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Abstract

We study how the introduction of carbon taxes in a closed economy propagate in a credit

portfolio and precisely describe how carbon taxes dynamics affect the firm value and credit

risk measures such as probability of default, expected and unexpected losses. We adapt a

stochastic multisectoral model to take into account carbon taxes on both sectoral firms’ pro-

duction and sectoral household’s consumption. Carbon taxes are calibrated on carbon prices,

provided by the NGFS transition scenarios, as well as on sectoral households’ consumption

and firms’ production, together with their related greenhouse gases emissions. For each sector,

this yields the sensitivity of firms’ production and households’ consumption to carbon taxes

and the relationships between sectors. Our model allows us to analyze the short-term effects

of carbon taxes as opposed to standard Integrated Assessment Models (such as REMIND),

which are not only deterministic but also only capture long-term trends of climate transition

policy. Finally, we use a Discounted Cash Flows methodology to compute firms’ values which

we then use in the Merton model to describe how the introduction of carbon taxes impacts

credit risk measures. We obtain that the introduction of carbon taxes distorts the distribu-

tion of the firm’s value, increases banking fees charged to clients (materialized by the level

of provisions computed from the expected loss), and reduces banks’ profitability (translated

by the value of the economic capital calculated from the unexpected loss). In addition, the

randomness introduced in our model provides extra flexibility to take into account uncertain-

ties on productivity and on the different transition scenarios by sector. We also compute the

sensitivities of the credit risk measures with respect to changes in the carbon taxes, yielding

further criteria for a more accurate assessment of climate transition risk in a credit portfo-

lio. This work provides a preliminary methodology to calculate the evolution of credit risk

measures of a multisectoral credit portfolio, starting from a given climate transition scenario

described by carbon taxes.

Keywords: Credit risk, Climate risk, Merton model, Macroeconomic modelling, Transition

risk, Carbon tax, Firm valuation, Stochastic modeling
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Introduction1

Climate change has had and will keep having a deep impact on human societies and their

environments. In order to assess and mitigate the associated risks, many summits have been

organized in recent decades, resulting in agreements signed by a large majority of countries

around the globe. These include the Kyoto Protocol in 1997, the Copenhagen Accord in

2009 and the Paris Agreement in 2015, all of them setting rules to make a transition to a

low-carbon economy.

Climate risk has two components. The first one is physical risk and relates to the po-

tential economic and financial losses arising from climate-related hazards, both acute (e.g.,

droughts, flood, and storms) and chronic (e.g., temperature increase, sea-level rise, changes

in precipitation). The second one is transition risk and relates to the potential economic

and financial losses associated with the process of adjusting towards a low-carbon economy.

The financial sector usually considers three main types of transition risk: changes in con-

sumer preferences, changes in technology, and changes in policy. Climate risk thus has a clear

impact (negative or positive) on firms, industrial sectors and ultimately on state finances

and household savings. This is the reason why assessing transition risk is becoming increas-

ingly important in all parts of the economy, and in particular in the financial industry whose

role will be to finance this low-carbon transition while ensuring the stability of the system.

There is thus a fundamental need for studying the link between transition risk and credit risk.

In this work, we study how an introduction of carbon taxes could propagate in a bank

credit portfolio. Since the Paris climate agreement in 2015, a few papers studying climate-

related financial aspects of transition risk have emerged. Battiston and Monasterolo [6] deal

with transition risk assessment in sovereign bonds’ portfolio. In [1], the authors focus on

corporate credit assessment. The authors provide a general methodology to start from tran-

sition scenarios to credit metrics. In particular, for a given transition scenario (e.g., less

than 2◦C in 2050), they obtain both a carbon price and a gross domestic product trajecto-

ries. The latter two are then used in static general equilibrium models for the generation

of a set of macroeconomic variables and of sectoral values added. All the macroeconomic

trajectories obtained are then used to stress credit portfolios. It is globally this methodology

that all French banks used during the climate stress test organized between 2020 and 2021

by the ACPR (French Prudential Supervision and Resolution Authority). However, on the

one hand, the methodology used for translating macroeconomic impacts into financial ones

is not always specified, and on the other hand, assumptions are independent of the stress-

test horizon. Cartellier [10] discusses, under a non-mathematical framework, methodologies

and approaches used by banks and scholars in climate stress testing. Garnier [17] as well as

