

)
= τ

(
PXi

)
.

And so for a word w ∈ Wd,
τ(Xwi) =

∑
w=uiv

XuXv.

Iterating this expression gives the analogue of Wick’s formula for freely independent semicircular random vari-
ables:

τ(Xw) =
∑

π∈NC
|w|
2

∏
(i,j)∈π

τ(XwiXwj ),

where NCn
2 is the set of non-crossing pair partitions of n letters.
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An important class of Schwinger-Dyson equations, including Example 3.8, are those where the conjugate
polynomials Pi are given by the cyclic derivatives of some polynomial V ∈ Cd. In this case, we have

τ ⊗ τ(∂iP ) = τ(PDiV ). (34)

The non-commutative laws satisfying the Schwinger-Dyson equation of type (34) arise as the asymptotic limit
of the non-commutative laws of interacting random matrix ensembles. For a self-adjoint polynomial V ∈ Cd,
consider the law µNV onN ×N Hermitian matrices given by

dµNV (XN
1 , . . . , X

N
d ) =

1

ZN
V

exp
{
−NTr

(
V (XN

1 , . . . , X
N
d )
)}

dXN ,

where
dXN =

∏
1≤j≤k≤N

dR
(
XN (jk)

) ∏
1≤j<k≤N

dI
(
XN (jk)

)
,

andZN
V is a normalising constant. In order to ensure the partition functionZN

V is finite for allN , some restric-
tions on V are required. Assume that V takes the form V = 1

2

∑d
i=1X

2
i +W for a self-adjoint polynomial

W =
∑m

i=1 giXwi . We say thatW is c-convex if the map

(
XN

ν (jk)
)
1≤j≤k≤N
1≤ν≤d

7→ Tr
(
W (XN )

)
+

1− c
2

d∑
i=1

Tr
(
X2

i

)
(35)

is convex for all N when viewed as a function of
(
RN2)d. Denote by UW the set of g = (g1, . . . , gd) ⊆ Cd

for which (35) holds. For ε > 0 we also write Bε for the set of coefficients g for which ∥g∥∞ ≤ ε. Recalling
that tr

(
·
)
:= 1

NTr
(
·
)

defines the normalised trace, we summarise now a collection of results from [GM06;
GM07], see also [Gui19, Chapter 7].

Theorem 3.9 ([GM06; GM07]). For every self-adjoint c-convex W =
∑m

i=1 giXwi and R > 2, there exists
ε > 0 such that for all g ∈ UW ∩Bε

lim
N→∞

EµN
V

[
tr
(
XN

w

)]
= τV (Xw),

for every w ∈ Wd where τV solves the Schwinger-Dyson equation (34). Moreover, there is exactly one solution
τV ∈ C∗d to (34) and it satisfies

|τV (Xw)| ≤ R|w| for all w ∈ Wd.

Note that when W = 0, the distribution µVN is the Gaussian Unitary Ensemble (GUE) and the limiting
law τV is the law ofd free semicircular random variables. From now on, we will only consider thoseV satisfying
the assumptions of Theorem 3.9. In the following, let λNmax(A) be the maximum of the absolute values of the
eigenvalues of an N × N matrix A, and let λNmax(A) be the maximum of

(
λNmax(Ai)

)d
i=1

. We will need the
following lemma to be able to exchange certain limits and expectations.

Lemma 3.10 (Sub-Gaussian tail of largest eigenvalue). Let V be a potential satisfying the conditions of
Theorem 3.9, and for eachN suppose that (Ai)

d
i=1 ∼ µNV . Then there exist α > 0 and t0 <∞ such that, for

every t ≥ t0 andN ,
PµN

V

[
λNmax(A) ≥ t

]
≤ e−αNt2 .

Proof. See Appendix A.
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3.2 Path loop equations

We now use the Schwinger-Dyson equations to derive governing equations for the trace of the path develop-
ment in the large N limit. Just as we required a version of the derivative for functions in non-commutative
indeterminates, we will also need the notion of derivatives of functionals on path space. There are many such
choices, but we will use the Dupire or vertical derivative [DT23]. This notion of derivative has been popular in
deriving Taylor-like expansions of functions on path space.

Definition 3.11 (Vertical derivative). Let f : X → R be a suitably regular functional, 1 ≤ i ≤ d, andhi ∈ X
the path defined by t 7→ ht

T e
i with {ei}di=1 basis vectors in Rd. The vertical derivative of f at a path γ along

the direction i is defined by

∇if(γ) := lim
h→0

f
(
γ ⋆ hi

)
− f(γ)

h
.

For a word w = w1 · · ·wk ∈ Wd of length k, define

∇w := ∇w1 · · · ∇wkf(γ).

Proposition 3.12 (Proposition 3.8 [DT23]). For any path γ ∈ X and v,w ∈ Wd, the vertical derivative
satisfies

∇vSws,t(γ) =

{
Sus,t(γ), w = uv,

0, otherwise.

Consider now V ∈ Cd given by

V =
1

2

d∑
i=1

X2
i +W =

1

2

d∑
i=1

X2
i +

m∑
j=1

gjXvj ,

satisfying the conditions of Theorem 3.9 with associated non-commutative law τV . Also associate to W the
path-dependent differential operators

Dk
W := −

m∑
j=1

(−i)|vj |gj∇Dkvj , (36)

whereDk is the cyclic derivative from Definition 3.6. Recall now the definitions

⟨γa,b⟩µN
V
:=

∑
w∈Wd

i|w|EµN
V

[
tr
(
Aw

)]
Swa,b(γ),

⟨γa,b⟩µ∞
V

:=
∑

w∈Wd

i|w| lim
N→∞

EµN
V

[
tr
(
Aw

)]
Swa,b(γ).

Proposition 3.13. Suppose that V satisfies the assumptions of Theorem 3.9 and for each s ∈ [0, T ] letUs,u be the
UN -valued solution to the controlled differential equation

dUs,u = i

d∑
j=1

Us,uAjdγ
j
u, Us,s = IN ,

where (AN
1 , . . . A

N
d ) ∼ µNV . Then

EµN
V

[
tr
(
Us,t

)]
= ⟨γs,t⟩µN

V
<∞ and lim

N→∞
EµN

V

[
tr
(
Us,t

)]
= ⟨γs,t⟩µ∞

V
<∞. (37)

The content of the above is simply a statement that limits and expectations may be interchanged with the
sum over words.
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Proof. The expansion of the path ordered exponential in terms of the signature provides that

tr
(
UN
s,t

)
=
∑

w∈Wd

i|w|tr
(
AN

w

)
Sws,t(γ).

To attain both parts of (37), we simply need to justify the interchange of the limits and expectation with the
sum over words w. To do this, it is enough to show that∑

w∈Wd

EµN
V

[∣∣tr(AN
w

)∣∣]∣∣Sws,t(γ)∣∣
is uniformly bounded in N . The sub-Gaussian nature of the tail behaviour of λNmax(A), Lemma 3.10, yields
the following bound

EµN
V

[∣∣tr(AN
w

)∣∣] ≤ EµN
V

[
λNmax(A)|w|

]
≤ κ|w|Γ

( |w|
2 + 1

)
, (38)

for someκ > 0, whereΓdenotes the usual Gamma function. The second inequality uses a common equivalent
definition of sub-Gaussian random variables, see for example [Ver18, Proposition 2.5.2]. Then, by the factorial
decay of the signature

∑
w∈Wd

EµN
V

[∣∣tr(AN
w

)∣∣]∣∣Sws,t(γ)∣∣ ≤ ∑
w∈Wd

κ|w|Γ
( |w|

2 + 1
)∣∣Sws,t(γ)∣∣ ≤ ∞∑

n=0

κ̃nΓ
(
n
2 + 1

)
Γ(n+ 1)

<∞,

for some κ̃ > 0. Then Fubini-Tonelli and the dominated convergence theorem allows for the interchange of
limits and expectation with the sum of words.

We now turn to the main result of this section.

Theorem 3.14. The functional ⟨γs,t⟩µ∞
V

satisfies the path-dependent integro-differential equation

⟨γs,t⟩µ∞
V

= 1−
∫

s≤u≤v≤t

⟨γs,u⟩µ∞
V
⟨γu,v⟩µ∞

V
⟨dγu,dγv⟩ −

d∑
k=1

∫ t

s
Dk

W ⟨γs,u⟩µ∞
V
dγku. (39)

with the boundary condition ⟨γs,s⟩µ∞
V

= 1 for all s ∈ [0, T ].

Proof. Recall from Theorem 3.9 that

lim
N→∞

EµN
V

[
tr
(
Aw

)]
= τV (Xw),

where τV is the unique non-commutative law associated with V solving the corresponding Schwinger-Dyson
equation. Consider now the following expansion, where we use (32) for the first equality.∑

w∈Wd

i|w|+1τV ⊗ τV (∂kXw)Sws,t(γ) =
∑

u,v∈Wd

i|u|+|v|+2τV (Xu)τV (Xv)Sukvs,t (γ)

= −
∑

u,v∈Wd

i|u|+|v|τV (Xu)τV (Xv)

∫ t

s
Sus,u(γ)Svu,t(γ)dγku

= −
∫ t

s

 ∑
u∈Wd

i|u|τV (Xu)Sus,u(γ)

 ∑
v∈Wd

i|v|τV (Xv)(γ)Svu,t

 dγku

= −
∫ t

s
⟨γs,u⟩µ∞

V
⟨γu,t⟩µ∞

V
dγku.
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We now expand the left-hand-side using the Schwinger-Dyson equation∑
w∈Wd

i|w|+1τV ⊗ τV (∂kXw)Sws,t(γ) =
∑

w∈Wd

i|w|+1τV (XwDkV )Sws,t(γ)

=
∑

w∈Wd

i|w|+1

(
τ(XwXk) +

m∑
j=1

gjτV (XwXDkvj )

)
Sws,t(γ)

=
∑

w∈Wd

i|w|τ(Xw)∇kSws,t(γ) +
m∑
j=1

(−i)|vj |−2gj
∑

w∈Wd

τV (Xw)i
|w|∇DkvjSws,t(γ)

= ∇k
∑

w∈Wd

i|w|τ(Xw)Sws,t(γ) +
m∑
j=1

(−i)|vj |−2gj∇Dkvj
∑

w∈Wd

τV (Xw)Sws,t(γ)

= ∇k⟨γs,t⟩µ∞
V
+

m∑
j=1

(−i)|vj |−2gj∇Dkvj ⟨γs,t⟩µ∞
V

=
(
∇k +Dk

W

)
⟨γs,t⟩µ∞

V
.

