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Abstract

Anomalous diffusions arise as scaling limits of continuous-time random walks (CTRWs)

whose innovation times are distributed according to a power law. The impact of a non-

exponential waiting time does not vanish with time and leads to different distribution spread

rates compared to standard models. In financial modelling this has been used to accom-

modate for random trade duration in the tick-by-tick price process. We show here that

anomalous diffusions are able to reproduce the market behaviour of the implied volatility

more consistently than usual Lévy or stochastic volatility models. We focus on two distinct

classes of underlying asset models, one with independent price innovations and waiting times,

and one allowing dependence between these two components. These two models capture the

well-known paradigm according to which shorter trade duration is associated with higher

return impact of individual trades.

We fully describe these processes in a semimartingale setting leading no-arbitrage pricing

formulae, and study their statistical properties. We observe that skewness and kurtosis

of the asset returns do not tend to zero as time goes by. We also characterize the large-

maturity asymptotics of Call option prices, and find that the convergence rate is slower than

in standard Lévy regimes, which in turn yields a declining implied volatility term structure

and a slower decay of the skew.

Keywords: Anomalous diffusions, volatility skew term structure, derivative pricing, CTRWs,

inverse Lévy subordinators, time changes, Lévy processes, subdiffusions, Beta distribution, tri-

angular arrays.

1 Introduction

In quantitative finance, asset returns typically evolve according to Itô diffusions or Lévy-type

models. From a microstructural point of view, these can be seen as scaling limits of continuous-
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time random walks (CTRWs) with exponentially distributed inter-arrival times. Instead, sub-

ordinating CTRWs to a renewal process whose waiting times obey a power law yields, in the

scaling limit, an anomalous diffusion, namely a space-time propagation process where the par-

ticle spreads at a rate different from the classical diffusive case. The use of anomalous diffusions

in financial models was pioneered by Mainardi et al. (2000) and Scalas et al. (2000), and they

have proved useful to capture memory effects, trade idle time, and other microstructural price

features exhibited by high-frequency time series.

However, applications of anomalous diffusions for continuous time option pricing have so

far been scarce. The sub-diffusive Black-Scholes model was introduced in Magdziarz (2009) to

capture asset staleness and periods of trade inactivity, but implications on pricing and implied

volatilities were not illustrated. Cartea and Meyer-Brandis (2010) analysed the volatility surface

of a CTRW whose innovation times are distributed according to a Mittag-Leffler hazard func-

tion; they produced explicit option pricing formulae, and provided evidence that the long-term

skewness and smile can be captured.

We show here how anomalous diffusions in Equity returns can also capture the long-term

behaviour of the implied volatility surface. Specifically, we argue that the persistence of a slowly

decaying volatility skew can be explained by postulating the survival of trade durations effects

at longer maturities. We consider returns and innovation times random walks which converge in

the scaling limit to a pair of Lévy processes, one of which is a subordinator. According to Becker-

Kern et al. (2004); Meerschaert and Scheffler (2008, 2010); Henry and Straka (2011); Jurlewicz

et al. (2012), the associated CTRW subordinated to the renewal process of the innovation times

converges to an anomalous diffusion which can be represented as a time-changed Lévy process.

One appealing feature is that analytical formulae are known for the Laplace transforms (in the

time variable) of the characteristic function of this limit, as well as integral expressions for the

density functions in terms of the Lévy measures.

We analyse two distinct classes of anomalous diffusion models. The first is the purely sub-

diffusive Lévy model (SL), where the CTRW limiting diffusion consists of a Lévy process sub-

ordinated by an independent inverse-stable subordinator. In terms of the generating fractional

Fokker-Planck equations such a class has been investigated in Cartea and del-Castillo-Negrete

(2007). The particular case where the parent Lévy process is a Brownian motion was introduced

in Magdziarz (2009); the compound Poisson case in Cartea and Meyer-Brandis (2010). Note

also that the classic models in Mainardi et al. (2000), Scalas et al. (2000) admit a representation

of this form. We revisit those as stochastic time changes, which is well suited for option pricing

purposes. The time change representation of subdiffusive models also paves the way for our

second second class of models, developing an idea from Becker-Kern et al. (2004). This novel

asset price evolution realistically incorporates the dependence between the Lévy parent returns

generating process and the inverse-stable subordinator modelling the trades waiting time. We

call it the model with dependent returns and trade duration (DRD).

Apart from being natural outcomes of subordinated random walk tick-by-tick price models,
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these two models find are strongly supported by the econometric analysis by Engle (2000)

and Dufour and Engle (2000), confirmed in numerous empirical studies later on. The evidence

is that trading activity is inversely correlated with price impact, i.e. the ‘volatility’ of the asset

price: the fewer the trades (longer duration), the more sluggish the price innovations; conversely,

intense trading (short duration) is associated with higher price excursions. Remarkably, this

principle is captured by the presented models.

We describe such Equity models in a semimartingale dynamic setting leading to no-arbitrage

pricing relations under appropriate equivalent risk neutral measures. Using the results of Ju-

rlewicz et al. (2012) on the Fourier-Laplace transforms of anomalous diffusions, we further

provide familiar Parseval-Plancherel formulae for option prices in the spirit of Lewis (2001).

Additionally, we study the moments and serial correlation properties of the model and show

that skewness and kurtosis of the asset returns in the DRD model approach converge for large

times, and do not vanish, contrary to Lévy models, leading in particular to profound differences

on the long-term volatility smile.

Finally we characterize the large-maturity behaviour of Call option prices and find that the

convergence rate is much slower than in standard Lévy or stochastic volatility regimes. We

uncover a relationship according to which a declining implied volatility level implies a slowly–

comparatively to Lévy and exponentially affine models–decaying skew. But we find that a

(slowly) vanishing volatility level is a defining feature of these models, due to long-maturity

prices converging much slower than in standard models. Ultimately, for the DRD model we

show that the vanishing rate of the skew is slower than the usual 1/T , in line with market data.

As illustrated in the calibration in Section 8, the practical importance of anomalous diffusion

model is that the ‘duration parameter’ β improves the cross-sectional fit to multiple maturities

compared to a Lévy model, while having virtually no impact on the short-maturity calibration.

This justifies the interpretation of β as a long term skew component.

We believe the contribution of this work to be manifold. We establish an explicit structural

connection between trade duration and skew persistence; we introduce an analytical model that

accounts for trades duration and dependence between trade waiting times and returns, consis-

tent with Econometrics literature; we systematically unify the treatment of SL models under

the umbrella of a single time-changed representation and the corresponding analytic pricing

formulae; finally we extend the analysis of the ‘Beta-time’ process in Meerschaert and Scheffler

(2004) and Jurlewicz et al. (2012), providing its moments and statistical properties through its

time-changed representation.

In Section 2 we introduce fundamental building blocks and some useful notations. In Sec-

tion 3 we introduce the CTRWs components of the base tick-by-tick model and the convergence

theorem leading to the limiting continuous-time version. The anomalous diffusions are intro-

duced in Section 4, together with their analytical properties and time-changed semimartingale

representations, while their statistical properties are characterized in Section 5. In Section 6 we

show how to construct equivalent pricing measures, and provide an integral price representation
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for European Call option prices. This allows us to study in Section 7 the structure of the corre-

sponding implied volatility, with a particular emphasis on its large-maturity properties. Finally

in Section 8, we numerically highlight interesting features of the SL and DRD models, and show

that both models allow for a good fit to market data.

2 Foundational elements

We follow here (Kyprianou, 2014, Chapter 1). In a market filtration (Ω,Ft,P) a Lévy process X

is uniquely characterized by its Lévy exponent, namely the function ψX : C → C defined via

the relation E
[
e−izXt

]
= exp (−tψX(z)), and given explicitly by the Lévy-Khintchine formula

ψX(z) = izµ+
z2σ2

2
−
∫
R
(e−izx − 1 + izx1I|x|<1)ν(dx), (2.1)

where µ ∈ R, σ ≥ 0, and ν is a measure concentrated on R \ {0} such that
∫
R(1 ∧ x

2)ν(dx) is

finite. A subordinator L is an almost surely non-decreasing Lévy process, with Lévy measure νL

supported on (0,∞), and the Lévy-Khintchine representation for its Laplace exponent defined

via the relation E
[
e−sXt

]
= exp (−tϕL(s)), simplifies to

ϕL(s) = sµ−
∫ ∞

0
(e−su − 1)νL(du), (2.2)

for µ > 0, and where
∫∞
0 uνL(du) <∞. A bivariate Lévy process (X,L), with L as subordinator,

has joint Fourier-Laplace transform E[e−izXt−sLt ] = exp (−tψX,L(z, s)) of the form

ψX,L(z, s) = izµX + sµL +
z2σ2

2
−
∫
R

∫ ∞

0

(
e−izx−su − 1 + izx1I|x|<1

)
νX,L(dx, du), (2.3)

with Lévy-Laplace triplet ((µX , µT ), σ, νX,T ). If Y is a Lévy process, stochastic continuity

implies that Yt = Yt− almost surely for all t > 0, where Yt− denotes the left limit. We write

∆Yt := Yt − Yt−. The first hitting time of [t,∞) of L is the random variable

Ht := inf {s > 0 | Ls > t} . (2.4)

which has continuous paths since L is strictly increasing, is F-adapted by the Debut Theorem.