1The opinions expressed in this research are those of the authors and are not meant to represent the opinions

or official positions of BPCE S.A.
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Gaudemet, Deshamps, and Vinciguerra [18] propose two models. The first one called CERM

(Climate Extended Risk Model) is a model based on the Merton one with a multidimensional

Gaussian systemic factor, where the transition risk is diffused to the credit risk by the factor

loadings defined as the correlations between the systematic risk factors and the assets. The

second one introduces a climate-economic model to calibrate the model of the former. There

are other works like the one of Bourgey, Gobet, and Jiao [9] or Bouchet and Le Guenedal [8]

who take the economic and capital structure of the firm into account in measuring carbon

risk. In particular, the first one derives the firm value by using the Discounted Cash Flows

methodology on cash flows that are affected by the firm’s transition policy, while the second

one directly affects the firm value by a shock depending on the ratio between carbon cost

and EBITDA. Moreover, Le Guenedal and Tankov [27] use a structural model for pricing

bonds issued by a company subject to climate transition risk and, in particular, take into

account the transition scenario uncertainty. Finally, Livieri, Radi and Smaniotto [28] use a

Jump-Diffusion Credit Risk model where the downward jumps describe green policies taken

by firms, to price defaultable coupon bonds and Credit Default Swaps.

The goal of the present work is to study how carbon taxes spread in a credit portfolio. In

a first step, we build a stochastic and multisectoral model where we introduce sectoral carbon

taxes calibrated on sectoral GHG emissions from households and firms. This model helps us

analyze the impact of carbon taxes on sectoral production by firms and on sectoral consump-

tion by households. We obtain that at the market equilibrium, the macroeconomic problem is

reduced to a non-linear system of output and consumption. Moreover, when the households’

utility function is logarithmic in consumption, output and consumption are uniquely defined

and precisely described by productivity, carbon taxes and the model parameters. Then, for

each sector, we can determine labor and intermediary inputs using the relationship of the

latter with output and consumption. The sectoral structure also allows us to quantify the

interactions between sectors both in terms of productivity and carbon taxes. The model we

build in this first step is close to the one developped by Golosov and co-authors in [19]. How-

ever, there are two main differences. Firstly, they obtain an optimal path for their endogenous

carbon taxes while, in our case, carbon taxes are exogenous. Secondly, the sectors in their

model are allocated between sectors related to energy and a single sector representing the rest

of the economy, while our model allows for any type of sectoral organization provided that

a proper calibration of the involved parameters can be performed. In addition, our model

is also close to the multisectoral model proposed by Devulder and Lisack in [12], with the

difference that ours is dynamic and stochastic, and that we appeal to a Cobb Douglas produc-

tion function instead of a Constant Elasticity of Substitution (CES) one. Finally, the model

developed in this first step also differs from the model REMIND described in [35] as (1) it is

a stochastic multisectoral model and (2) the productivity is exogenous.

In a second step, we define the firm value by using the Discounted Cash Flows methodol-

ogy [26]. We assume, as mentioned/admitted in the literature, that the cash flow growth is

a linear function of the (sectoral) consumption growth. This allows us to describe the firm

value as a function of productivity and of carbon taxes. Then, by assuming that the noise
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term in the productivity is small, we obtain a closed-form formulae of the firm value. The

results show us that the distribution of firm value is distorted and shifts to the left when

carbon taxes increase.