Equating these identities and integrating both sides with respect todγk and then summing overk results in (39):

⟨γs,t⟩µ∞
V

= 1−
∫

s≤u≤v≤t

⟨γs,u⟩µ∞
V
⟨γu,v⟩µ∞

V
⟨dγu,dγv⟩ −

d∑
k=1

∫ t

s
Dk

W ⟨γs,u⟩µ∞
V
dγku. (40)

Example 3.15 (Straight Lines). Fix T = 1 and consider the case of a straight line γ = tv, for v ∈ Rd. We note
that dγkt = vkdt and that ⟨γs,t⟩µ∞

V
is now a function of only (t− s), so that (39) may be written as

DV ⟨γ⟩t = −
∫ t

0
⟨γ⟩u⟨γ⟩t−uvkdt,

for t ∈ [0, T ]. We thus recover the classical result (18).

Example 3.16 (GUE). Consider the case of the quadratic potential V = 1
2

∑d
i=1X

2
i , for which µNV corre-

sponds to the GUE. Then eachDk
V is given by ∆k. We may then integrate both sides of the equation

Dk
V ⟨γs,t⟩µ∞

V
= −
∫ t

s
⟨γs,u⟩µ∞

V
⟨γu,t⟩µ∞

V
dγku,

with respect to γk to obtain∑
w∈Wd

i|w|+1τV (Xwk)Swk
s,t (γ) =

∫ t

s
Dk

V ⟨γs,r⟩µ∞
V
dγkr = −
∫

s<u<r<t

⟨γs,u⟩µ∞
V
⟨γu,r⟩µ∞

V
dγkudγ

k
r

Summing over k, we see that

−
∫

s<u<r<t

⟨γs,u⟩µ∞
V
⟨γu,r⟩µ∞

V
⟨dγu, dγr⟩ =

d∑
k=1

∫

s<u<r<t

⟨γs,u⟩µ∞
V
⟨γu,r⟩µ∞

V
dγkudγ

k
r

= −
d∑

k=1

∑
w∈Wd

i|w|+1τV (Xwk)Swk
s,t (γ)

= −1 +
∑

w∈Wd

i|w|τV (Xw)Sws,t(γ)

= ⟨γs,t⟩µ∞
V
− 1,

which is the equation obtained in [CT24a].
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To conclude this subsection, we consider the uniqueness of solutions to (39). A complete theory for
uniqueness in a general space of functions on path space is a topic for future research. Instead, we consider
infinite linear functionals on the signatures.

Proposition 3.17. Consider the set of infinite linear functionals, ℓ : X → C, on the signature,

ℓ(γs,t) =
∑

w∈Wd

i|w|awSws,t(γ),

for which |aw| ≤ C |w| for someC > 0. Suppose that

ℓ(γs,t) = 1−
∫

s≤u≤v≤t

ℓ(γs,u)ℓ(γu,v)⟨dγu,dγv⟩ −
d∑

k=1

∫ t

s
Dk

W ℓ(γs,u)dγ
k
u, (41)

holds for all γ ∈ X , then aw = τV (Xw) for all w ∈ Wd.

Proof. Expanding (41) gives∑
w∈Wd

i|w|awSws,t(γ) = 1 +
d∑

k=1

∑
u,v∈Wd

i|u|+|v|+2auavSukvks,t (γ)

+

d∑
k=1

∑
u∈Wd

m∑
j=1

i|u|+|vj |−2−|vj |gjauDkvjSuks,t (γ)

Noting that the left-hand-side may be expanded as∑
w∈Wd

i|w|awSws,t(γ) = 1 +

d∑
k=1

∑
w∈Wd

i|w|+1awkSwk
s,t (γ),

means that we may equate the coefficients of Swk to obtain the system of equations

awk =
∑

w=ukv

auav −
m∑
j=1

gjawDkvj ,

which after rearranging yields ∑
w=ukv

auav = awk +

m∑
j=1

gjawDkvj ,

which implies that the extension of ℓ to a linear functional τa : Cd → C satisfies the Schwinger-Dyson equa-
tion τa ⊗ τa(∂kXw) = τa(XwDkV ). By the uniqueness of solutions to the Schwinger-Dyson equation,
Theorem 3.9, we must have τa = τV .

4 Quantum algorithm
In this section we introduce quantum analogues of the classical path signature and signature kernel. We will
study three main objects. Firstly, the quantum path development–this is a random quantum circuit that we
denote by UQ

γ (α(m), n,K). The circuit acts on n qubits, dependent on m random Pauli strings labelled
by α, an approximation quality K , and a path γ. We will show (Theorem 4.8) that the expected value of
this circuit converges to the Gaussian unitary path developments studied in the previous section. Secondly,
we define the quantum path signature SQϵ to be the quantum feature map associated to the quantum circuit.
Finally, in Section 4.3, we discuss a quantum signature kernel, denoted kQ(σ, τ), which is realised as the output
of a quantum algorithm A built using the quantum path development UQ

γ (α(m), n,K). One of the main
results of this section is Theorem 4.11 demonstrating the efficiency of this algorithm. Along the way, we give
theoretical guarantees for an analogous classical algorithm (Theorem 4.12) to compute the randomised path
development.
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4.1 Preliminaries

In the following, we review basic definitions and concepts from quantum computing. Whilst this material will
likely be familiar to readers with a background in quantum information theory, we include it to ensure the
work remains accessible to researchers from the path signature and machine learning communities, in line with
our aim of connecting ideas across these fields. For a more comprehensive introduction, we refer the reader to
the standard text [NC10].

Quantum states. We consider the Hilbert space of n qubits

H = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n-times

, (42)

which has dimensionN = 2n. We write |ψ⟩ for vectors, henceforth referred to as (pure) quantum states, inH.
We may write the basis of tensor product states ofH as |x⟩ = |x1⟩⊗ · · ·⊗ |xn⟩where each xi ∈ {0, 1}. Each
state may then be identified with a binary string x ∈ {0, 1}n which defines an isomorphism with CN=2n . We
define |0⟩ := |0⟩ ⊗ · · · ⊗ |0⟩ ∈ H.

More general quantum states, referred to as mixed states, are represented by a density operator ρ acting on
H, which is a positive semi-definite Hermitian operator satisfying Tr

(
ρ
)
= 1. If, in addition, Tr

(
ρ2
)
= 1,

then ρ corresponds to a pure state and can be written in the form ρ = |ψ⟩⟨ψ|, considered as an element of
H⊗H∗, for some state |ψ⟩ ∈ H. In the general case, ρ describes a classical probabilistic mixture of pure states
and can be expressed as a convex combination:

ρ =
k∑

i=1

pi|ψi⟩⟨ψi|, (43)

where pi ≥ 0,
∑

i pi = 1, and each |ψi⟩ ∈ H is a pure state. We denote this (Hilbert) space of general
quantum states by S(H). A quantum circuit is a unitary matrixU acting onH = (C2)⊗n built from a finite
sequence of elementary unitaries chosen from a universal gate set [Kit97].

Measurements. In the present context, the measurement of a state ρwill be described by a set of orthogonal
projectors {Πi}ki=1 on H satisfying

∑k
i=1Πi = IN and ΠiΠj = δijΠi. The measurement describes the

possible outcomes of a discrete random variable Π taking values in {1, . . . , k}, with associated probabilities

P(Π = i) = tr
(
ρΠi

)
. (44)

This is known as Born’s rule.

Quantum feature map. LetX be a set of data; a quantum feature map [SK19]is an embedding

ρ : X → S(H), (45)

where the feature space is the space of quantum states onH, i.e. we map x ∈ X to a density operator ρ(x).

4.2 Quantum circuit

We now turn to a quantum circuit implementation of the unitary path development. The Hilbert space of
qubits H has dimension N = 2n. In the geometrical setup outlined in Section 2.2, this Hilbert space now
plays the role of the associated G = UN bundle in the fundamental representation and the quantum circuit
will play the role of the parallel transport operator between representation vectors.

We assume throughout this section that paths γ are continuous piecewise linear γ : [0, T ] → Rd.
It is natural to consider this class of paths as any smooth path can be approximated in an appropri-
ate topology by sequences of piecewise linear paths. The time interval [0, T ] is divided into intervals
0 = t0 < t1 < . . . < tL = T and we write

γ = γ1 ⋆ · · · ⋆ γL, (46)
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where each γl is a linear path on [tl−1, tl]. The data specifying the path is then L vector increments, denoted
∆ν

l := γν(tl)− γν(tl−1) for l = 1, . . . , L and ν = 1, . . . , d. For piecewise linear paths, the length is equal
to the total one-variation which we denote by ∆γ =

∑L
l=1 ∥∆l∥.

As we will see more precisely later, the computational difficulty of computing the path development is
controlled by the UN dimension N = 2n, the total one-variation ∆γ (i.e. the length of the path) and the
quality of the approximation ϵ arising due to the discretisation as a quantum circuit.

Definition 4.1 (Pauli strings). A set of Hermitian operators on C2 given by

σI =

(
1 0
0 1

)
, σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
. (47)

A (real) linear basis for uN is then given by tensor products of the Pauli matrices

σw = σw1 ⊗ · · · ⊗ σwn , (48)

where w = w1 . . . wn is a word with n letters chosen from {I,X, Y, Z} and⊗ denotes the tensor product.
The operator σw is referred to as a Pauli string. We write the set of words on Pauli matrices asP .