The process H is called the inverse-subordinator of L. Of particular interest for us here is

the case where L is an α-stable subordinator, i.e. ψL(s) = sα, α ∈ (0, 1), whose associated

inverse-subordinator is central in fractional calculus and anomalous diffusions theory.

A time change is an increasing, almost surely finite process (Tt)t≥0 diverging almost surely

to infinity for large times. In particular, both L and H are time changes. If X is an Ft-adapted
semimartingale, then its time change by T is the FTt-adapted semimartingale (XTt)t≥0. Further,

if X is almost surely constant on all sets [Tt−, Tt] we say that X is continuous with respect to T ;

in this case many other properties are preserved, and the semimartingale characteristics of X

scale with T (Jacod, 1979, Chapter 10).
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A triangular array of random variables is a collection of random variables (Y c
i , J

c
i )i∈N,c>0

indexed by a scale parameter c such that each (Y c
i )i∈N and (Jci )i∈N is an iid sequence, but not

necessarily independent from each other. For fixed c the variable Y c
i retains the interpretation

of the i-th price excursion, and Jci the time elapsed between two consecutive price moves. We

can canonically associate to (Y c
i , J

c
i ) two families of continuous-time random walks (CTRWs):

Rct :=

[t]∑
i=0

Y c
i and T ct :=

[t]∑
i=0

Jci , (2.5)

and associate to T c the counting process N c
t := max{n : T cn ≤ t}. The notation ·̂ indicates the

Fourier transform of probability measures, and the Laplace transform in the time variable is

denoted by L(·, s), where s is the new transformed variable.

3 The microstructural returns and their analytical properties

At a microscopic level, we postulate that the time series of returns and trade times, at the

time scale c, are determined by a triangular array of random variables (Y c
i , J

c
i ), where Y c

i

determines the size of the returns implied by the equity price variation conditional to observing

a price revision, and Jci dictates the time elapsed between subsequent revisions. The renewal

process N c corresponds then to the total number of price movements at t, and the tick-by-tick

returns process Σc is thus given by subordinating Rc with N c:

Σct :=

Nc
t∑

i=0

Y c
i . (3.1)

At time t the price will have moved by a quantity
∑n

i Y
c
i if the n-th arrival time is recorded

before t. Or, conditional to n price moves occurred by time s, the price will move again by Y c
i

before time t > s if the waiting time variable Jcn+1 realizes at a value lesser than t − s. We

assume that there exists a constant risk-free market rate r > 0 affecting the price growth linearly

in time and independently of the time scale and modify (3.1) as

Σc,∗t := rt+

Nc
t∑

i=0

Y c
i . (3.2)

The reasons for this modification shall be explained further on. For the moment, we remark

that this physical tick-by-tick model must be understood in the sense that only the price inno-

vations correspond to market observations. Hence, the linear drift introduced in the random

walk Σc,∗ between two price movements does not give rise to a traded value, and impacts the

price only at revisions time. However, further deterministic trends in the price dynamics, such

as risk premia, are still possible and can be captured by an appropriate choice of Y c.
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3.1 Joint limits of CTRWs

The continuous-time pricing model we describe here is based on a scaling limit of the CTRW Σc,∗

for an appropriately selected triangular array (Y c
i , J

c
i ). This setup encompasses classical math-

ematical finance models: when (Y c
i ) are centered i.i.ds with finite variance and Jci = 1 for all

i, then the Central Limit Theorem yields a Brownian motion. If the Y c
i have infinite variance

and are in the domain of attraction of a stable process X, then their scaling limit yields exactly

X. Considering random waiting times for J ic with finite expectation does not improve here the

generality of the setting since by the Renewal Theorem N c
t ∼ t/E[Jci ] in probability for large t.

Therefore, in order to build processes in which the trade time duration information has

impact on the distribution of the scaling limit of Σct , one has to consider infinite-mean waiting

times. Under this choice, taking the limit leads to an anomalous diffusion model for the asset

price dynamics. The following result is central to the entire anomalous diffusions theory:

Theorem 3.1 (Becker-Kern, Meerschaert, Scheffler, Straka, Henry). Let (Y c
i , J

c
i ) be a triangular

array of random variables and set Rc, T c and Σc as in (2.5)-(3.1). If there exists a bivariate

Lévy process (X,L) with L a subordinator, such that

lim
c↑∞

(Rcct, T
c
ct) = (Xt, Lt) , (3.3)

in the J1-topology on the Skorokhod space D(R× R+), then

lim
c↑∞

Σct −→ (XHt−)
+, (3.4)

in the J1-topology on D(R), where (XHt−)
+ is the right-continuous modification of XHt−.

This theorem has appeared in various forms and has an interesting evolution. It was first

proved in Becker-Kern et al. (2004) under the weaker M1 topology, under an assumption only

slightly weaker than independence between spatial evolution and waiting times. However, even

if the process (XHt)t≥0 was claimed there to be the limit, the latter can be shown to coincide

with (XHt−)t≥0 under such assumptions. This was remarked by Henry and Straka (2011), who

also gave the full version of the theorem we use (i.e. allowing dependence), except that we allow

the base processes to be CPPs. Another proof has been provided in (Jurlewicz et al., 2012,

Theorem 3.1 and Theorem 3.5), this time including CPPs.

Remark 3.1. Unless the Jci are constant or exponentially distributed, the CTRW limit is not

Markovian.

Example 3.1. For a sequence (Yi) of iid centered random variables with unit variance, let Y c
i :=

c−1/2Yi; consider further the i.i.d. sequence (Jci ) distributed as Exp(λ), for some λ > 0. As

previously detailed applying the Central Limit Theorem and the Renewal Theorem show the

familiar convergence Σct →Wλt for some Brownian motion W .
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Example 3.2. Assume that (Yi) and (Ji) are independent sequences of iid random variables

belonging to the domain of attraction of respectively an α-stable law X, α ∈ (1, 2), and a β-

stable law L,β ∈ (0, 1), i.e. there exist regularly varying sequences (Bn) and (bn) respectively

with indices −1/α, −1/β such that Bn
∑n

i=1 Yi and bn
∑n

i=1 Yi converge respectively to X and L

almost surely. Then letting Y c
i := B(c)Yi and J

c
i := b(c)Ji, with B(c) := Bn1{t∈(Cn−1,Cn]} and

b(c) := bn1{t∈(cn−1,cn]} yields an explicit triangular array and the theorem above applies with

Xt and Lt being respectively the stable processes canonically associated with X and L. In this

case, Theorem (3.1) collapses to (Meerschaert and Scheffler, 2004, Theorem 4.2).

Example 3.3. An explicit representation of the CGMY process as a CTRW limit can been ob-

tained by appropriately tempering variables in the domain of attraction of a stable law, as

explained in Chakrabarty and Meerschaert (2011). Combining this with Example 3.2 provides

another explicit CTRW limit representation of (3.4) for a CGMY process X and a stable sub-

ordinator L.

3.2 Transform analysis and connections to fractional calculus

It is remarkable that the CTRW limit in Theorem 3.1 enjoys a very high degree of analytical

tractability. For example the probability density of an inverse Lévy subordinator H is known in

terms of the Lévy measure of L. Similarly, the law of XHt− can be recovered by integral trans-

forms involving νX,L and the other Fourier-Laplace characteristics, as explained in Meerschaert

and Scheffler (2008) and Jurlewicz et al. (2012). We recall the following from (Jurlewicz et al.,

2012, Proposition 4.2):

Proposition 3.2. Let XHt− be the CTRW limit in (3.4), with law Pt. Then

L
(
P̂t(dz), s

)
=

1

s

ϕL(s)

ψX,L(z, s)
. (3.5)

The formula of the Laplace transform of XHt− is particularly simple. Having at hand a

specification for XHt− in terms of the involved characteristic exponents, by virtue of (3.5) we

are only one Laplace inversion away from the characteristic function, and we shall see that this

inversion can be computed explicitly in our cases. From a theoretical perspective, the Fourier-

Laplace transform of the process law provides an interesting connection between the stochastic

representation of anomalous diffusions via CTRW limits, and the classical characterization of

their laws as weak solutions of fractional abstract Cauchy problems. For details we refer the

reader to Baumer et al. (2005); Meerschaert et al. (2013); Jurlewicz et al. (2012); Meerschaert

and Scheffler (2008), and references therein.

4 The asset price models

We introduce here the two anomalous diffusions models we propose to establish the desired

connection between trades duration and the implied volatility surface.
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Definition 4.1. Let X be a Lévy process, L an independent β-stable subordinator, and (Y c
i , J

c
i )

a triangular array satisfying (3.3). We define the underlying price S as

St = S0 exp(rt+ Yt), S0 > 0, (4.1)

with Yt := XHt− given by (3.4), and shall consider the following two cases:

(SL) The purely subdiffusive Lévy model is such that (Y c
i , J

c
i ) satisfy the assumptions of Theo-

rem 3.1 with (X,L) in the right-hand side of (3.3);

(DRD) The model with dependent returns and trade durations is such that (Y c
i , J

c
i ) satisfy the

assumptions of Theorem 3.1 with (XL, L) in the right-hand side of (3.3).