In a third step, we use the firm value in the Merton’s structural model. We can then calcu-

late, for different climate transition scenarios, the evolution of the annual default probability,

the expected loss, and the unexpected loss of a credit portfolio. The works of Garnier [17] and

Bourgey, Gobet, and Jiao [9] are the closest. However, [17] relies on the Vasicek-Merton model

with a centered Gaussian systemic factor, while we appeal to a microeconomic definition of

the firm’s value as in [9]. On the contrary to [9], (1) we emphasize how firms are affected

by macroeconomic factors (e.g., productivity and taxes processes) but do not allow them to

optimize their transition strategy, and (2) besides discussing the impacts of carbon taxes on

the probability of default, we also investigate their impacts on losses. We finally introduce

an indicator to describe the sensitivity of the (un)expected loss of a portfolio to carbon price.

This allows us to see how the above-mentioned risk measures would vary, should we deviate

from the carbon price given by our supposedly deterministic scenarios.

The paper is organized as follows. In Section 1, we build a stochastic multisectoral model

and analyze how the sectors, grouped in level of GHG emissions, change when one introduces

carbon taxes. In Section 2, we define the firm value as a function of consumption growth.

In Section 3, we compute and project risk measures such as probability of default, expected

and unexpected losses appealing to the Merton model. Finally, Section 4 is devoted to the

calibration of different parameters while Section 5 focuses on presenting and analyzing the

numerical results.

Notations.

• N is the set of non-negative integers, N∗ := N \ {0}, and Z is the set of integers.

• Rd denotes the d-dimensional Euclidean space, R+ is the set of non-negative real num-

bers, R∗
+ := R+ \ {0}.

• 1 := (1, . . . , 1) ∈ RI .

• Rn×d is the set of real-valued n × d matrices (Rn×1 = Rn), In is the identity n × n

matrix.

• xi denotes the i-th component of the vector x ∈ Rd. For all A := (Aij)1≤i,j≤n ∈ Rn×n,
we denote by A⊤ := (Aji)1≤i,j≤n ∈ Rn×n the transpose matrix.

•
⊗

is the Kronecker product.

• For a given finite set S, we define as the cardinal of S, #S.
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• For all x, y ∈ Rd, we denote the scalar product x⊤y, the Euclidean norm |x| :=
√
x⊤x

and for a matrix M ∈ Rd×d, we denote

|M | := sup
a∈Rd,|a|≤1

|Ma|.

• (Ω,H,P) is a complete probability space.

• For p ∈ [1,∞], E is a finite dimensional Euclidian vector space and for a σ-field H,

Lp(H, E), denotes the set of H-meassurable random variable X with values in E such

that ∥X∥p := (E [|X|p])
1
p <∞ for p <∞ and for p = ∞, ∥X∥∞ := esssup|X(ω)| <∞.

• For a filtration G, p ∈ [1,+∞] and I ∈ N∗, L p
+(G, (0,∞)I) is the set of discrete-time

processes that are G-adapted valued in (0,∞)I and which satisfy

∥Xt∥p <∞ for all t ∈ N.

• If X and Y are two random variables Rd-valued, for x ∈ Rd, we note Y |X = x the

conditional distribution of Y given X = x, and Y |F the conditional distribution of Y

given the filtration F .

1. A Multisectoral Model with Carbon tax

We consider a closed economy with various sectors of industry which are subject to taxes.

In this section, our main goal is to derive the dynamics of output and consumption per sector.

The setting is strongly inspired by basic classical monetary models presented in the seminal

textbook by Gali [16], and also by Devulder and Lisack [12], and in Miranda-Pinto and Young’s

sectoral model [30]. We thus consider a discrete-time model with infinite horizon. The main

point here is that taxes are dynamics and shall be interpreted as carbon taxes. This will allow

us in particular to describe the transition process to a decarbonized economy.