We now consider the N × N unitaries Uγ discussed in previous sections as operations on qubits. We
will show that these may be decomposed into quantum gates. Let us first consider the N -dimensional path
development for a fixed set of dHermitian matricesA1, . . . Ad, that is the solution to7

dUγ(t) = iUγ(t)Aν γ̇
ν
t dt, Uγ(0) = I, (49)

at t = T . We denote the solution byUγ(A,N). We now turn to how to implement this unitary as a quantum
circuit acting on the Hilbert spaceH = (C2)⊗n.

Trotterisation. Let us discuss the solution to the path development equation (49) for piecewise linear
paths (46) and for a fixed set ofN ×N matrices {Aν}dν=1. From the factUγ1⋆γ2 = Uγ1Uγ2 we have that

Uγ(A,N) = Uγ1(A,N)Uγ2(A,N) · · ·UγL(A,N), (50)

whereUγl(A,N) denotes the unitary time evolution operator/path development for the straight line segment
on [tl, tl+1]. EachUγl(A,N) is then given by

Uγl(A;N) = exp

i d∑
ν=1

∆ν
l Aν

, (51)

where∆ν
l = γν(tl)−γν(tl−1) are the (vector) increments of the path on each time step. Recall (Definition 4.1)

that each Hermitian matrixAν may be expressed in the Pauli string basis. We write the expansion as

Aν =
∑
w∈P

αw
ν σw, ν = 1, . . . d, (52)

with {αw
ν }w a set of 4n real coefficients for each matrix and often write the development as Uγ(α,N) em-

phasising the dependence on these coefficients. We now consider the Trotterisation of this unitary to define a
quantum circuit.

7In this equation and in the following we use the summation convention that repeated upper and lower indices are summed. E.g.
XνX

ν :=
∑d

ν=1 XνX
ν .
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Definition 4.2. The first-order Trotterisation with K subdivisions of each straight line interval γl, written
Uγl(α, n,K), is defined by

Uγi(α;n,K) :=

 d∏
ν=1

∏
w∈P

exp

(
i
∆ν

i α
w
ν

K
σw

)K

=

 d∏
ν=1

∏
w∈P

Pw

(
∆ν

i α
w
ν

K

)K

, (53)

where we write the shorthandα for the set of coefficients {αw
ν } that specifyA. In the second equality, we have

re-written the exponentials as Pauli rotations Pw(θ) := exp(iθσw) with small angles. Finally, we define the
Trotterised path development of γ by

Uγ(α;n,K) := UγL(α;n,K)UγL−1(α;n,K) · · ·Uγ1(α;n,K). (54)

We have thus constructed a quantum circuit from repeated application of multi-qubit Pauli rotations with
small angles that approximates the path development with a fixed set of Hermitian matrices determined by co-
efficients {αw

ν }. Intuitively, one may view the Trotterisation as dividing each interval [ti, ti+1] further intoK
subdivisions and one recovers the full development in the limitK →∞. The following lemma quantifies the
quality of this approximation.
Lemma 4.3. We consider the Trotterisation intoK subdivisions of the path developmentUγ for a piecewise linear
path γ defined by a fixed gauge field specified by coefficients {αw

ν : |αw
ν | ≤ 1/m} in the Pauli basis. Then

∥Uγ(α, n,K)− Uγ(α, n)∥ ≤
|P |α
K

∆2
γ +O

(
1

K2

)
, (55)

where |P |α denotes the maximum number (over ν) of non-zero coefficients in the Pauli string expansion and ∆γ

denotes the total one-variation of the path γ.

Remark 4.4. Whenγ(t) = t is a one-dimensional linear path segment on [0, t], the lemma recovers the familiar
Trotter error bound from Hamiltonian simulation theory that is quadraticO(t2) in the time interval (length of
the path) andO(1/K) in the Trotter subdivision.

Proof. First, recall the standard Trotterisation error bound [Suz76]. Suppose a Hamiltonian is given as a sum
of bounded operatorsH =

∑N
j=1Hj then we have, in operator norm,∥∥∥∥∥∥∥

 N∏
j=1

exp

{
iHj

K

}K

− eiH

∥∥∥∥∥∥∥ ≤
1

2K

∑
i<j

∥[Hi, Hj ]∥+O
(

1

K2

)
. (56)

Consider now the Hamiltonian H =
∑d

ν=1

∑
w∈P Hν,w with Hν,w = ∆ν

i α
w
ν σw. From the Lie algebra

structure of the Pauli matrices, then ∥[αw
ν σw, α

w′
ν σw′ ]∥ ≤ 2, and (56) yields

∥Uγi(α;n,K)− Uγi(α;n)∥ ≤
|P |αν

K

d∑
ν=1

|∆ν
i |2 +O

(
1

K2

)
. (57)

where |P |αν denotes the number of w for which αw
ν is non-zero. Now we would like to consider a bound on

∥Uγ(α, n,K)− Uγ(α, n)∥ =

∥∥∥∥∥∥
L∏
i=1

Uγi(α, n,K)−
L∏
i=1

Uγi(α, n)

∥∥∥∥∥∥ . (58)

Telescoping the product and using the fact that the operators are unitary we simply obtain the sum of the
individual bounds between the product components

∥Uγ(α, n,K)− Uγ(α, n)∥ ≤
|P |α
K

L∑
i=1

d∑
ν=1

|∆ν
i |2 +O

(
1

K2

)
=
|P |α
K

∆2
γ,2 +O

(
1

K2

)
,

≤ |P |α
K

∆2
γ +O

(
1

K2

)
,

(59)
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where in the second line ∆2
γ,2 denotes the square of the total two-variation of the path and in the third line

we have used that for piecewise linear paths the two-variation is bounded by the one-variation. In the above
|P |α := maxν |P |αν .

Remark 4.5. The circuit Uγ(α, n,K) may be further decomposed into a fundamental gate set, for example
using the methods described in [Sri+23].

Randomisation and sparsification. We now discuss how to randomise over the Hermitian matricesAν (or
equivalently the coefficientsα in the Pauli string expansion ofA). We sampleAν from theN = 2n dimensional
Gaussian unitary ensemble (GUE) by sampling coefficients of the Pauli strings in the circuit (54). In recent work
[Che+24], the authors define a sparse ensemble of random Pauli strings. They also show that ground states of
the associated Hamiltonian are efficient to prepare. In the following, we use the same matrix ensemble in a
different context that allows us to consider a sparsification of Pauli strings in the path development circuit (54).
We first recall the definition of the random Pauli ensemble and then argue that the first moment of this random
Pauli ensemble converges to the semi-circular law with a sufficiently fast rate.

Definition 4.6. (Random Pauli ensemble) Let N = 2n. A matrix A belongs to the random Pauli ensemble
withm Pauli strings if

A =
1√
m

m∑
i=1

riσi,

where ri
i.i.d.∼ Rademacher(1/2) and σi = σ(1)i ⊗ · · · ⊗ σ(n)i, where σ(j)i i.i.d.∼ P , where σ ∼ P denotes a

random variable uniformly distributed on the set of Pauli matricesP .

The distribution of ν = 1, . . . , d matrices from the random Pauli ensemble of Definition 4.6, may
be equivalently described by a random variable α for the coefficients in the expansion (52) where for each
ν = 1, . . . , d, the coefficient αν

w is non-zero for only m uniformly chosen w where it takes the two values
{−1/

√
m, 1/

√
m} with equal probability. We henceforth denote this random variable by α(m) = α(m)νw.

Accordingly, we write the path development associated to α(m) as

dU SP
γs,t(α(m), n) = iU SP

γs,t(α(m), n)Am
ν γ̇

ν
t dt, U SP

γs,s(α(m), n) = I2n , (60)

where the matrices Am
ν have expansions Am

ν =
∑

w∈P α(m)wν σw with m non-zero terms. We write the
solution asU SP

γs,t(α(m), n).
Next we present the main result of this subsection, which states that the path development driven by

random Pauli ensemble matrices approximates well the unitary path development. The proof is given in Ap-
pendix B and relies crucially on the following proposition about the moments of the Pauli ensemble. For com-
pleteness, and because it may be of independent interest, we restate this proposition below.

Proposition 4.7. For each n, let An
1 , . . . , A

n
d be i.i.d. matrices from the random Pauli string ensemble of di-

mensionN = 2n withmn strings each. Then∣∣∣∣E[tr(An
w

)]
− τ(Xw)

∣∣∣∣ ≤ (4e)pp!
(
m−1n + 2−2n

)
,

where τ is the law of d-free semicircular random variables and w ∈ Wd has length 2p for some p ∈ N. In the
aboveAw denotes the productAw1 . . . Aw2p .

Theorem 4.8. Fix n > 0 and let α(m) be the random variable defined above. Let

⟨γs,t⟩µ∞
V

=
∑

w∈Wd

i|w|τ(Xw)Sws,t(γ),

be the GUE randomised path development, then there exists a constantC > 0 depending only on the length of γ
and the dimension d of the path target space, for which

E
[(

tr
(
U SP
γs,t(α(m), n)

)
− ⟨γs,t⟩µ∞

V

)2]
< C

(
m−1 + 4−n

)
. (61)
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We now combine the previous arguments to define a quantum path development. We consider a piecewise
linear path γ : [a, b]→ Rd given asL specified increment vectors {∆1

l ,∆
2
l , . . . ,∆

d
l }Ll=1. We define the quan-

tum path development which combines (1) the sparse Pauli approximation of the largeN GUE development of
Theorem 4.8 and (2) the Trotterisation approximation of the sparse Pauli development of Lemma 4.3.

Definition 4.9 (Quantum path development). The quantum path development is the random quantum cir-
cuitUQ

γ (α(m), n,K) defined in terms of Pauli rotations, following (54):

UQ
γ (α(m), n,K) =

L∏
l=1

 d∏
ν=1

m∏
i=1

Pwi,ν
(∆ν

l α
wi
ν /K)

K

, (62)

where wi,ν denotes the i = 1, . . . ,m non-zero coefficients of αw
ν for each ν. The circuit depends on pa-

rameters n (number of qubits), Trotter subdivisions K and m random Pauli strings. The circuit consists of
L×K × d×m Pauli rotations.