The two models are in appearance very similar, the only difference being that the second

requires convergence of the return innovations to the subordinated Lévy processXL instead ofX.

Yet, this difference is critical since this subordination is precisely what introduces coupling in

the DRD model. We shall denote the return generating CTRW limit Y SL and Y DRD and,

correspondingly, the price process as SSL and SDRD to distinguish the two processes. The

underlying standard Lévy model is S0
t = S0 exp(rt+Xt).

Remark 4.1. For the SL model, by independence and stochastic continuity of X, it is easy to

see that XHt− = XHt in law for each t > 0. From now on we shall use this operative definition.

Remark 4.2. As β tends to 1, Lt tends to t in probability and almost surely. Therefore the

usual conditional independence argument (together with Proposition 4.2 below) shows that St

tends in law to S0
t . So in the limiting case, the Lévy models are recovered. Thus β can be

interpreted as a parameter that regulates divergence from Lévy, and therefore quantifies the

degree of ‘anomaly’ of the diffusion.

Example 4.1. When X is a Brownian motion and H an independent β-stable subordinator the

resulting SL model is the subdiffusive Black-Scholes first introduced in Magdziarz (2009).

Example 4.2. Cartea and Meyer-Brandis (2010) introduce a CTRW model with independent

trade duration and returns where the conditional waiting time is modelled through an hazard

function. They in particular consider the latter to be of Mittag-Leffler type, i.e. P(Tn >

t) = Eβ(−tβ) (see also (6.2) further on), and the price innovations follow an arbitrary infinitely

divisible distribution. The resulting driving CTRW is a Fractional Poisson process (FPP) Laskin

(2003); Mainardi et al. (2004) with parameter β. Since an FPP can be represented as a CPP,

time changed with an independent β-stable subordinator (as proved in Meerschaert et al. (2011)),

the FPP model by Cartea and Meyer-Brandis (2010) is included in our framework.

Example 4.3. The original model in Scalas et al. (2000) and Mainardi et al. (2000) also admits

an FPP representation, where the returns innovations follow a stable distribution, and can be

written in terms of a triangular array limit (Meerschaert and Scalas (2004)).
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Example 4.4. A comprehensive treatment of subdiffusive asset models obtained as fractional

counterparts of popular Lévy models is provided in Cartea and del-Castillo-Negrete (2007),

who tackle the option pricing problem by numerically solving the fractional partial differential

equations characterizing their transition probabilities. In view of the results of (Meerschaert

and Scheffler, 2008), all such models admit a time-changed representation of SL type.

Since the subordinator L has no drift, the sample paths of Y SL and Y DRD are Lebesgue

almost everywhere constant (Bertoin, 1997, Chapter 2), and thus conveniently capture the idea of

tick-by-tick trading and persistence of trade duration at all time scales. This also implicates that

all equivalent measures for Y are mutually singular with respect to the usual diffusion processes.

However, the discounted asset value necessarily contains a Lebesgue absolutely continuous part,

orthogonal to all EMM for Y , coming from discounting by the market numeraire (the bank

account). Therefore, in order for the Fundamental Theorem to apply, we need to cancel such

part. This clarifies the choice (3.2) of modelling the interest rate effects externally to Y . Of

course, nothing prevents that the physical dynamics Y itself have a drift in the component X.

In Figure 1 we show sample paths of H and Y SL when X is a standard Brownian motion, for

two different values of β. As β increases, reversion to respectively the linear time and a standard

Brownian return model with no trades duration effects is observed.

The non-Markovian structure of the two processes captures the possible memory effects in

price formation when observing random waiting times between trades. As we shall see later,

both the value of the process at time t and the time elapsed since the last price revision influence

the price evolution. Dependence between trade times and price returns is a widely acknowledged

fact, as pointed out in Engle and Russell (1998) and confirmed in several empirical studies. This

makes the DRD model more realistic compared to the SL one, although the cost/benefit impact

in terms of performance of embedding this feature remains to be assessed. For now, observe

that the two models have the same number of parameters, so that modelling price/duration

dependence does not add any dimension in the calibration and estimation.

It would be useful to find for the DRD a representation of XL
Ht− in terms of an independent

time change similar to the one for the SL model. Consider first the special case X = L in

Theorem 3.1. Then LHt− is an FHt-adapted time change. Indeed, the following proposition

establishes that the DRD return model can be written as a time change with respect to LHt−.

Proposition 4.2. Denote XL
t = XLt and LHt = LHt−. Then (XLH

t
)t≥0 has a right-continuous

modification which is a version of (XL
Ht−)t≥0.
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Proof. Conditioning and using Fubini’s Theorem yields, for n ≥ 1, and any t1, . . . , tn,

P(XL
Ht1−

∈ dx1, . . . , X
L
Htn− ∈ dxn)

=

∫
Rn
+

P(XL
s1− ∈ dx1, . . . , X

L
sn− ∈ dxn|Ht1 = s1, . . . , Htn = sn)P(Ht1 ∈ ds1, . . . ,Htn ∈ dsn)

=

∫
Rn
+

(∫
Rn
+

P(Xu1 ∈ dx1, . . . , Xun ∈ dxn|Ls1− = u1, . . . , Lsn− = un,Ht1 = s1, . . . , Htn = sn)

P(Ls1− ∈ du1, . . . , Lsn− ∈ dun|Ht1 = s1, . . . , Htn = sn)
)
P(Ht1 ∈ ds1, . . . , Htn ∈ dsn)

=

∫
Rn
+

P(Xu1 ∈ dx1, . . . , Xun ∈ dxn|LHt1− = u1, . . . , LHtn− = un)P(LHt1− ∈ du1, . . . , LHtn− ∈ dun)

= P(XLH
t1

∈ dx1, . . . , XLH
tn

∈ dxn). (4.2)

Hence XLH
t

is a version of XL
Ht−. To verify the existence of a right-continuous modification

of XLH
t
, observe that by stochastic continuity of X it suffices to show the existence a right-

continuous modification of LH . We observe that the values at which LH is discontinuous are

exactly the points in the image R of L which are isolated on the right. But since L has no drift,

P(t ∈ R) = 0 by (Bertoin, 1997, Chapter 1, Proposition 1.9), so that replacing LH with its right

limits generates a càdlàg modification of LH .

There are then two ways of looking at the DRD returns process. The definition gives us a

dependent representation using a continuous time change; Proposition 4.2 produces instead an

independent representation employing a discontinuous time change. Both will be useful in the

sequel. Proposition 4.2 will be used throughout without further mention.

Let us briefly describe the nature of the process LH . It is easy to show that, for any t ≥ 0,

LHt = sup{s < t : s = Lu, for some u ≥ 0}. (4.3)

In light of this identification, the process LHt is sometimes called the last sojourn process and

plays an important role in potential theory for Lévy processes. It is an increasing process (Bertoin

(1997)) which tracks the largest value attained by L before leaving any given fixed level set [0, t].

When (the right-continuous version of) LHt jumps, its post-jump value is exactly t, and in any

case LHt ≤ t almost surely. This ties in with the interpretation of LHt as a delayed calendar

time. The following fact has been already remarked in Becker-Kern et al. (2004) and Jurlewicz

et al. (2012), but we reformulate it in our context. We denote by Bα,β the Beta distribution

with parameters α and β.

Proposition 4.3. For any t ≥ 0, LHt is distributed as tBβ,1−β.

Proof. By definition of the Beta distribution, for 0 < y < t,

P(tBβ,1−β < y) =


∫ y

0

xβ−1(t− x)−β

Γ(β)Γ(1− β)
dx, if y ∈ (0, t),

0, if y ≤ 0,

1, if y ≥ t.

(4.4)
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We show then that the Fourier-Laplace transform of

pt(x) :=
xβ−1(t− x)−β

Γ(β)Γ(1− β)
1I{x≤t} (4.5)

satisfies Proposition 3.2 with X = L. First of all ϕL(s) = sβ, and an easy computation produces

ψL,L(s, z) = (s− iz)β, so that by (3.5) we need to verify

L (p̂t(z), s) =
sβ−1

(s− iz)β
. (4.6)

The Fourier transform of pt then reads

p̂t(z) =
1

Γ(β)Γ(1− β)

∫ t

0
eizxxβ−1(t− x)−βdx (4.7)

where the integral is the convolution f ∗ gz(t), where f(u) = u−β and gz(u) = uβ−1eizu. Since

L(f ∗ gz, s) = L(f, s)L(gz, s), with L(f, s) = sβ−1Γ(1 − β), and L(gz, s) = (s − iz)−βΓ(β), the

statement follows.

This proposition underpins the greater analytic tractability of the DRD model with respect

to the SL model: somewhat paradoxically, the more realistic model is also the more tractable.