We first consider two optimization problems: one for representative firms and one for a

household. We obtain first-order conditions, namely the optimal behavior of the firm and the

consumer as a response to the various variables at hand. Then, relying on market clearing

conditions, we obtain the equations that the sectoral consumption and outputs processes must

satisfy. Finally, in the last section, we solve those equations by making assumptions on the

values taken by the set of involved parameters.

Let I denote a set of sectors with cardinal I ∈ N∗. Each sector i ∈ I has a representative

firm which produces a single good, so that we can associate sector, firm and good. We

now introduce the following standing assumption which describes the productivity, which is

considered to have stationary dynamics.

Standing Assumption 1.1. We define the RI -valued process A which evolves according to{
At = At−1 +Θt,

Θt = µ+ ΓΘt−1 + εEt,
for all t ∈ N∗,
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with the constants µ,A0 ∈ RI and where the matrix Γ ∈ RI×I has eigenvalues all strictly

less than 1 in absolute value, 0 < ε ≤ 1 is an intensity of noise parameter that is fixed: it

will be used in Section 2 to obtain a tractable proxy of the firm value. Moreover, (Et)t∈Z is

independent and identically distributed with for t ∈ Z, Et ∼ N (0,Σ) with Σ ∈ RI×I . We also

have Θ0 ∼ N (µ, ε2Σ) with µ := (II − Γ)−1µ, and vec(Σ) := (II×I − Γ
⊗

Γ)−1vec(Σ), where,

for M ∈ Rd×d, vec(M) := [M11, . . . ,Md1,M21, . . . ,Md2, . . . ,M1d, . . . ,Mdd]⊤. The processes

(Et)t∈N and the random variable Θ0 are independent.

To summarize, the productivity is a Vector Autoregressive Process. The literature on VAR

(Vector Autoregressive Model) is rich, with detailed results and proofs in Hamilton [23], or

Kilian and Lütkepohl [25]. We provide in Appendix A additional results that will be useful.

For later use, we introduce, for i ∈ I, the process

Ait := exp (Ai
t),

which represents the level of technology of sector i ∈ I.

Remark 1.2.

1. Obviously, for any t ∈ N, At = A0 +
∑t

u=1Θu. For later use, we define

A◦
t := At −A0,

and observe that (A◦
t ,Θt)t≥0 is a Markov process.

2. Since the eigenvalues of Γ are all strictly less than 1 in absolute value, (Θt)t∈N is wide-

sense stationary i.e. for t, u ∈ N, the first and the second orders moments (E[Θt] and

E[ΘtΘt+u]) do not depend on t. Then, given the law of Θ0, we have for any t ∈ N,
Θt ∼ N (µ, ε2Σ).

3. For later use, we also observe the following: let Z0 ∼ N (0,Σ) s.t. Θ0 = µ+ εZ0 and for

t ≥ 1, Zt = ΓZt−1 + Et. Then

Θt = µ+ εZt and Zt ∼ N (0,Σ). (1.1)

Let G := (Gt)t∈N with G0 := σ(Θ0) and for t ≥ 1, Gt := σ ({Θ0, Es : s ∈ (0, t] ∩ N∗}).
For each sector/representative firm/good i ∈ I, we introduce deterministic taxes: a tax

(τ it )t≥0 on firm’s production, a tax (ζjit )t≥0 on firm i’ consumption in sector j ∈ I, and a tax

(κit)t≥0 on household’s consumption. These taxes are interpreted as exogeneous carbon taxes

and they allow us to model the impact of the transition pathways on the whole economy. We

will note d := (τ, ζ, κ) the complete tax process. We shall then assume the following setting.

Standing Assumption 1.3. Let 0 ≤ t◦ < t⋆ be given. The sequences τ , ζ, and κ satisfy

1. for t ∈ [0; t◦], dt = d0 ∈ [0, 1)I × [0, 1)I×I × [0, 1)I , namely the taxes are constant;
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2. for t ∈ (t◦, t⋆), dt ∈ [0, 1)I × [0, 1)I×I × [0, 1)I , the taxes may evolve;

3. for t ≥ t⋆, dt = dt⋆ ∈ [0, 1)I × [0, 1)I×I × [0, 1)I , namely the taxes are constant.