In the following section we demonstrate, as part of the proof of Theorem 4.11, that the quantum path
development well-approximates the unitary development of a path γ.

Quantum path signatures. We define the quantum path signature as a quantum feature map, in the sense
discussed at the beginning of this section (45), that allows one to embed a path γ into the space of states on
qubits. In the present case,X is a space of paths and we would like to embed the path γ into the Hilbert space
of a large number of qubits n, that is we would like to consider a mean embedding of the form

∫

Uγ(A)|0⟩⟨0|U †γ(A) dµNV (A), (63)

whereN is large andµNV is the Gaussian measure. To make this well-defined, based on the previous discussion,
we see that we may work with an approximate embedding into a truncated Hilbert space of n qubits, with
Trotterised time evolution intoK Trotter subdivisions and a sparse Pauli ensemble controlled by an integerm.

Definition 4.10 (Quantum path signature). We now define the quantum path signature as a quantum fea-
ture map SQ(γ) : X → S(Hn) embedding paths γ into a quantum state (density matrix) by the circuit of
Definition 4.9, namely

SQ(γ) := Eα(m)

[
UQ
γ (α(m), n,K)|0⟩⟨0|UQ

γ (α(m), n,K)†
]
, (64)

In applications, we propose that the parameters n,K andm should be chosen to scale as in Theorem 4.11.

4.3 Quantum signature kernel

We now introduce a quantum algorithm, making use of the quantum path development circuit, to compute
the trace of the GUE randomised path development8

⟨γ⟩ := lim
N→∞

E
[
tr
(
Uγ(A,N)

)]
. (65)

In the subsection that follows, we discuss how the algorithm may be further used to approximate the GUE
kernel on path space kGUE : X × X → R defined by

kGUE(σ, τ) := lim
N→∞

E
[
tr
(
Uσ(A,N)Uτ (A,N)†

)]
. (66)

as discussed in Section 2.4. We define the quantum signature kernel as the output of this quantum algorithm.
8We drop the µ∞ subscript compared with Definition (24) since we only consider here the large N GUE path development.
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|0⟩

I/2n

H H

UQ
γ (α(m), n,K)

Figure 3: One clean qubit (DCQ1) circuit with the quantum path development.

Problem statement. We consider a continuous piecewise linear path γ on a partitioned time interval
0 = t0 < t1 < · · · < tL = T mapping into Rd. The input data is thus the set of increments {∆ν

l }
with l = 1, . . . , L and ν = 1, . . . , d. The computational problem is then to output a quantity Q that is
ϵ-additively close to the path development ⟨γ⟩with small failure probability δ.

Computation. We now define a quantum algorithmA({∆ν
l }, ϵ, δ) in the one-clean-qubit model of quan-

tum computation [KL98] with random outputQ. The algorithm takes as input the increments {∆ν
l } together

with an additive error ϵ and a probability of failure δ. We first take a sample α̃(m) of the random variableα(m)
described below Definition 4.6. We then embed the random quantum circuit UQ(α̃(m), n,K) from Defi-
nition 4.9 as the controlled unitary in the one-clean-qubit circuit illustrated in Fig. 3. The initial state of the
system is

ρ0 = |0⟩⟨0| ⊗
I

2n
, (67)

and, after applying a Hadamard gate to the first qubit, a sample of the quantum path development circuit and
an additional Hadamard gate, the state of the system is

ρ1 =
1

2n+1

[
(|0⟩⟨0|+ |1⟩⟨1|)⊗ I + |0⟩⟨1| ⊗ UQ

γ (α̃(m), n,K)† + |1⟩⟨0| ⊗ UQ
γ (α̃(m), n,K)

]
. (68)

Measuring the first qubit in the computational basis then yields the probability of observing "1" by Born’s
rule (44),9

tr
(
|1⟩⟨1|ρ1

)
=

1

2

(
1− tr

(
UQ
γ (α̃(m), n,K)

))
. (69)

Finally, we define the output of the algorithm to be the estimator of tr
(
UQ
γ (α̃(m), n,K)

)
. Namely

Q∆(M,m,n,K) := 1− 2T∆(M,m,n,K)

M
, (70)

where T∆(M,m,n,K) denotes the number of ones observed when initialising, running and measuring the
circuitM times. The output depends on the number of qubits n; the Trotter approximationK ; the number
of Pauli strings m; and the number of times M to run the circuit of Figure 3. Theorem 4.11 explains how to
scale these parameters as functions of ϵ and δ. The algorithm may be summarised as follows:10

9Recall that the unitary path development is real valued.
10This algorithm is named QSigKer because of its direct application to computing a kernel in the following subsection.
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Algorithm 1 QSigKer – Quantum Signature Kernel EstimatorA({∆ν
l }, ϵ, δ)

Input: Data of increments {∆ν
l } and ϵ, δ > 0. Parameters: integers m,n,K,M > 0 for Pauli string num-

ber, qubit number, Trotter subdivisions and number of circuit runs respectively. These are selected ac-
cording to Theorem 4.11.

Output: ApproximationQ∆(M,m,n,K) of ⟨γ⟩.
1: Set counter T ← 0
2: for i = 1 toM do
3: Sample α̃(m) from random variable α(m)
4: Initialise system in state ρ0 = |0⟩⟨0| ⊗ I

2n

5: ApplyH to first qubit. Apply unitaryUQ
γ (α̃(m), n,K) of definition 4.9. ApplyH to first qubit.

6: Measure first qubit in computational basis obtaining outcome x ∈ {0, 1}
7: if x = 1 then
8: T ← T + 1

9: returnQ∆(M,m,n,K)← 1− 2T
M

Theorem 4.11. The positive integer parameters m, n, K and M (Pauli string number, qubit number, Trotter
subdivisions, number of circuit runs) may be chosen such that the output ofA({∆ν

l }, ϵ, δ) estimates the unitary
path development ⟨γ⟩ to within additive error ϵ with high probability 1− δ, namely such that

P(|Q∆(M,m,n,K)− ⟨γ⟩| ≥ ϵ) < δ. (71)

The circuit requires log(1/ϵ, 1/δ) qubits and poly(1/ϵ, 1/δ) Pauli rotations.

Proof. See Appendix C.1

Classical algorithm. Let us now define an analogous classical algorithm and perform the complexity analysis
for comparison. The input data remains unchanged—the set of path increments {∆1

l ,∆
2
l , . . . ,∆

d
l }Ll=1. We

define a probabilistic classical algorithm,Ac({∆ν
i }, ϵ, δ), which, given the input data, an additive error ϵ and a

probability of failure δ, produces a random output that is ϵ close to the path development with high probability
1− δ. We follow a standard Monte Carlo approach, defined precisely as:11

Algorithm 2 Classical SamplingAc

Input: Data: path increments {∆1
l , . . . ,∆

d
l }Ll=1 and ϵ, δ > 0. Parameters: integer N > 0, M > 0 and

K > 0 are chosen dependent on ϵ and δ according to Theorem 4.12.
form = 1 toM do

Draw d independentN ×N GUE matrices {Aν}dν=1

for l = 1 toL do
ComputeAl :=

∑d
ν=1∆

ν
l Aν

ComputeUK
l := (1 +Al/K)K using a truncated approximation dependent onK > 0.

ComputeQm := Tr(UK
1 U

K
2 · · ·UK

L )

returnQ∆(M,N,K) := 1
M

∑M
m=1Qm

Theorem 4.12. The output ofAc({∆ν
i }) satisfies

P
(∣∣Q∆(N,M,K)− ⟨γ⟩)

∣∣ > ϵ
)
< δ, (72)

for small ϵ > 0 provided that M > 2/ϵ2 log
(
2/δ
)

samples are taken, the dimension N of matrices satisfies
N > e2∆γ/ϵ2 and the matrix exponential is truncated toK > ∆γe

2∆γ/ϵ.
11The truncated product is a poor practical approach to compute a matrix exponential, in particular it is numerically unstable (see for

example [MV03] for a thorough discussion of numerical matrix exponentiation methods) but for our purpose of discussing separation
between classical and quantum approaches it is sufficient.
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Proof. See Appendix C.2

In Theorem 4.11 we argue that the resources required to approximate the development of a path with one-
variation to accuracy ϵ with the quantum algorithm are polynomial in 1/ϵ in time and logarithmic in 1/ϵ in
space. In comparison, the classical algorithm outlined above requiresL×M ×K matrix multiplications and
hence, according to Theorem 4.12, requires polynomial resources in ϵ in both time and space.

QSigKer. We now consider the computation of the GUE signature kernel using the quantum algorithmA.
In the notation of the previous section, the GUE kernel of two paths σ and τ may be expressed as

kGUE(σ, τ) = ⟨γ⟩, (73)

where γ denotes the concatenation γ = σ ⋆←−τ . This follows from the property that for unitary path develop-
ments we haveUγ = UσU

†
τ . We conclude the work with the following definition:

Definition 4.13. (QSigKer) The probabilistic quantum signature kernel kQϵ,δ : X × X → R is defined by

kQϵ,δ(σ, τ) := 1− 2T∆(M,m,n,K)

M
, (74)

where T∆(M,m,n,K) is the output of the algorithm of theorem 4.11. In applications, the hyperparameters
should be chosen to scale according to Theorem 4.11.

5 Conclusion
In this work, we have developed a novel bridge between the theory of path signatures and matrix models in
quantum field theory, uncovering structural connections with implications for both machine learning and
quantum computing. By interpreting randomised path developments through the lens of non-commutative
probability and unitary matrix models, we derived a class of loop equations governing their evolution. This
formalism naturally led us to define the quantum path signature and the quantum signature kernel as quan-
tum analogues of their classical counterparts, realised via quantum circuits acting on qubits. In particular,
we showed that in the Gaussian case, these constructions admit an efficient quantum implementation using
random ensembles of Pauli strings. This provides a concrete quantum algorithm for approximating signature
kernels, with potential applications in quantum-enhanced time series analysis.