Proposition 4.3 clarifies how the DRD model captures the paradigm of Engle (2000) and Dufour

and Engle (2000). The DRD time-changed evolution obeys a form of delayed calendar time

whose mass in [0, t] concentrates more around 0 or t depending on whether β is close to zero

or one (Figure 3). This mass represents the quantity of delay one has to apply to X to obtain

the current price value. When L has a low β, that is when duration of trade is higher, the price

evolution is stickier, since Bβ,1−βt is much smaller than t with high probability. This is associated

with a reduced impact of the individual trades on the price process because the informational

content of sporadic trading is low. Conversely, as Bβ,1−βt is close to t with high probability

(namely when β is close to one) we observe a higher trading activity, typically associated with

the presence of informed traders. In such a case the contribution of each single trade to the

process of price formation is greater, and the impact of trading on price higher. A similar

reasoning applies to the SL model. Here combining subordination with independence ‘delays’

the evolution of X for the time necessary to the next price revision to happen, but the resulting

move retains the variance of an earlier point-in-time position of the process X. Therefore, again,

the lower the β, the stickier the price dynamics.

5 Moments and time series properties

We derive some statistical properties of the SL and DRD models and provide some initial insight

on the structure of the volatility surface they generate, anticipating the full analysis in Section 7.

We begin with the moments of the DRD model, whose analytic tractability plays a major role.
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The following proposition extends (Leonenko et al., 2014, Theorem 2.1) to higher cumulants.

In this section, X is a given Lévy process, T an independent time change, and we let κi and τi

denote their respective i-th cumulants, which we assume to exist for i = 1, . . . , 4.

Proposition 5.1. The process Y := XT has moments up to order four, and its cumulants read

κY1 = τ1κ1, κY2 = τ1κ2 + κ21τ2,

κY3 = τ1κ3 + 3κ1κ2τ2 + κ31τ3, κY4 = (3κ22 + 4κ1κ3)τ2 + 6κ21κ2τ3 + κ4τ1 + κ41τ4.
(5.1)

Proof. In our notation κn = −
(
inψ

(n)
X (0)

)
. The usual conditioning argument yields

E[Yt] = i
d

dz
E
[
e−izYt

] ∣∣∣
z=0

= i
d

dz
E
[
e−ψX(z)Tt

] ∣∣∣
z=0

= −iψ′
X(0)E[Tt], (5.2)

which gives κY1 . Next

E[Y 2
t ] = − d2

d2z
E
[
e−izYt

] ∣∣∣
z=0

= ψ′′
X(0)E[Tt]− ψ′

X(0)
2E
[
T 2
t

]
, (5.3)

Subtracting from (5.3) the square of (5.2) reconstructs τ2 and yields κY2 . Similarly,

E[Y 3
t ] = −i

d3

d3z
E
[
e−izYt

] ∣∣∣
z=0

= −ψ′′′
X(0)E[Tt] + 3E

[
T 2
t

]
ψ′
X(0)ψ

′′
X(0) + iψ′

X(0)
3E
[
T 3
t

]
; (5.4)

calculating E[Y 3
t ]− 3E[Yt]E[Y 2

t ] + 2E[Yt]3 and factoring the τi as necessary we obtain κY3 . The

last term κY4 is obtained analogously.

The above proposition confirms the well-known fact that a Lévy model X subordinated

by a Lévy process L creates non-zero skewness and kurtosis even in presence of a mesokurtic

and symmetric parent process X such as a Brownian motion. Our situation here is identical,

and carries the message that trade duration alone can be a determinant of departure from

normality of returns (thus, in an option pricing perspective, creating volatility smile). However,

the moments term structure analysis is completely different. The key fact is that the moment

time dispersion of a time-changed Lévy process only depends on the moments of the time change,

and not those of X. In the usual Lévy subordination case, that is when T is a Lévy process,

one then sees that the moment term structure is linear in t consistently with the fact that the

subordinated process is itself Lévy. As a consequence returns skewness and kurtosis vanish with

time. In contrast, specializing to our framework, produces a highly nonlinear moments time

evolution. We analyse this in detail for the DRD model, where such evolution is polynomial in

the cumulant degree.
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Proposition 5.2. For any t ≥ 0, the first four cumulants of Y DRD
t are

κY1 = βκ1t,

κY2 = βκ2t+
κ21
2
(1− β)βt2,

κY3 = βκ3t+
3κ1κ2

2
(1− β)βt2 − κ31

3
(1− β)β(2β − 1)t3,

κY4 = βκ4t+
4κ1κ3 + 3κ22

2
β(1− β)t2

−2(1− β)β(2β − 1)κ21κ2t
3 +

κ41
8 (1− β)β (2− 11β(1− β)) t4,

(5.5)

and the following asymptotic relations hold:

lim
t↑∞

Skew(Yt) =
2
√
2

3

1− 2β√
(1− β)β

sgn(κ1), lim
t↑∞

Kurt(Yt) =
1

β(1− β)
− 11

2
,

lim
t↓0

√
t Skew(Yt) =

κ3√
βκ32

, lim
t↓0

t Kurt(Yt) =
κ4
βκ22

.
(5.6)

Proof. By explicitly integrating (4.5) we have the central moments of Tt:

µT1 = E
[
LHt
]
= βt = τ1 (5.7)

µT2 = V
[
LHt
]
=

1

2
(1− β)βt2 = τ2 (5.8)

µT3 = E
[
(LHt − τ1)

3
]
= −1

3
(1− β)β(2β − 1)t3 = τ3 (5.9)

µT4 = E
[
(LHt − τ1)

4
]
=
β

8
(1− β) (2− 11(1− β)β)) t4 = τ4 + 3τ22 . (5.10)

Solving for τi and substituting in (5.1) yields (5.5). Calculating further the normalized cumulants

Skew(Yt) = κY3 /(κ
Y
2 )

3/2 and Kurt(Yt) = κY4 /(κ
Y
2 )

2 and considering respectively the limit for

large t and the leading order around t = 0 imply the limits in the proposition.

In line with Remark 4.2, for β = 1 the non-normalized Lévy cumulants of Xt are recovered.

In the DRD model, as the time scale gets larger, higher moments do not vanish, but converge

to a level that only depends on β, and not on the value of the Lévy cumulants (the sign of

κ1 dictates the sign of the skewness). As frequently noted, returns leptokurtosis and negative

skewness are important drivers of implied volatility smiles. It thus makes sense to deduce that

non-zero time limits of skewness and excess kurtosis determine persistence of the volatility smile

over time. In contrast, for t close to zero, moment explosions are observed, as in the Lévy

case; the rate of this explosion is exactly that of exponential Lévy models, including–up to a

normalization by β–the constant factor. This suggests that the short-term smile/skew behaviour

of the DRD implied volatility should be identical to that of the underlying Lévy model. We will

verify these intuitions and make the matters more precise in Section 7.

The analysis of the return series properties stems from the observation that the models we

are studying, although not Markovian with respect to their own filtration, admit a Markovian

13



embedding. Remarkably, for the DRD process the finite dimensional-distributions of such an

embedded process is known. For any t ≥ 0, we define the backward renewal time

Vt := t− LHt , (5.11)

which represents the time elapsed from the current instant t to the previous price move. Knowing

the price at t and the time since the last price move is enough to fully describe the law of the

future asset evolution.

Proposition 5.3. The following properties hold:

(i) the pairs (Y SL, V ) and (Y DRD, V ) are time-homogeneous Markov processes;

(ii) the process Y SL has correlated increments, whereas Y DRD has uncorrelated increments;

(iii) the increments of Y SL are non-stationary, whereas the increments of Y DRD are (wide-

sense) stationary;

Proof. Item (i) is proved in (Meerschaert and Straka, 2014, Theorem 4.1). For the SL model,

statement (ii) can be deduced from (Leonenko et al., 2014, Example 3.2, Equation 9), since in

our case E[X1] ̸= 0. In the case of the DRD model, for s ≤ t, we can write (we drop the model

superscript for convenience)

E[XtXs] = E[(Xt−Xs)Xs]+E
[
X2
s

]
= (t− s)sE[X1]

2+ sV[X1]+ s
2E[X1]

2 = tsE[X1]
2+ sV[X1],

so that by independence and conditioning

Cov(Yt, Ys) = E
[
LHt L

H
s

]
E[X1]

2 + E
[
LHs
]
V[X1]− E

[
LHt
]
E
[
LHs
]
E[X1]

2

= Cov
(
LHt , L

H
s

)
E[X1]

2 + E
[
LHs
]
V[X1]. (5.12)

Thus, considering increments and using the above, together with Proposition 5.1,

Cov(Yt − Ys, Ys) = Cov(Yt, Ys)− V[Ys] = E[X1]
2
(
Cov(LHt , L

H
s )− V[LHs ]

)
= E[X1]

2Cov(LHt − LHs , L
H
s ), (5.13)

so absence of returns autocorrelation is equivalently checked on LHt . Now (Meerschaert and

Straka, 2014, Example 5.4) give the conditional transition probabilities pt(y0, v0, dy, dv) :=

P(LHt ∈ dy, Vt ∈ dv | y0, v0) of the Markov process (Yt, Vt) as:

pt(y0, 0, dy, dv) =
v−β

Γ(1− β)

(t− v)β−1

Γ(β)
δy0+t−v(dy)dv1{0<v<t}, (5.14)

pt(y0, v0, dy, dv) = δy0(dy)δv0+t(dv)

(
v0 + t

v0

)−β

+

(∫ v0+t

v0

(
v

v0

)−β
δv0+y0+t−v(dy)

(v0 + t− s− v)β−1

Γ(β)

βs−β−1

Γ(1− β)
ds

)
dv.