In the assumption above, we interpret t◦ as the start of the transition and t⋆ as its end.

Before the transition, carbon taxes are constant (possibly zero). Then, at the beginning of

the transition, which lasts over (t◦, t⋆), the carbon taxes can be dynamic depending on the

objectives we want to reach. After t⋆, the taxes become constant again.

We now describe the firm and household programs that will allow us to derive the nec-

essary equations that must be satisfied by the output and consumption in each sector. The

proposed framework assumes a representative firm in each sector which maximizes its profits

by choosing, at each time and for a given productivity, the quantities of labor and inter-

mediary inputs. This corresponds to a sequence of static problems. Then, a representative

household solves a dynamic optimization problem to decide how to allocate its consumption

expenditures among the different goods and hours worked and among the different sectors.

1.1. The firm’s point of view

Aiming to work with a simple model, we follow Gal̀ı [16, Chapter 2]. It then appears that

the firm’s problem corresponds to an optimization performed at each period, depending on

the state of the world. This problem will depend, in particular, on the productivity and the

tax processes introduced above. Moreover, it will also depend on P i and W i, two G-adapted

positive stochastic processes representing respectively the price of good i and the wage paid

in sector i ∈ I. We start by considering the associated deterministic problem below, when

time and randomness are fixed.

Solution for the deterministic problem. We denote a ∈ (0,+∞)I the level of technology in each

sector, p ∈ (0,∞)I the price of the goods produced by each sector, w ∈ (0,∞)I the nominal

wage in each sector, τ ∈ [0, 1)I and ζ ∈ [0, 1)I×I the taxes on production and consumption of

goods. For i ∈ I, we consider a representative firm of sector i, with technology described by

the production function

R+ × RI+ ∋ (n, z) 7→ F ia(n, z) = ainψ
i
∏
j∈I

(zj)λ
ji

∈ R+,

where n represents the number of hours of work in the sector, and zj the firm’s consumption

of intermediary input produced by sector j. The coefficients ψ ∈ (R∗
+)

I and λ ∈ (R∗
+)

I×I are

elasticities with respect to the corresponding inputs. Overall, we assume a constant return to

scale, namely

ψi +
∑
j∈I

λji = 1, for each i ∈ I. (1.2)

The management of firm i then solves the classical problem of profit maximization

Π̂i
(a,w,p,τ ,ζ)

:= sup
(n,z)∈R+×RI+

Πi(n, z), (1.3)
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where, omitting the dependency in (a,w, p, τ , ζ),

Πi(n, z) := F ia(n, z)(1− τ i)pi − win−
∑
j∈I

zj(1 + ζ
ji
)pj .

Note that F ia(n, z)(1−τ i)pi represents the firm’s revenues after carbon tax, that win stands

for the firm’s total compensations, and that
∑

j∈I z
j(1+ζ

ji
)pj is the firm’s total intermediary

inputs. Now, we would like to solve the optimization problem for the firms, namely determine

the optimal demands n and z as functions of (a,w, p, τ , ζ). Because we will lift these optimal

quantities in a dynamical stochastic setting, we impose that they are expressed as measurable

functions. We thus introduce:

Definition 1.4. An admissible solution to problem (1.3) is a pair of measurable functions

(n, z) : (0,+∞)I × (0,+∞)I × (0,+∞)I × [0, 1)I × [0, 1)I×I → [0,+∞)I × [0,+∞)I×I ,

such that, for each sector i, denoting n := ni(a,w, p, τ , ζ) and z := z·i(a,w, p, τ , ζ),

F ia(n, z)(1− τ i)pi − win−
∑
j∈I

zj(1 + ζ
ji
)pj = Π̂i

(a,w,p,τ ,ζ)
,

and F ia(n, z) > 0 (non-zero production), according to (1.3).