Future directions. This work represents an initial step toward importing tools from theoretical physics and
quantum computing into the study of path signatures in machine learning. As such, we believe our work opens
several avenues for future research, including the exploration of other matrix model potentials, deeper study of
universality phenomena in quantum path signatures, and the practical integration of these quantum kernels
into hybrid classical-quantum machine learning pipelines.

On the matrix model side, the theory of topological recursion [EO07] offers a powerful framework for com-
puting 1/N corrections to matrix model observables. A natural extension would be to explore the “loop”
version of our model by applying topological recursion to correlators of the form

Wn

(
γ1, . . . , γn; {gk}

)
=

〈
tr

(
P exp

∫

γ1

A

)
· · · tr

(
P exp

∫

γn

A

)〉
=
∑
g≥0

N2−2g−nWg,n

(
γ1, . . . , γn; {gk}

)
,

(75)

where the insertions correspond to a collection of paths γ1, . . . , γn. This approach would enable a systematic
investigation of finite-N corrections to unitary path developments and their induced kernels.

On the machine learning side, many open questions remain concerning the statistical and computational
properties of the interacting path kernels introduced in Section 3. In particular, it would be valuable to establish
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theoretical guarantees such as generalisation bounds or sample complexity estimates. Extending these results
to the quantum path signature defined in Definition 4.10 is especially compelling, as it could provide a rigorous
foundation for the use of quantum path features in downstream learning tasks.
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A Technical proofs
The following lemma may be derived by keeping track of the constants in the various equivalent characterisa-
tions of sub-Gaussian random variables, as in [Ver18, Proposition 2.5.2] for example. We include a self-contained
proof for completeness.

Lemma A.1. Let (XN )N≥1 be a sequence of real-valued random variables. Then the following are equivalent

(1) There exist α > 0 and t0 <∞ such that for all t ≥ t0 andN ≥ 1, P(XN ≥ t) ≤ e−αNt2 ;

(2) There existsC > 0 such that for all s sufficiently small and allN ≥ 1, then E
[
exp(sNX2

N )
]
≤ CN .

Proof. Assume (1), then

E
[
exp(sNX2

N )
]
=

∫ ∞

0
P
(
exp(sNX2

N ) ≥ t
)
dt

≤ 1 + 2

∫ ∞

0
P
(
XN ) ≥ u

)
sNuesNu2

du

1 +

∫ t0

0
2sNuesNu2

du+

∫ ∞

t0

2sNue−(α−s)Nu2
du

= 1 + esNt20 +
s

α− s
≤ CN ,

forC ≥ 1 + est
2
0 + s

α−s and s < α. Conversely, assume (2), then Chebyshev’s inequality yields

P(XN ≥ t) ≤ e−sNt2E
[
exp(sNX2

N )
]
≤ e−sNt2CN ≤ e−αNt2 ,

whenever α < s and t ≥ t0
√
C/(s− α).

Recall that the spectrum of anN ×N GUE matrix has the distribution

σN (dλ) =
1

ZN

∏
1≤i<j≤N

|λi − λj |2 exp

−N
2

N∑
i=1

λ2i

dλ, (76)

whereZN is the normalisation constant given by

ZN = (2π)
N
2 N−

N2

2

N∏
i=1

i!, (77)

see [BG97, Property 3.1] with β = 2. The following pair of lemmas are key.

Lemma A.2. There existsC > 0 such that, for allN ≥ 2, ZN−1

ZN ≤ eCN .

Proof. From (77), we have

ZN−1

ZN
=

(N − 1)−
(N−1)2

2 N
N2

2
√
2πΓ(N + 1)

=
exp
{

1
2

(
N2 log(N)− (N − 1)2 log(N − 1)

)}
√
2πN !

.

It can be checked that for everyN ≥ 2,N2 log(N)−(N−1)2 log(N − 1) ≤ 2N log(N)+2N , and hence

ZN−1

ZN
≤ exp{N +N logN}√

2πΓ(N + 1)
.

Using the bound from Stirling’s formulaN ! ≥
√
2πNeN logN−N , we obtain, for suitably largeC > 0,

ZN−1

ZN
≤ e2N

2π
√
N
≤ eCN .
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The proof of the next lemma follows the strategy of [BDG01, Lemma 6.2]. In the following we write
λN ∼ σN to mean that the vector λ := (λ1, . . . , λN ) is distributed according to σN , as defined in (76).

Lemma A.3 (Tails of the GUE). LetλN ∼ σN , then there existsα > 0 and t0 > 0 such that for all t ≥ t0 > 0
andN ∈ N, it holds that

PσN

(
max

i=1,...,N
|λi| ≥ t

)
≤ e−αNt2 . (78)

Proof. First note that for all |x| ≥ 8 and λ ∈ R, then

|x− λ|2e−
λ2

2 ≤ 2(|x|2 + |λ|2)e−
λ2

2 ≤ 4|x2| ≤ e
x2

4 ,

so that for all |x| ≥ t ≥ 8,

PσN

(
|λ1| ≥ t

)
≤ ZN−1

ZN
e−

1
4Nt2
∫

|x|≥t
e−

x2

4

∫ N∏
i=2

|x− λi|2e−
λ2
i
2 −

x2

4 σN−1
(
dλN−1

)
dx

≤ ZN−1

ZN
e−

1
4Nt2
∫

e−
x2

4

∫

e
x2

4 −
x2

4 σN−1
(
dλN−1

)
dx

≤ ZN−1

ZN
e−

1
4Nt2
∫

e−
x2

4 dx

≤ eCN−1
4Nt2 ,

for someC > 0, where the last inequality follows from Lemma A.2 and where we have used

e−N
x2

2 = e−N
x2

4 e−N
x2

4 ≤ e−N
t2

4 e−N
x2

4 ,

whenever |x| ≥ t to justify the first inequality. Now

PσN

(
max

i=1,...N
|λi| ≥ t

)
≤ NPσN

(
|λ1| ≥ t

)
≤ eCN−1

4Nt2 ,

for some new constantC > 0. Then for any α < 1
4 and t ≥ t0(α), (78) holds for allN .

The proof of Lemma 3.10 now follows that of [GM07, Lemma 2.2].

Proof of Lemma 3.10. Since

λNmax(A) = max
1≤i≤d

sup
∥v∥=1

√
⟨v,AiA

†
iv⟩

is a convex function of the entries of theAi’s, then esNλN
max(A)2 is also a convex function. Note also that

λNmax(A)2 ≤
(
λNmax(A−M) + λNmax(M)

)2 ≤ 2λNmax(A−M)2 + 2λNmax(M)2,

where M = EµN
V

[
A
]

is mean of the tuple A. By the proof of [GM07, Lemma 2.1] there is someC1 > 0 for
which λNmax(M) < C1 for allN . Furthermore, by the generalised version of the Brascamp-Lieb inequality

∫

esNλN
max(A−M)2dµNV ≤

∫

esNλN
max(A)2dµNc ≤ CN

2 ,

for all suitably small s and someC2 > 0, and whereµNc is the law of the GUE ensemble with variance (cN−1).
The final inequality follows from the sub-Gaussian nature of the tails for the GUE and Lemma A.1. We con-
clude by observing that for some small s > 0,

∫

esNλN
max(A)2dµNV ≤ e2λ

N
max(M)2
∫

e2sNλN
max(A−M)2dµNV ≤ eC1CN

2 ,

and applying Lemma A.1.
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B Proof of Theorem 4.8
Definition B.1 (Pauli matrices). We denote by P = {σI , σX , σY , σZ} the set of Pauli matrices, introduced
in Definition 4.1 and write σ ∼ P for a random variable σ uniformly distributed overP .

We recall now some basic properties of the Pauli ensemble. Firstly, multiplication of Pauli matrices follows
the following rules.

× σI σX σY σZ
σI σI σX σY σZ
σX σX σI iσZ −iσY
σY σY −iσZ σI iσX
σZ σZ iσY −iσX σI

We may then consider the group G = ⟨P⟩ generated by Pauli matrices under matrix multiplication. By the
above multiplication rules, it is clear that every g ∈ Gmay be uniquely written as

g = ϕ(g)m(g), ϕ(g) ∈ {1, i,−1,−i} and m(g) ∈ P. (79)

We refer to ϕ(g) as the phase of g. Note the rules of commutation of two elements of g, h ∈ G: gh = hg
whenever m(g) = m(h), m(g) = I or m(h) = I and gh = −hg if m(g) ̸= m(h) and neither is the
identity. Moreover,m(g) ∈ P for any g ∈ G, it follows that |tr

(
g
)
| ≤ 1 for all g ∈ G.

Lemma B.2. Suppose that X and Y are independent random variables with values in G such that m(X) and
m(Y ) are uniformly distributed onP , thenm(XY ) ∼ P .

Proof. This is clear from the multiplication table and the fact thatm(XY ) = m(X)m(Y ).

By induction on the above lemma, we obtain the following.

Corollary B.3. LetX1, . . . , Xn
i.i.d.∼ P , thenm(X1 · · ·Xn) ∼ P .

We also require the following result.

Lemma B.4. Let g ∈ G andX ∼ P , then E[XgX] = 1{m(g)=σI}ϕ(g)I .

Proof. Ifm(g) = I , then E[XgX] = ϕ(g)E[XX] = ϕ(g)I . Ifm(g) ̸= I , then

XgX =

{
g, X = I orX = m(g);

−g, X ̸= I andX ̸= m(g).

Since both cases have probability 1
2 , E[XgX] = 0.

We may now combine the above to conclude the following.

Proposition B.5. Let X1, . . . , Xp
i.i.d.∼ P and let w be a word in p letters of length 2p such that each

letter {1, . . . , p} appears exactly twice. If pairing equal letters results in a non-crossing pair partition, then
E
[
tr
(
Xw1 · · ·Xw2p

)]
= 1, otherwise ∣∣∣E[tr(Xw1 · · ·Xw2p

)]∣∣∣ ≤ 1

4
. (80)

Proof. If w defines a non-crossing pair partition, then any consecutive pairs of lettersXjXj may be collapsed
to the identity. By the non-crossing property, there must be at least one pair, resulting in a shorter word of
2p− 2 letters defining a non-crossing pair partition in p-distinct letters. By induction, the entire word may be
collapsed to the identity, from which the result follows.