(5.15)
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Explicitly integrating the second line we have

pt(y0, v0, dy, dv) = δy0(dy)δv0+t(dv)

(
v0 + t

v0

)−β
+ δv0+y0+t−v(dy)

(
t− v

v

)β (t− v + v0)
−1

Γ(β)Γ(1− β)
dv,

(5.16)

whence, for t2 > t1 the the joint probability densities Pt1,t2 for (L
H
t1 , Vt1 , L

H
t2 , Vt2) can be obtained

through the Chapman-Kolmogorov equation

Pt1,t2(dy1, dv1, dy2, dv2) = pt1(0, 0, dy1, dv1)pt2−t1(y1, v1, dy2, dv2). (5.17)

Integrating out dv1 and dv2 from the explicit form of the above for 0 < v1 < t1 − y1, 0 < v2 <

t2 − y2 leads to the joint density of (LHt1 , L
H
t2 ):

Pt1,t2(dy1, dy2) =
yβ−1
1 ((t1 − y1)(t2 − y2))

−β(y2 − t1)
β

(Γ(1− β)Γ(β))2(y2 − y1)
1{0<y1<t1<y2<t2}dy1dy2

+
(t2 − y1)

−βyβ−1
1

Γ(1− β)Γ(β)
δy2(dy1)dy2. (5.18)

Setting t1 = t and t2 = t+ h, a long integration yields

Cov(LHt+h, L
H
t ) =

∫
R+×R+

y1y2Pt,t+h(dy1, dy2)− β2t(t+ h)

=

∫ t+h

t

∫ t

0

yβ−1
1 ((t1 − y1)(t2 − y2))

−β(y2 − t1)
β

(Γ(1− β)Γ(β))2(y2 − y1)
dy1dy2 +

∫ t

0

(t+ h− y1)
−βyβ+1

1

Γ(1− β)Γ(β)
dy1 − β2t(t+ h)

=
1

2
tβ(t+ 2hβ + tβ)− β2t(t+ h) =

1

2
t2(1− β)β = V[LHt ], (5.19)

and therefore Cov(LHt+h − LHt , L
H
t ) = Cov(LHt+h, L

H
t )− V[LHt ] = 0, which shows that the incre-

ments of the DRD model are uncorrelated, and (ii) holds.

Finally, using (Meerschaert and Scheffler, 2004, Corollary 3.3) together with a conditional

argument, we see that the expected value of the increments of Y SL depends on t, so that these

cannot be stationary. Combining E[Y DRD
t+h − Y DRD

t ] = E[X1]βh with absence of correlation

between increments in the DRD model finishes the proof of (iii).

It is generally accepted that returns times series calculated at lags of above a couple of

minutes show no autocorrelation. Stationarity is also a desirable statistical property shown

by returns: both these stylized facts are captured by the DRD model, which in this respect

is strikingly similar to a Lévy process. However, these properties are not featured by the SL

model, further suggesting that the DRD might be preferable.

6 Measure changes and derivatives valuation

6.1 The physical measure and EMM transformations

In order to apply classical valuation theory, one needs to show that the physical dynamics admit

a martingale specification and to identify (if possible) an explicit equivalent measure. In our
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models, there are two sources of market risk: the uncertainty in the returns distribution and the

trade duration, captured respectively by the process X and L. We could in principle consider

measure changes affecting the dynamics of both these processes. However, α-stable processes

are not stable by equivalent measure change, since the Hellinger distance of the Lévy measures

of any two stable subordinators is infinite. For example, if a standard Esscher transform is used,

after measure change the process becomes tempered stable. Hence, since we are interested in

the risk-neutral parametrizations of the SL and DRD models, we shall restrict our analysis to

the class of EMM that only involve transformation of the law of X. As one may reasonably

guess, such a class coincides with the set of equivalent measures under which the underlying

Lévy model S0 is itself a martingale.

Proposition 6.1. Let S be of SL or DRD type, and Q ∼ P with Zt := dQ/dP a measure under

which S0 is a Lévy exponential martingale. Then both
(
e−rtSDRDt

)
t≥0

and
(
e−rtSSLt

)
t≥0

are

FHt-adapted martingales, respectively under Q and Q̃, where ZHt = dQ̃/dP.

Proof. Assume S has SL dynamics and S0 = 1. For any t ≥ 0, let S0,∗
t := exp(rt+X∗

t ), where

X∗
t = Xt+tψX(i) are the risk-neutral dynamics ofXt under Q. By independence the distribution

of Lt under Q is the same as under P. Since H is a continuous time change, X is continuous with

respect to H, so by Kallsen and Shiryaev (2002) the cumulant process (Barndorff-Nielsen and

Shiryaev, 2015, Chapter 4) of XHt coincides with −HtψX(−z), and hence the process defined

by

exp(XHt)E(HtψX(i)) = exp(XHt +HtψX(i)) = exp(X∗
Ht
) = e−rtS0,∗

Ht
(6.1)

is a Q-local martingale. By independence, taking expectation and conditioning on Ht, this

process has expectation one, hence it is a true Q-martingale. But as explained in (Fries and

Torricelli, 2019, Lemma 5.1), time changing theQ-dynamics ofX∗
t byHt is equivalent to applying

the change of measure Q̃ to XHt , so that the claim follows. For the DRD model it suffices to

observe that LHt is a bounded family of stopping times and thus e−rtSDRDt = exp
(
X∗
LH
t

)
is a

FHt-martingale under Q by Doob’s Optimal Sampling Theorem.

Again we emphasize that this is a subset of all the possible equivalent martingale measures

and that for technical reasons we need to ignore a market price of duration risk. A model in

which this risk can be priced can be obtained for example by considering for Lt the wider class

of tempered stable subordinators, which is closed under the Esscher transform. This class, along

with related questions of market completeness, is studied in Torricelli (2019); see also Fries and

Torricelli (2019) for the situation when trade duration is caused by market suspensions.

6.2 The pricing formula

Having established that the risk-neutral specification comes in the form of a time-changed mar-

tingale exponential, Proposition 3.5 can be combined with standard integral price representations

to yield semi-closed derivative valuation formulae. Remarkably, the characteristic functions of
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the log-price in the SL and DRD models admit a very simple representation in terms of the

one-parameter Mittag-Leffler function

Ea(z) :=

∞∑
k=0

zk

Γ(ak + 1)
, (6.2)

where Γ is the usual Gamma function, and of the confluent Hypergeometric function

1F1(a, b; z) :=

∞∑
k=0

(a)k
(b)k

zk

k!
. (6.3)

Theorem 6.2. Let Y be either process in Definition 4.1, F (·) be a contingent claim on S

maturing at T . Assume that f(x) := F (ex) is Fourier-integrable and let Sf be the domain of

holomorphy of its Fourier transform f̂ . Let Φt(z) := E[e−izYt ], denote with SY the domain of

holomorphy of ΦT (z), and assume Sf ∩SY ̸= ∅. The price P0 of the derivative paying F (ST ) at

time T is given by:

P0 = E
[
e−rTF (ST )

]
=
e−rT

2π

∫ iγ+∞

iγ−∞
S−iz
0 e−izrTΦT (z)f̂(z)dz. (6.4)

The value γ is chosen such that the integration line lies in Sf ∩ SY and

Φt(z) =

{
Eβ

(
−ψX(z)tβ

)
, if Yt = Y SL

t ,

1F1(β, 1,−tψX(z)), if Yt = Y DRD
t .

(6.5)

Proof. Under the given assumptions, the Plancherel representation (6.4) is standard (see Lewis

(2001) for example), and we only need to prove (6.5). In the SL model, by independence of X

and L we have ψ(s, z) = ϕL(s) + ψX(z) = sβ + ψX(z), and Proposition 3.2 then yields

L(Φt(z), s) =
sβ−1

sβ + ψX(z)
. (6.6)

Inverting the right hand-side, as in Haubold et al. (2011), one obtains (6.5). In the DRD model

after conditioning and applying Proposition 4.3, we obtain

Φt(z) = E
[
exp

(
−ψX(z)LHt

)]
= E [exp (−tψX(z)Bβ,1−β)] , (6.7)

and the statement follows from the characteristic function of Bβ,1−β.

Remark 6.1. Fast computational routines for the Mittag-Leffler and the confluent hypergeomet-

ric functions are available in most software packages. Also, the two functions can be unified in

a single software implementation by observing that the three-parameter Mittag-Leffler function

Ea,b,c(z) =

∞∑
k=0

(c)k
zk

Γ(ak + b)
(6.8)

is such that Ea,1,1(z) = Ea(z) and E1,1,c(z) = 1F1(c, 1, z). Furthermore when a = b = c =

1, then (6.8) reverts to the standard exponential, which is consistent with the fact that SSL

and SDRD revert to the exponential Lévy model S0.
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Remark 6.2. The function Eβ is entire and 1F1(β, 1,−tψX(·)) is regular in the complex plane

without the negative real axis; hence Sf ∩ SY ̸= ∅ depends on the domain of ψX and f̂ only.

Remark 6.3. If XH has an FPP structure, then (6.4) coincides with the formula given by (Cartea

and Meyer-Brandis, 2010, Theorem 3), when the jump sizes have infinitely divisible distribution.

One sees that the pricing formulae are formally obtained from the standard Lévy case by

replacing the exponential function with two different kinds of ‘stretched exponentials’. The

parameter β relaxes the shape of the characteristic function, in particular in the tails, thereby

generating large-maturity prices very different from the base case. This overcomes the ‘curse

of exponentiality’ of the standard models (both Lévy and exponentially-affine), for which the

long-maturity option prices follow Laplace-type asymptotics of leading order exp(−T )/
√
T . We

will detail this better, together with its implications on the volatility surface, in Section 7 below.

Note that the two functions (6.2) and (6.3) have very different behaviours. In Figure 2, we

can see for example that (6.2) has a cross-over region where its decay transitions from super to

sub-exponential, whereas in (6.3), the integrand always dominates the exponential. This clearly

as an immediate impact on the shape of the volatility surface, in Section 8.

7 Time asymptotics of the volatility surface

Bearing in mind the discussion so far, we naturally expect implications of trade duration (at

least in the form we chose to model it) on the volatility surface. The anomalous diffusions we

constructed are subdiffusions, i.e. have a slower spread rate than the benchmark Lévy models,

hence a slower option price convergence for large maturity. That said, since Black-Scholes is a

Lévy model, normalization with the Black-Scholes formula must generate a vanishing implied

volatility term structure in order to match the slower price time evolution. Less intuitive is to

find a reason why the long-term skew should decline slower than standard models. A first answer

is provided by Section 5: skewness and kurtosis in our models do not vanish as time grows but

converge to some strictly positive level. Therefore Gaussian returns aggregation is precluded,

and time reversion to a flat volatility might be pushed further away in time1. However, as we

shall show, an exhaustive answer is provided by the fact that both skew and level of the implied

volatility are intimately connected, and the property of a null asymptotic implied volatility is

sufficient to hamper the skew time decay.

Without loss of generality, we assume here r = 0 and S0 = 1 and, with a slight abuse of

notation denote C(K,T ) the Call option price with strike K and maturity T , and C(k, T ) its

value as a function of k = logK. In the Black-Scholes model dSt = σStdWt, with σ > 0, the

price of such a Call option is given by

CBS(K,T, σ) = S0N
(
d
(
σ
√
T
))

−KN
(
d
(
σ
√
T
)
− σ

√
T
)
,

1Gaussian aggregation is by no means responsible of the smile flattening, as shown by Rogers and Tehranchi

(2010).
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where d(z) := −k
z + z

2 , N denotes the standard Gaussian cumulative distribution function,

and n its derivative, the Gaussian density function. For K,T ≥ 0, the implied volatility σ(K,T )

is the unique non-negative solution to C(K,T ) := CBS(K,T, σ(K,T )), and the implied volatility

skew is defined as

S(K,T ) := ∂σ

∂K
(K,T ). (7.1)

It is known by Rogers and Tehranchi (2010) that S(K, ·) converges to zero as the maturity

increases, for each K. We begin with the following model-free lemma which, under some mild

assumptions on the underlying distribution, connects the time decay of the skew with its level.

Lemma 7.1. Let (St)t≥0 be a martingale such that St is absolutely continuous in law for all t

and converges to zero in distribution as t tends to infinity.

(i) For any K ≥ 0, if lim
T↑∞

√
Tσ(K,T ) = ∞ then, as T tends to infinity,

S(K,T ) = 2

Tσ(K,T )

(
1 +

2 log(K)− 4

Tσ(K,T )2
+O(T−2σ(K,T )−4)

)
− Q(ST ≥ K)√

Tn(d(
√
Tσ(K,T )))

;

(7.2)

(ii) as T tends to zero,

S(1, T ) =
√

2π

T

(
1

2
−Q(St ≥ 1)− σ(1, T )

√
T

2
√
2π

+O(σ2(1, T )T )

)
. (7.3)

Proof. We only prove the first statement, as the second one is proved in (Gerhold et al., 2016,

Lemma 2). Since St has an absolutely continuous law, then by (Figueroa-López et al., 2011,

Lemma C.1),S exists and ∂KC(K,T ) = −Q(ST ≥ K). Therefore, applying the chain rule

S(K,T ) = −∂KCBS(K,T, σ(K,T )) +Q(ST ≥ K)

∂σCBS(K,T, σ(K,T ))
. (7.4)

Set z =
√
Tσ(K,T ). Using the formulae for the Black-Scholes Delta and Vega:

S(K,T ) = N (−d(z))−Q(ST ≥ K)√
Tn(d(z))

. (7.5)

Since

N (x) =
n(x)

x

(
1− 1

x2
+O

(
x−4

))
and

1

d(x)
=

2

x
+

4 log(K)

x3
+O

(
x−5

)
,

as x tends to infinity, then

N (−d(z))√
Tn(d(z))

=
1√
Td(z)

(
1− 1

d(z)2
+O

(
d(z)−4

))
=

2√
Tz

(
1 +

2 log(K)− 4

z2
+O

(
(z−4

))
,

and (7.2) follows by substituting z and combining the above with (7.5).
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Remark 7.1. If S0 = exp(X) is a martingale for some Lévy process X, from the proof of

Proposition 6.1, our models can be written as S0
Tt

for some time change Tt, so that S0
Tt

converges

to zero almost surely as t tends to infinity, provided we know this to hold for S0
t . Such a property

for exponential Lévy models can be proved using fluctuations identities, since the assumption

E[X1] < 0 implies (Bertoin, 1996, VI.4, Exercise 3) that Xt diverges to −∞. A negative first

moment is always the case for Xt when S
0 is a martingale, as it is apparent from the relations

connecting the stochastic and the natural exponential (Barndorff-Nielsen and Shiryaev, 2015,

Corollary 4.1). Regarding the absolute continuity of the price process, this follows from the fact

that the law of the involved processes are weak solutions of fractional Cauchy problems. These

can be found using arguments analogous to (Jurlewicz et al., 2012, Examples 5.2-5.4).

Part (i) of this lemma implicates that the level and skew of the implied volatility are entan-

gled: one cannot modify the leading order 1/T of the skew decrease without postulating a zero or

diverging asymptotic implied volatility level. In turn, a declining implied volatility can only be

attained through a convergence rate of option prices distributions to the spot price slower than

Gaussian, which is precisely the distinguishing feature of anomalous diffusions-based models.

Proposition 7.2. As T tends to infinity, we have the following asymptotic expansions for the

Call price C(k, T ), for any k ∈ R:

• in the DRD model with β ∈ (0, 1], there exist Cβ and cβ > 0 such that

C(k, T ) = 1−1{β ̸=1}
Cβ

Γ(1− β)

1

T β

(
1 +O

(
1

T

))
− cβ

Γ(β)

e−TψX(i/2)

T 3/2−β

(
1 +O

(
1

T

))
; (7.6)

• in the SL model with β ∈ (0, 1), there exists C ′
β > 0 such that

C(k, T ) = 1−
C ′
β

Γ(1− β)

1

T β

(
1 +O

(
1

T

))
. (7.7)

Proof. We begin from the price representation for a Call option

C(k, T ) = 1− 1

2π

∫ ∞

−∞

ek(iu+
1
2)

u2 + 1/4
ΦT

(
u+

i

2

)
du (7.8)

which can be obtained from (6.4) by moving the integration contour inside the strip ℑ(z) = 1/2

and applying the Residue Theorem (see Lewis 2001). In order to expand the function Φt,

since the integration line contains points of variable argument, we must ensure that the Stokes

phenomenon does not occur. Assume β < 1 in the DRD model. The asymptotic expansion of

1F1(a, b, z), for large |z| is (Luke, 2012, Chapter 4):

1F1(a, b, z) ∼
Γ(b)

Γ(b− a)
z−aeiδπa2F0(a, 1 + a− b,−z−1) +

Γ(b)

Γ(a)
za−bez2F0(b− a, 1− a, z−1) (7.9)
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with δ = 1 if ℑ(z) > 0 and δ = −1 otherwise. So when ℑ(z) = 1/2, since ℜ(ψX(z)) > 0, for

large T we have the well-defined asymptotic behaviour

1F1(β, 1,−TψX(z)) ∼
(TψX(z))

−β

Γ(1− β)
2F0

(
β, β, (TψX(z))

−1
)

+
e−TψX(z)(−TψX(z))β−1

Γ(β)
2F0

(
1− β, 1− β,−(TψX(z))

−1
)
. (7.10)