Assume now thatw does not define a non-crossing pair partition. First note that if there are any consecutive
letters in w, i.e. the appearance of XjXj for some j ∈ {1, . . . , p}, then the pair may be collapsed to the
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identity. If this collapse results in a new consecutive pair appearing, this may also be collapsed. Since the pairing
of equal letters does not result in a non-crossing pair partition, the entire product cannot be collapsed to the
identity. As such, we may assume without loss of generality thatw contains no consecutive. We claim that there
must be a subword ofw of the formXjXlXj for some word non-empty word l that contains no repeat letters.
This can be checked by induction on the length of the word, with the conclusion that if no such subword exists,
then there must be a consecutive pair. We may then write w = kjljm, where k,m do not contain j. Hence

E
[
tr
(
Xw

)]
= tr

(
E[Xw]

)
= tr

(
E[XkXjXlXjXm]

)
= tr

(
E
[
XkE[XjXlXj | Xi : i ∈ [p] \ j]Xm]

])
= tr

(
E
[
XkE[XjXlXj | Xl]Xm

])
= tr

(
E
[
Xkϕ(Xl)1{m(Xl)=I}Xm

])
= E

[
ϕ(Xl)1{m(Xl)=I}tr

(
XkXm

)]
.

The fifth equality used Lemma B.4. Therefore∣∣∣E[tr(Xw

)]∣∣∣ ≤ E
[
1{m(Xl)=I}

∣∣ϕ(Xl)
∣∣∣∣tr(XkXm

)∣∣] ≤ P
(
{m(Xl) = I}

)
=

1

4
,

since |ϕ(g)| = 1 for all g ∈ G and |tr
(
g
)
| ≤ 1 for all g ∈ G and the final equality uses Corollary B.3.

Lemma B.6. LetX1, . . . , Xp
i.i.d.∼ P and let u,v be words in the letters [p] such that

1) |uv| = 2p;

2) Each letter appears exactly twice in uv;

3) There is at least one letter that appears in both u and v.

Then
E
[
tr
(
Xu

)
tr
(
Xv

)]
≤ 1

4
.

Proof. For any word w we have that tr
(
Xw

)
= ϕ(Xw)1{m(Xw)=σI}. We know there exists a letter j ∈ [p]

that appears once in bothu andv, therefore we can decompose the two words asu = u1ju2 andv = v1jv2,
where none of u1,u2,v1,v2 contain the letter j. Thus, we have

|tr
(
Xu1XjXu2

)
tr
(
Xv1XjXv2

)
| = 1{m(Xu1XjXu2 )=σI}1{m(Xv1XjXv2 )=σI}.

The two indicator functions are simultaneously equal to 1 if and only if

m(Xj) = α−1 and m(Xj) = β−1 (81)

where α = m(Xu1)m(Xu2) and β = m(Xv1)m(Xv2).

Now, consider the σ-algebra F = σ(Xi : i ̸= j) generated by all Paulis Xi except Xj . Conditioning on F ,
the random matrixXj is uniformly distributed onP . Hence,

E
[
|tr
(
Xu1XjXu2

)
tr
(
Xv1XjXv2

)
| | F

]
= P((81) holds | F) =

{
1
4 , if α = β,

0, if α ̸= β.

In either case, the conditional expectation does not exceed 1
4 . Thus, taking expectation and using the fact that

|ϕ(g)| = 1 for all g ∈ G yields the result.
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The tensor product σw = σw1 ⊗ · · · ⊗ σwn , where σwi ∈ P , is a 2n × 2n matrix such that

tr
(
σw
)
= tr

(
σw1

)
· · · tr

(
σwn

)
. (82)

We recall again the definition of the random Pauli string ensemble.

Definition B.7. LetN = 2n. A matrixA belongs to the random Pauli ensemble withm Pauli strings if

A =
1√
m

m∑
i=1

riσi,

where ri
i.i.d.∼ Rad(1/2) and σi = σ(1)i ⊗ · · · ⊗ σ(n)i, where σ(j)i i.i.d.∼ P .

Definition B.8. For any alphabet sizem ≥ 1, denoted by [m], and integer p ≥ 1 define

• W (m, p) : number of words of length 2pwhere distinct letters appear an even number of times.

• N(m, p) : number of words of length 2pwhere distinct letters appear exactly twice.

Lemma B.9. For anym ≥ 1 and p ≥ 1,

W (m, p) =
1

2m

m∑
k=0

(
m

k

)
(m− 2k)2p =

∑
k1+···+km=p

ki≥0

(2p)!

(2k1)! · · · (2km)!
. (83)

Proof. For a given word w = w1 · · ·w2p, define the vector c(w) = (c1(w), . . . , cm(w)), where ci(w)
denotes the number of times letter i appears in w. Write

δ(ci(w)) =
1 + (−1)ci(w)

2
,

for the indicator that the count of letter i is even. Then w contributes toW (m, p) if and only if

1 =

m∏
i=1

1 + (−1)ci(w)

2
=

1

2m

∑
ϵ∈{0,1}m

(−1)
∑m

i=1 ϵici(w).

Hence, by summing over all words in the alphabet [m] of length 2p, we have

W (m, p) =
∑
w

1

2m

∑
ϵ∈{0,1}m

(−1)
∑m

i=1 ϵici(w) =
1

2m

∑
ϵ∈{0,1}m

∑
w

(−1)
∑m

i=1 ϵici(w).

For fixed ϵ, we can compute the inner sum as

∑
w

(−1)
∑m

i=1 ϵici(w) =
∑
w

2p∏
j=1

(−1)ϵwj =

 m∑
i=1

(−1)ϵi

2p

,

where ϵwj = ϵi wheneverwj = i. Noticing that
m∑
i=1

(−1)ϵi = m− 2t, where t = #{i : ϵi = 1},

we can combine the above to get

W (m, p) =
1

2m

∑
ϵ∈{0,1}m

 m∑
i=1

(−1)ϵi

2p

=
1

2m

m∑
t=0

(
m

t

)
(m− 2t)2p.

To see the second equality, from the conditions defining W (m, p) we have ci(w) = 2ki(w), for some
ki(w) ≥ 0, and

∑m
i=1 ki(w) = p. Using the multinomial theorem we know that the letters of w can be

arranged in (2p)!
(2k1(w))!···(2km(w))! different ways. Putting these two observations together yields the result.
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Lemma B.10. For anym ≥ 1 and p ≥ 1,

N(m, p) =

(
m

p

)
(2p)!

2p
=

∑
k1+···+km=p

ki∈{0,1}

(2p)!

(2k1)! · · · (2km)!
. (84)

Proof. We have to choose which p letters out of the m possible letters will appear, and then arrange those p
letters twice each in a word of length 2p. There are

(
m
p

)
ways of choosing p letters from the alphabet [m].

For the chosen p letters, we must place two copies of each letter among the 2p positions. For any set of the
form {w1, w1, w2, w2, · · · }, the number of distinct orderings is the multinomial count (2p)!

2p , which yields
the first equality. The second equality follows from the observation that each multi-index (k1, . . . , km) with
ki ∈ {0, 1} and

∑
i ki = p has exactly p of the ki’s equal to 1 and the remainingm− p equal to 0. Hence

(2p)!

(2k1)! (2k2)! · · · (2km)!
=

(2p)!

2! · · · 2!︸ ︷︷ ︸
p factors

0! · · · 0!︸ ︷︷ ︸
m−p factors

=
(2p)!

(2!)p
=

(2p)!

2p
.

There are
(
m
p

)
ways to choose which p indices satisfy ki = 1, so the total sum is

(
m
p

) (2p)!
2p as claimed.

Lemma B.11. For anym ≥ 1 and p ≥ 1, the inequalityW (m, p) ≤ 2pmpp! holds.

Proof. For any integer k ≥ 0, (2k)! = 2kk!(1 · 3 · · · · · (2k − 1)) ≥ 2kk!. Hence, from (83) we obtain

W (m, p) ≤ (2p)!

2p

∑
k1+···+km=p

ki≥0

1

k1! · · · km!
=

(2p)!

2pp!
mp

where we used the fact that ∑
k1+···+km=p

ki≥0

1

k1! · · · km!
=
mp

p!
.

Finally the lemma follows since (2p)! = 2pp!(1 · 3 · · · (2p− 1)) ≤ 2pp!(2 · 4 · · · 2p) = (2pp!)2.

Lemma B.12. For anym ≥ 1 and p ≥ 1 we have

W (m, p)−N(m, p) ≤ (4e)pmp−1p! (85)

Proof. Using (83) and (84) we obtain

W (m, p)−N(m, p) =
∑

k1+···+km=p
at least one ki≥2

(2p)!

(2k1)! · · · (2km)!
.
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Using similar arguments as in the proof of Lemma B.11,

W (m, p)−N(m, p) ≤ (2p)!

2p

∑
k1+···+km=p
at least one ki≥2

1

k1! · · · km!

=
(2p)!

2p

 ∑
k1+···+km=p

ki≥0

1

k1! · · · km!
−

∑
k1+···+km=p

ki∈{0,1}

1

k1! · · · km!


=

(2p)!

2p

(
mp

p!
−
(
m

p

))

=
(2p)!

2pp!

(
mp − m!

(m− p)!

)
=

(2p)!

2pp!
mp−1

(
m−m

(
1− 1

m

)(
1− 2

m

)
· · ·
(
1− p− 1

m

))

Now, for any j = 1, · · · , p− 1 then 0 < j
m < 1 and (1− α) ≥ exp

(
− α

1−α

)
for any α ∈ (0, 1). Hence,

W (m, p)−N(m, p) ≤ (2p)!

2pp!
mp−1

m−m p−1∏
j=1

exp

(
− j/m

1− j/m

)
=

(2p)!

2pp!
mp−1

m−m exp

− 1

m

p−1∑
j=1

j

1− j/m




≤ (2p)!