Now, since the integrand of the second summand of (7.8) is bounded by an integrable function,

by dominated convergence we can take the limit as T tends to infinity of C(k, T ) under the

integral sign. Now notice that as |z| tends to infinity , |ψX(z)| also tends to infinity because

the risk-neutral drift of X must be nonzero by (Bertoin, 1997, Corollary 1.1.3). This implicates

that along any line ℑ(z) = c, |ψX(z)| is strictly increasing. Also ψX is even in its real part

and odd in its imaginary part, so that |ψX(· + i/2)| must be an even function. We conclude

that |ψX(· + i/2)|, has a positive minimum at the origin. Therefore we can replace the limit

with (7.10) so long as T is larger than 1/|ψX(i/2)|. By truncating the series of 2F0 at order 0

in the first summand of (7.10) and integrating, we attain the first term in (7.6) with

Cβ =
1

2π

∫ ∞

−∞

ek(iu+1/2)

(u2 + 1/4)ψX(u+ i/2)β
du. (7.11)

Regarding the exponential sub-leading terms we have to analyse the first order term

Iβ(T ) :=

∫ ∞

−∞

ek(iu+1/2)e−TψX(u+i/2)

(u2 + 1/4)ψX(u+ i/2)1−β
du, (7.12)

which can be treated using the saddle point method as in Andersen and Lipton (2012). From the

previous discussion, ψX(·) has a stationary point at i/2, where the real part of the characteristic

exponent has a minimum, so that for large T ,

Iβ(T ) ∼
√
2π4ek/2

ψX(i/2)1−β
√
ψ′′
X(i/2)T

, (7.13)

which yields the second term in (7.6) with

cβ =
4ek/2

ψX(i/2)1−β
√

2πψ′′
X(i/2)

. (7.14)

When β = 1 the whole proof collapses to the well-known steepest descent argument (Andersen

and Lipton, 2012, Section 7) for the Lévy models price representation integral.

In the SL model we have, for any given β < 1, that so long as πβ/2 < µ < min{π, πβ} the

asymptotic series for Eβ is given by (Haubold et al., 2011, Equation 6.5)

Eβ(z) =


ez

1/β

β

n−1∑
k=1

1

Γ(1− βk)

1

zk
+O

(
z−n

)
, for | arg(z)| < µ,

n−1∑
k=1

1

Γ(1− βk)

1

zk
+O

(
z−n

)
, for µ < | arg(z)| ≤ π.

(7.15)
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Since ℜ(ΨX(u+ i/2)) > 0, for all α in the line ℑ(z) = 1/2 there exist T0 big enough such that

πβ < | arg(−ψX(u + i/2)T β0 )|, so that for T > T0 the Stokes lines are not crossed. The correct

expression is thus the second line in (7.15), and we can repeat what argued in the DRD case.

Remark 7.2. The second term in (7.6) is clearly negligible for large T compared to the leading

order, when β is smaller than 1. However for fixed T , as β approaches to one its contribution

cannot be neglected. This term has been included to clarify the convergence to the Lévy model.

Such correction is not present in the SL model and as β = 1 the price approximation simply

breaks down (however, by dominated convergence we still have convergence of prices).

Thus the promised slower convergence of Call prices compared to Lévy (or exponentially-

affine stochastic volatility) models. As already remarked, the above proposition can be thought

of as a direct consequence of the slow, subdiffusive time spread of the asset returns. More

specifically, the nature of the distribution implies that the pricing integral does not obey the

Laplace decay rate, since the integrand is not of the form exp(−Tf(x))g(x). One instead obtains

a vanishing long-term volatility, and hence by Lemma 7.1 a persistent long term skew, as we

illustrate below:

Corollary 7.3. For β ∈ (0, 1), the leading-order asymptotic for large T of the implied volatility

in both the DRD and SL model satisfies

σβ(K,T ) ∼ 2

√√√√ 1

T
W0

(
2K T 2β Γ(1− β)2

κ2βπ

)
, (7.16)

where W0 is the Lambert function and κβ > 0. Furthermore

lim
T→∞

T−α

Sβ(K,T )
= 0, lim

T→∞

Sβ(K,T )√
T

= 0 (7.17)

for all K, α > 1/2.

Proof. The first-order expansion of the Black Scholes price is simply

CBS(K,T, σ) = 1− 4ek/2
exp

(
−σ2T

8

)
σ
√
2πT

(
1 +O

(
1

T

))
; (7.18)

equating this to (7.6) the leading term yields the relation

exp

(
−σ

2T

8

)
4ek/2

σ
√
2Tπ

=
κ2β

Γ(1− β)
T−β (7.19)

where κβ is one of the constants Cβ or cβ in Proposition 7.2. Setting z = σ2T/4, M =√
2ek/2Γ(1 − β)/(κβ

√
π), w = M2 T 2β, then the equality (7.19) reads ezz = w. Since w > 0

the inversion in z can be performed along the real axis so that W0 is well-defined, and (7.16)

follows. Since W0(T ) ∼ log(T ) as T tends to infinity, then

σβ(K,T ) ∼ 2

√
log(M2T 2β)

T
, (7.20)
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therefore Tασβ(K,T ) converges to zero for all α < 1/2, which means that the first term of (7.2)

tends to zero slower than T−α, for all α > 1/2, but faster than T−α.

Studying the asymptotics of the last term in (7.2), similar arguments to those of Propo-

sition 7.2 imply that the long-term price decay for the Digital option I{ST≥K} is identical to

that of the Call option, namely c/T β for some c > 0. Then substituting (7.20) together with

d(x) ∼ x/2, in the second term of (7.6) we have the asymptotic equivalence

Q(ST ≥ K)√
Tn(d(

√
Tσβ(K,T )))

∼ c
exp

(
Tσβ(K,T )

2

8

)
T β+1/2

= c
exp

(
log(M2T 2β)

2

)
T β+1/2

=
cM√
T

(7.21)

which completes the proof.

In light of the corollary above persistence of the skew is to be interpreted as follows: the

skew declines slower than any power of T−1 bigger than 1/2 (thus in particular, slower than

1/T ) but always faster than T−1/2.

It is then natural to ask if these structural differences in the implied volatility of anomalous

diffusion models manifest themselves in the small-maturity limit. It turns out not to be the case,

at least for the DRD model, and the underlying Lévy model asymptotics are instead maintained.

More precisely, we have the following for Digital option prices.

Proposition 7.4. If the underlying Lévy process X is such that

Q(S0
t ≥ 1) ∼ c0 + cεt

ε + o(tε), (7.22)

for some c0, cε, as t tends to zero, with 0 < ε ≤ 1
2 , then, with cβ,ε :=

Γ(β+ε)
Γ(β)Γ(1+ε) ,

Q
(
SDRDt ≥ 1

)
∼ c0 + cβ,εcεt

ε + o(tε). (7.23)

Proof. Proposition 4.3 allows us to write

Q
(
Y DRD
t ≥ 0

)
=

∫ t

0
Q(Xs ≥ 0)

sβ−1(t− s)−β

Γ(β)Γ(1− β)
ds. (7.24)

Now, notice that E
[
Baβ,1−β

]
= Γ(β+a)

Γ(β)Γ(1+a) for all a > 0, and that for t sufficiently small,

Q(Xt ≥ 0) = c0 + cεt
ε + f(t), (7.25)

where f(t) = o(tε) is a bounded function in a neighbourhood of the origin. The zero- and

first-order terms of (7.23) are then clear, and by dominated convergence:

lim
t→0

E[f(tBβ,1−β)]t−ε =
∫ 1

0
lim
t→0

f(ts)

tε
sβ−1(1− s)−β

Γ(β)Γ(1− β)
ds = 0, (7.26)

which yields the small-o order ε of the remainder.
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Equation (7.22) essentially encompasses all the popular Lévy models, and features very

different behaviours: for example c0 = 1 if the process has finite variation, whereas c0 = 1/2

and cε = 1/2+d/(σ
√
2π), ε = 1/2 for a jump diffusion with volatility σ and risk-neutral drift d.

There is a stringent relationship between the prices of Digital options and the small-time at-the-

money skew, made precise by (7.3), and the critical value c0 = 1
2 for which higher-order terms

are needed. For a full account and more details we refer to Gerhold et al. (2016). In the DRD

model, introducing cβ,ε does not change the asymptotic analysis, as c0 remains the same.

Corollary 7.5. If X satisfies (7.22), then the DRD model and the underlying exponential Lévy

model S0 have the same short-maturity at-the-money skews.

In the next section we bring together all these results and see how they lead to model

calibration improvements when a persistent implied volatility skew is observed.

8 Numerical analysis

8.1 Volatility skew and term structure

We visualize the volatility surfaces extracted from models DRD and SL in Figures 4 to 7.

For X, we use a Brownian motion (Figures 4 and 5) and a CGMY process with parameters

taken from Carr. et al. (2001) (Figures 4 and 6), and consider moneynesses ±40% ATM and

maturities up to two years. In each figure, the smile of the anomalous diffusion is compared to

that of its underlying Lévy model S0.

First and foremost the slower decay of the skew with maturity of the anomalous diffusion

model compared to the underlying Lévy model is clearly apparent in all cases. At least in the

DRD case, even though Proposition 7.2 and Corollary 7.3 only predict an asymptotic rate of

skew vanishing, our numerical tests indicate that the rate manifests itself for already very early

on and for a wide range of maturities. More research is necessary to see whether and how

Proposition 7.2 can be improved.

In Figures 4 and Figures 5 the volatility smile and skew for the anomalous diffusion model are

present even if the Lévy generating returns process is a Brownian motion. In order words, this

confirms that introducing infinite-mean trade durations in a standard CTRW is alone sufficient

to generate a smile, consistently with Proposition 5.2. The smile appears rather symmetric,

in line with the intuition that trade duration should have little skew impact, as it does not

influence out-of-the-money prices any differently than in-the-money ones. This already suggests

some orthogonality between β and the Lévy parameters. In the Brownian motion case, β is thus

‘overloaded’, being responsible for both the smile convexity and its decay rate. This is relaxed

in 6 and Figures 7 by endowing X with a proper Lévy structure (CGMY); there a short-term

skew arises while the skew term structure maintains its slower flattening rate, dictated by β.

In Figures 4 and 6 we observe the repercussion on the implied volatilities of the ‘cross-over’

phenomenon (Figure 2) generated by the Mittag-Leffler and exponential types of the character-
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istics functions of the SL and pure Lévy models. The level of the SL surfaces transitions from a

short-term regime where the implied volatilities are higher to a long-term one in which they are

lower than those of the underlying Lévy models (eventually tending to zero). Such a transition

seems to be very sharp.

The time sections from Figures 6 and 7 are shown in Figures 8 and 9 and further highlight

the remarks above. Figures 10 to 13 highlight the convergence of the time sections to those of

the underlying Lévy model as β approaches one. For the SL model this convergence is from

above, while it is from below for the DRD model. Note also that the DRD model exhibits a

sharper ATM skew than the SL model.

8.2 Calibration

Corollary 7.3 and Proposition 7.4 suggest that, from a calibration viewpoint, the models should

behave as follows: the Lévy parameters have a short-time scale effect, unaffected when intro-

ducing β, and they should hence absorb the short-time skew and smile. however, β is the very

component governing the long-term structure of the surface, where the Lévy structure is flat

and has no impact, and should thus allow to pick up the long-term skew. To test this we

generate 3-month and 6-month volatility skews from a given Lévy model S0, which represent

our baseline synthetic market data. In order to generate two scenarios of persistent volatility

skew, while keeping the 3-month fixed, we shift the 6-month skew forward to make it coincide

respectively with the 1-year and 18-month skews. We then cross-sectionally calibrate S0, SSL

and SDRD to the 3-month and 6-month skews in the baseline scenario, and the 3-month and

1-year (respectively 18-month) sections in the first and second scenarios.

The calibration has been performed using a Differential Evolution global optimizer. Let

C(K,T ;β,Γ) be the theoretical Call prices from the SL or DRD models, where Γ denotes the

set of the Lévy parameters for X, and by C(K,T ) the synthetic market prices obtained with the

procedure described above. We use the in-price norm, and minimize the total squared errors

argmin
β,Γ

∑
i,j

|C(Ki, Tj ;β,Γ)− C(Ki, Tj)|2 . (8.1)

The base process X is taken as a Normal Inverse Gaussian (NIG; Barndorff-Nielsen 1997)

and a Variance Gamma (VG; Madan et al. 1998), and we show the results in Tables 1 to 3.

In Table 1 we represent the baseline scenario: all three models perfectly fit the synthetic Lévy

market data. Correctly, the β parameter in the SL and DRD models calibrates to one, and

produces no improvement on the S0 calibration. In the scenarios with a persistent long-term

skew, the total error for the Lévy model is greater than that for the SL and DRD models, with

β < 1. Comparing the two scenarios we observe as expected that for both models, β is less in

the second scenario than in the first one, owing to a steeper long-term skew in the second case.

This can be interpreted as an asset with a more prolonged trade duration.
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Comparing errors across the models, the SL model shows a better fit in all cases. However

this should not necessarily be interpreted as an overall superiority: the better calibration might

be only due to the synthetic market data generated by a Lévy model, and the SL distributions

being closer to Lévy.

9 Conclusion

We have proposed the use of anomalous diffusion processes in the context of option pricing,

which allows to naturally incorporate trade durations between price moves. Using limits of

CTRWs whose inter-arrival times distribution obeys a power law to model asset returns, we

analysed the impact on the term structure of the returns distribution and on the corresponding

implied volatility. More specifically, the observed volatility skew persistence on the market can

be explained by a non-negligible impact of trade time randomness even in the long-term price

evolution.

We analysed both cases when the price innovations are dependent and are independent from

the waiting times between trades. Both models are consistent with the econometric observation

that shorter duration generates sharper variations in the price revisions. Finally, we remarked

that even though the two models lead to similar large-maturity implied volatility properties,

their different distributional properties produce rather different shapes of volatility surfaces.

Numerical experiments confirm that for option pricing anomalous diffusions models have the

potential to capture the slow decay of the volatility skew while retaining the short-term good

properties of pure Lévy models.
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Figueroa-López, J. E., Forde, M., and Jacquier, A. (2011). The large-time smile and skew for
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10 Tables and Figures

Figure 1: Paths of XH (blue) and H (green) in the SL model. β = 0.7 on the left and β = 0.95

on the right. Here, X is a driftless Brownian motion with diffusion parameter σ = 0.4.

Parameter
Lévy SL DRD

VG NIG VG NIG VG NIG

κ 0.2037 0.2822 0.2037 0.2828 0.2037 0.2845

σ 0.3002 0.1994 0.3002 0.1989 0.3002 0.1995

θ -0.2983 -0.1039 -0.2983 -0.1036 -0.2983 -0.1039

β - - 1.0000 0.9977 1.0000 0.9995

Error 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003

Table 1: Calibration to the 1-month Lévy smile generated by the base model S0. The parameters

are (κ, σ, θ) are (0.2, 0.3,−0.3) for the VG model and (0.3, 0.2,−0.1) for the NIG model.
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Figure 2: Comparison of the function Φt for the SL and DRD model with the exponential,

β = 0.75, t = 0.5. We used the compensated geometric Brownian motion characteristic exponent

ϕX(z) = σ2(z2 − iz)/2 along the line ℑ(z) = 1/2 where it is real.

Figure 3: Densities of the time change LHt ∼ tBβ,1−β. For each t the total integral at some value x

has the interpretation of the probability that the time for the background Lévy process X ran

at most up to x.

Parameter
Lévy SL DRD

VG NIG VG NIG VG NIG

κ 1.4474 7.6080 1.5482 6.7625 0.8707 2.3789

σ 0.3298 0.2635 0.3218 0.2525 0.3785 0.2988

θ -0.1696 -0.0556 -0.1739 -0.0546 -0.2810 -0.0938

β - - 0.8669 0.8837 0.7164 0.6602

Error 0.1355 0.0425 0.0703 0.0299 0.0863 0.0318

Table 2: Calibration to the 1-month and 1-year shifted Lévy smile generated by the base

model S0. The parameters (κ, σ, θ) are (0.2, 0.3,−0.3) for VG and (0.3, 0.2,−0.1) for NIG.
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Figure 4: SL implied volatility surface based on

geometric Brownian motion; σ = 0.4, β = 0.7.

Figure 5: DRD implied volatility surface from

geometric Brownian motion; σ = 0.4, β = 0.7.

Figure 6: SL implied volatility surface based

on a CGMY Lévy model, with C = 6.51, G =

18.75,M = 32.95, Y = 0.5757, β = 0.7.

Figure 7: DRD implied volatility surface based

on a CGMY Lévy model, with C = 6.51, G =

18.75,M = 32.95, Y = 0.5757, β = 0.7.

Figure 8: Time sections from Figure 6. Figure 9: Time sections from Figure 7.
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Figure 10: Convergence of the SL skew to the

CGMY one as β tends to one, with T = 0.25.

Figure 11: Convergence of the DRD skew to the

CGMY one as β tends to one, with T = 0.25.

Figure 12: Convergence of the SL model to the

BS volatility as β tends to one, for T = 0.75.

Figure 13: Convergence of the DRD skew to the

BS volatility as β tends to one, for T = 0.75.

Parameter
Lévy SL DRD

VG NIG VG NIG VG NIG

κ 4.5443 42.5059 3.2555 30.5834 2.0072 9.3440

σ 0.3952 0.4022 0.3661 0.3404 0.4562 0.4022

θ -0.1354 -0.0785 -0.1571 -0.0711 -0.2534 -0.1138

β - - 0.8305 0.8634 0.6370 0.5626

Error 0.2359 0.0732 0.1305 0.0532 0.1738 0.0586

Table 3: Calibration to 1-month and 18-month shifted Lévy smiles generated by S0. The

parameters (κ, σ, θ) are (0.2, 0.3,−0.3) for the VG model and (0.3, 0.2,−0.1) for the NIG model.
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