2pp!
mp−1

(
m−m exp

(
−p(p− 1)

2m

))

≤ (2p)!

2pp!

p(p− 1)

2
mp−1 ≤ (2p)p

p2

2
mp−1

where in the penultimate equality we used the simple fact that 1−e−x ≤ x for anyx ≥ 0 and setx = p(p−1)
2m .

The classical Stirling bound p! ≥ (p/e)p easily yields (2p)p p
2

2 ≤ (4e)pp!, from which the result follows.

Proposition B.13. For eachn, suppose thatAn
1 , . . . , A

n
d be i.i.d. matrices from the random Pauli string ensemble

of dimensionN = 2n withmn strings each. If limn→∞mn =∞, then

lim
n→∞

E
[
tr
(
An

w

)]
= τ(Xw),

for all w ∈ Wd, where τ is the law of d-free semicircular random variables.

Proof. First note that that

E
[
tr
(
An

w

)]
= m−

|w|/2
n

∑
u

E[ruw]E
[
tr
(
σuw
)]
,

where the sum runs over words u in mn-letters of length |w|. Since E[ruw] disappears unless each letter in u
appears an even number of times, we need only consider the case where |w| = 2p for p ∈ N. In this case, we
still require each letter in u to appear at least twice so that the total number of distinct letters in u is at most p.
We will write wt(u) for the number of distinct letters in u. We say that two words u and v are equivalent if
there is a bijection on [mn] that takes u to v. We have the following facts:
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1) The number of words in an equivalence class of a givenm-word with weight t is exactly

mn(mn − 1) · · · (mn − t+ 1) ≤ mt
n.

2) The number of equivalence classes of words with weight t is bounded by t2p.

By (82) and the property of traces of the groupG, then
∣∣E[tr(σuw)]∣∣ ≤ 1. Combining these facts yields

∑
u:wt(u)≤p−1

∣∣∣E[ruw]E[tr(σuw)]∣∣∣ ≤ p−1∑
t=1

mt
nt

2p ≤ mp−1
n p2p+1. (86)

We turn our attention to words of weight p. First, we see that

E
[
tr
(
σuw
)]

= E
[
tr
(
σ(1)uw

)
· · · tr

(
σ(n)uw

)]
= E

[
tr
(
σ(1)uw

)]n
,

by the i.i.d. construction of the Pauli strings. Consider first case where pairing equal letters in u defines a
crossing pair partition, then by Proposition B.5 we see that know that∣∣∣E[tr(σ(1)uw)]n∣∣∣ ≤ 2−2n.

The number of words of length 2pwith weight p, where distinct letters appear exactly twice may be bounded
by mp p2p

p! . And so the total contribution of these terms is bounded by mp
n
p2p

p! 2
−2n. Finally, consider those

words u where pairing equal letters results in a non-crossing pair partition. Then

E[ruw]E
[
tr
(
σuw
)]

=
∏

(a,b)∈πu

1wa=wb
,

whereπu is the pair partition of the letters {1, . . . , 2p} defined by the pairing of the letters inu. It is easy to see
that two valid words u and v are equivalent if and only if the non-crossing pair partitions they each generate
are equal. It remains then to count the number of non-crossing pair partitions of {1, . . . , 2p} for which∏

(a,b)∈πu

1wa=wb
= 1.

Recalling the discussion in Section 3.1, this is one of the defining properties of τ(Xw). The number of words
in each equivalence class ismn(mn − 1) · · · (mn − p+ 1). It follows that

lim
n→∞

E
[
tr
(
An

w

)]
= lim

n→∞

{
τ(Xw)

mn(mn − 1) · · · (mn − p+ 1)

mp
+O(2−2n) +O(m−1n )

}
= τ(Xw),

where the first term is the contribution of the non-crossing pair partitions, the second the crossing pair parti-
tions and the third is the contribution of terms with weight less than p.

We now derive a quantitative version of the previous result.

Proposition B.14. For eachn, suppose thatAn
1 , . . . , A

n
d be i.i.d. matrices from the random Pauli string ensemble

of dimensionN = 2n withmn strings each. Then∣∣∣∣E[tr(An
w

)]
− τ(Xw)

∣∣∣∣ ≤ (4e)pp!
(
m−1n + 2−2n

)
,

where τ is the law of d-free semicircular random variables and w ∈ Wd has length 2p for some p ∈ N.
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Proof. As in the previous proposition, we note that

E
[
tr
(
An

w

)]
= m−

|w|/2
n

∑
u

E[ruw]E
[
tr
(
σuw
)]
,

where the sum runs over words u in m-letters of length |w|. Again, it suffices to consider words w of even
length |w| = 2p, with p ≥ 1. We write wt(u) for the number of distinct letters in u. As in the previous
proposition, we split this sum into three parts.

(i) (Words of weight t < p) It is easy to see that

W (m, p)−N(m, p) = #{u : wt(u) < p}

Thus, using Lemma B.12 we obtain directly

m−pn

∑
u:wt(u)<p

∣∣∣E[ruw]E[tr(σuw)]∣∣∣ = m−pn (W (mn, p)−N(mn, p)) ≤ (4e)pp!
1

mn
(87)

(ii) (Words of weight t = p) As before, we need to distinguish two sub-cases:

Case 1: where pairing equal letters in u defines a crossing pair partition. By Proposition B.5

E
[
tr
(
σuw
)]

= E
[
tr
(
σ(1)uw

)]n ≤ 2−2n.

The count of such words is at mostN(mn, p) =
(
mn

p

) (2p)!
2p ≤ m

p
n
(2p)!
2pp! . Hence,

m−pn

∑
u:wt(u)=p

Case 1

∣∣∣E[ruw]E[tr(σuw)]∣∣∣ ≤ (2p)!

2pp!
2−2n ≤ (4e)pp!2−2n, (88)

where we used the Stirling bound (2p)!/(2pp!) ≤ (4e)pp!.
Case 2: where pairing equal letters in u results in a non-crossing pair partition. Using the same counting

arguments as in the proof of the previous proposition we have

m−pn

∑
u:wt(u)=p

Case 2

E[ruw]E
[
tr
(
σuw
)]

= τ(Xw)
mn(mn − 1) · · · (mn − p+ 1)

mp
n

Using the fact that ∣∣∣∣m(m− 1) · · · (m− p+ 1)

mp
− 1

∣∣∣∣ ≤ p2

2m
, (89)

yields ∣∣∣∣∣∣∣∣m
−p
n

∑
u:wt(u)=p

Case 2

E[ruw]E
[
tr
(
σuw
)∣∣− τ(Xw)

∣∣∣∣∣∣∣∣ ≤
p2

2mn
|τ(Xw)| ≤

(4e)pp!

mn
, (90)

where we used that fact that |τ(Xw)| ≤ 4p.

Combining the bounds (87), (88) and (90) yields∣∣∣∣E[tr(An
w

)]
− τ(Xw)

∣∣∣∣ ≤ (4e)pp!
(
2m−1n + 2−2n

)
,
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Proposition B.15. For eachn, suppose thatAn
1 , . . . , A

n
d be i.i.d. matrices from the random Pauli string ensemble

of dimensionN = 2n withmn strings each. Then∣∣∣E[tr(An
u

)
tr
(
An

v

)]
− τ(Xu)τ(Xv)

∣∣∣ ≤ (4e)pp!
(
2m−1n + 2−2n

)
,

for all words u,v ∈ Wd such that |u|+ |v| = 2p for some p ∈ N, with the left-hand-side being zero otherwise.

Proof. We first write

E
[
tr
(
An

u

)
tr
(
An

v

)]
= m−

(|u|+|v|)/2
n

∑
a,b

E[raurbv ]E
[
tr
(
σau
)
tr
(
σbv
)]
,

where the sum runs over words a and b in the letters [m] of length |u| and |v| respectively. Due to the
Rademacher random variables, we need only consider the case where |u|+ |v| = 2p for some p ∈ N. More-
over, we require each letter in the wordab to appear at least twice for the expectation to be non-zero. As before,
we then split the some into three parts.

(i) (Words of weight t < p) Using Proposition B.5 we directly compute

m−pn

∑
a,b:wt(ab)<p

∣∣∣E[raurbv ]E[tr(σau)tr(σbv)]∣∣∣ = m−pn (W (mn, p)−N(mn, p))

≤ (4e)pp!
1

mn

(91)

(ii) (Words of weight t = p) We now consider two subcases

Case 1: where at least one letter appears in both a and b or where pairing equal letters in a and b results
in a crossing. By noting that,

E
[
tr
(
σau
)
tr
(
σbv
)]

= E
[
tr
(
σ(1)au

)
tr
(
σ(1)bv

)
· · · tr

(
σ(n)au

)
tr
(
σ(n)bv

)]
= E

[
tr
(
σ(1)au

)
tr
(
σ(1)bv

)]n
,

we may apply Proposition B.5 and Lemma B.6 to see that

m−pn

∑
a,b:wt(ab)=p

Case 1

∣∣∣E[raurbv ]E[tr(σau)tr(σbv)]∣∣∣ ≤ (2p)!

2pp!
2−2n ≤ (4e)pp!2−2n, (92)

where we have used the fact that the total number of terms in the sum is boundedN(mn, p).
Case 2: where the words a and b are distinct and pairing equal letters in ab results in a non-crossing pair

partition. In this case

E
[
tr
(
σau
)
tr
(
σbv
)]

= E
[
tr
(
σ(1)au

)]nE[tr(σ(1)bv)]n = 1.

We then see that

E[raurbv ]E
[
tr
(
σau
)
tr
(
σbv
)]

=
∏

(a,b)∈πa

1ua=ub

∏
(c,d)∈πb

1vc=vd
,

whereπa is the non-crossing pair partition of the letters {1, . . . , |w|} defined by the pairing of the
letters in a, with πb defined similarly. Words ab and cd in Case 2 are then equivalent if and only
if πa = πc and πb = πd. It follows that the total number of equivalence classes in Case 2 is given
by τ(Xu)τ(Xw). Using the counting arguments as in the previous proposition, we have that

m−pn

∑
a,b:wt(ab)=p

Case 2

E[raurbv ]E
[
tr
(
σau
)
tr
(
σbv
)]

= τ(Xu)τ(Xv)
mn(mn − 1) · · · (mn − p+ 1)

mp
n

.
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Using the fact ∣∣∣∣mn(mn − 1) · · · (mn − p+ 1)

mp
n

− 1

∣∣∣∣ ≤ p2

2m
,

we conclude that∣∣∣∣∣∣∣∣m
−p
n

∑
a,b:wt(ab)=p

Case 2

E
[
raur

b
v

]
E
[
tr
(
σau
)
tr
(
σbv
)]
− τ(Xu)τ(Xv)

∣∣∣∣∣∣∣∣ ≤ (4e)pp!
1

mn
. (93)

Combining (91)-(92)-(93) gives∣∣∣∣∣∣m−pn

∑
a,b

E
[
raur

b
v

]
E
[
tr
(
σau
)
tr
(
σbv
)]
− τ(Xu)τ(Xv)

∣∣∣∣∣∣ ≤ (4e)pp!
(
2m−1n + 2−2n

)
.

As a corollary of all the results, we can now prove Theorem 4.8. We state it again for convenience.

Theorem B.16 (Theorem 4.8). For each n, suppose that An
1 , . . . , A

n
d be i.i.d. matrices from the random Pauli

string ensemble of dimensionN = 2n withmn strings each. LetUn
γ be the solution to

dUn
γ (s, t) = i

d∑
j=1

Un
γ (s, t)A

n
j dγ

j
t , Un

γ (s, s) = I,

and let
⟨γs,t⟩µ∞

V
=
∑

w∈Wd

i|w|τ(Xw)Sws,t(γ).

Then there existsC > 0 depending only on the length of γ and the dimension of the underlying space V for which

E
[(

tr
(
Un
γ (s, t)

)
− ⟨γs,t⟩µ∞

V

)2]
< C

(
m−1n + 2−2n

)
. (94)

Proof. We start by expanding(
tr
(
Un
γ (s, t)

)
− ⟨γs,t⟩µ∞

V

)2
=

∑
u,v∈Wd

i|u|+|v|
(
tr
(
Au

)
tr
(
Av

)
− τ(Xu)τ(Xv)

+ τ(Xu)τ(Xv)− tr
(
Au

)
τ(Xv)

− τ(Xu)tr
(
Av

)
+ τ(Xu)τ(Xv)

)
Sus,t(γ)Svs,t(γ).
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We start by dealing with the first term.∑
u,v∈Wd

∣∣∣E[tr(Au

)
tr
(
Av

)]
− τ(Xu)τ(Xv)

∣∣∣
≤
∞∑
p=0

2p∑
|u|=0

∑
|v|=2p−|u|

∣∣∣E[tr(Au

)
tr
(
Av

)]
− τ(Xu)τ(Xv)

∣∣∣∣∣∣Sus,t(γ)Svs,t(γ)∣∣∣
≤
(
2m−1n + 2−2n

) ∞∑
p=0

2p∑
k=0

∑
|u|=k
|v|=2p−k

(4e)pp! ·
∣∣∣Sus,t(γ)Svs,t(γ)∣∣∣

≤
(
2m−1n + 2−2n

) ∞∑
p=0

2p∑
k=0

(4e)pp! · d2p∥γ∥2p1-var
k!(2p− k)!

≤
(
2m−1n + 2−2n

) ∞∑
p=0

(2p+ 1)(4e)p · d2p∥γ∥2p1-var
p!

≤ C1

(
∥γ∥1-var, d

) (
2m−1n + 2−2n

)
.

The remaining two terms may each be bounded by∑
u,v∈Wd

∣∣∣E[tr(Au

)]
− τ(Xu)

∣∣∣τ(Xv)
∣∣∣Sus,t(γ)Svs,t(γ)∣∣∣

≤
∑

u∈Wd

∣∣∣E[tr(Au

)]
− τ(Xu)

∣∣∣∣∣∣Sus,t(γ)∣∣∣ ∑
v∈Wd

τ(Xv)
∣∣∣Svs,t(γ)∣∣∣

≤
(
2m−1n + 2−2n

) ∞∑
p=0

(4e)pd2p∥γ∥2p1-var
p!

∞∑
q=0

2qd2q∥γ∥2q1-var
(2q)!

≤ C2

(
∥γ∥1-var, d

) (
2m−1n + 2−2n

)
.

TakingC = 3max{C1, C2} yields the result.

C Proofs of Theorem 4.11 and Theorem 4.12
We now prove the correctness and provide the complexity analysis of the quantum and classical algorithms.

C.1 Quantum algorithm: Proof of Theorem 4.11

We state Theorem 4.11 again for convenience.

Theorem C.1 (Theorem 4.11). The positive integer parametersm,n,K,M may be chosen such that the output
ofA({∆ν

l }, ϵ, δ) estimates the unitary path development ⟨γ⟩ to within additive error ϵ with probability 1− δ:

P(|Q∆(M,m,n,K)− ⟨γ⟩| ≥ ϵ) < δ. (95)

The circuit requires log(1/ϵ, 1/δ) qubits and poly(1/ϵ, 1/δ) gates.

Proof. We use the triangle inequality and union bound to find

P
(
|Q∆(M,m,n,K)− ⟨γ⟩| > ϵ

)
≤ P

(∣∣∣Q∆(M,m,n,K)− E[tr
(
Uγ(α, n,K)

)
]
∣∣∣ > ϵ

3

)
, (96)

provided ∣∣E[Uγ(α, n,K)]− E[Uγ(α, n)]
∣∣ < ϵ

3
, |E[Uγ(α, n)]− ⟨γ⟩| <

ϵ

3
. (97)
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The first of these inequalities is ensured by Lemma 4.3 providedK > 3∆2
γm/ϵ and the second is ensured by

Theorem 4.8 withm = n provided n > max(6C/ϵ, log
(
6C/ϵ

)
). Finally, we ensure that the right-hand side

of (96) is bounded by δ using Hoeffding’s inequality (noting |tr
(
U
)
| < 1). We thus takeM > 2

ϵ2
log
(
2/δ
)

.

C.2 Classical Monte Carlo algorithm: Proof of Theorem 4.12

We now prove Theorem 4.12. We restate the classical algorithm and the theorem statement for convenience.

Algorithm 3 Classical SamplingAc

Input: Data: path increments {∆1
l , . . . ,∆

d
l }Ll=1. Parameters: IntegersN > 0,M > 0 andK > 0.

Draw d independentN ×N GUE matrices {Aν}dν=1

form = 1 toM do
for l = 1 toL do

ComputeAl :=
∑d

ν=1∆
ν
l Aν

ComputeUK
l := (1 +Al/K)K using a truncated approximation dependent onK > 0

ComputeQm := Tr(UK
1 U

K
2 · · ·UK

L )

returnQ∆(M,N,K) := 1
M

∑M
m=1Qm

Theorem C.2. The output ofAc({∆ν
i }) satisfies

P
(∣∣Q∆(N,M,K)− ⟨γ⟩)

∣∣ > ϵ
)
< δ, (98)

for small ϵ > 0 provided that M > 2/ϵ2 log
(
2/δ
)

samples are taken, the dimension N of matrices satisfies
N > e2∆γ/ϵ2 and the matrix exponential is truncated toK > ∆γe

2∆γ/ϵ.

We begin with a series of lemmas.

Lemma C.3. The estimatorQ∆(N,M,K) of E[tr
(
U(N,K)

)
] satisfies

P(|Q∆(M,N,K)− E[tr
(
U(N,K)

)
]| > ϵ) < δ, (99)

providedM > 2
ϵ2
log
(
2/δ
)

by Hoeffding’s inequality.

Lemma C.4. The truncated matrix exponentialU(N,K) := UK
1 · · ·UK

L satisfies

E
[
tr
(
U(N,K)

)
− tr

(
U(N)

)]
< ϵ, (100)

providedK > ∆le
2∆l

2/ϵ .

Proof. We writeAl :=
∑d

ν=1∆
ν
l Aν . It is then a standard GUE result that

∥Al∥ ≤ max
ν

(∆ν
l )

(
1 +

µ

N2/3
+ o(N−2/3)

)
, (101)

where ∆l := maxν(∆
ν
l ) and µ is the mean of the Tracy-Widom distribution. Now we write

fK(A) = (1 +A/K)K . It is straightforward to obtain the bound

E
[
∥ exp(Al)− fK(Al)∥

]
≤ ∆l

K
e2∆l

(
1 +

µ

N2/3
+ o(N−2/3)

)
, (102)

for each l = 1, . . . , L this quantity is thus bounded by ϵ providedK > ∆γe
2∆γ/K . Finally, we note

E
[
tr
(
U1 · · ·Ul

)
− tr

(
fK(A1) · · · fK(Al)

)]
< ϵ. (103)
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Lemma C.5. The convergence of the finiteN development to the unitary development satisfies

E
[
|tr
(
U(N)

)
− ⟨γ⟩|

]
< ϵ, (104)

providedN > e2∆γ/ϵ2.

We now turn to the proof of Theorem 4.12.

Proof. We first note that∣∣Q∆ − ⟨γ⟩
∣∣ ≤ ∣∣∣Q∆ − E[tr

(
U(N,K)

)
]
∣∣∣+ ∣∣∣E[tr(U(N)

)
]− E[tr

(
U(N,K)

)
]
∣∣∣+ ∣∣∣E[tr(U(N)

)
]− ⟨γ⟩

∣∣∣ .
(105)

Thus
P(|Q∆ − ⟨γ⟩| > ϵ) ≤ P(|Q∆ − E[tr

(
U(N,K)

)
]| > ϵ) (106)

provided, from Lemma C.5 and Lemma C.4,N > e2∆γ/ϵ2 andK >
∆γe

2∆γ

2/ϵ . Finally, we apply Hoeffding’s
inequality and Lemma C.3, to obtain the result.
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