Remark 1.5. The solution obviously depends also on the coefficients ψ and λ. But these

are fixed once and we will not study the dependence of the solution with respect to them.

Proposition 1.6. There exists admissible solutions in the sense of Definition 1.4. Any ad-

missible solution is given by for all i ∈ I, ni > 0 and for all (i, j) ∈ I2,

zji =
λji

ψi
wi

(1 + ζ
ji
)pj

ni > 0. (1.4)

Moreover, it holds that Π̂i
(a,w,p,τ ,ζ)

= 0 (according to (1.3)) and

ni = ψiF ia(n
i, z·i)

(1− τ i)pi

wi
, (1.5a)

zji = λjiF ia(n
i, z·i)

(1− τ i)pi

(1 + ζ
ji
)pj

. (1.5b)

Proof. We study the optimization problem for the representative firm i ∈ I. Since ψi > 0

and λji > 0, for all j ∈ I, as soon as n = 0 or zj = 0, for some j ∈ I, the production is equal

to 0. From problem (1.3), we obtain that necessarily n ̸= 0 and zj ̸= 0 for all j in this case.

So an admissible solution, which has non-zero production, has positive components.

Setting n = ni(a,w, p, τ , ζ) > 0 and z = z·i(a,w, p, τ , ζ) > 0, the optimality of (n, z) yields

∂nΠ
i(n, z) = 0 and for any j ∈ I, ∂zjΠ

i(n, z) = 0.

We then compute

ψi
F ia(n, z)

n
(1− τ i)pi − wi = 0 and for any j ∈ I, λji

F ia(n, z)

zj
(1− τ i)pi − (1 + ζ

ji
)pj = 0,

which leads to (1.4), (1.5a), and (1.5b).
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Dynamic setting. In Section 1.3 below, we characterize the dynamics of the output and con-

sumption processes using market equilibrium arguments. There, the optimal demand by the

firm for intermediary inputs and labor is lifted to the stochastic setting where the admissible

solutions then write as functions of the productivity, taxes, price and wage processes, see

Definition 1.8.

1.2. The household’s point of view

Let rt be the (exogenous) deterministic interest rate, valued in R+. At each time t ∈ N
and for each sector i ∈ I, we denote

• Cit the quantity consumed of the single good in the sector i, valued in R∗
+;

• H i
t the number of hours of work in sector i, valued in R∗

+.

We also introduce a time preference parameter β ∈ [0, 1) and a utility function U :

(0,∞)2 → R given, for φ ≥ 0, by U(x, y) := x1−σ

1−σ − y1+φ

1+φ if σ ∈ [0, 1) ∪ (1,+∞) and by

U(x, y) := log(x)− y1+φ

1+φ , if σ = 1. We also suppose that

P := sup
t∈N,i∈I

E

[(
P it
W i
t

)1+φ
]
< +∞. (1.6)

For any C,H ∈ L 1
+(G, (0,∞)I), we introduce the wealth process

Qt := (1 + rt−1)Qt−1 +
∑
i∈I

W i
tH

i
t −

∑
i∈I

P it (1 + κit)C
i
t , for any t ≥ 0,

with the convention Q−1 := 0 and r−1 := 0. Note that we do not indicate the dependence

of Q upon C and H to alleviate the notations.

For t ∈ N and i ∈ I, P it (1+κit)C
i
t represents the household’s consumption after tax in the

sector i. Moreover, W i
tH

i
t is the household’s labor income in the sector i, (1 + rt−1)Qt−1 the

household’s capital income, and (1 + rt−1)Qt−1 +
∑

i∈I W
i
tH

i
t the household’s total revenue.

We define A as the set of all couples (C,H) with C,H ∈ L 1
+(G, (0,∞)I) such that E

[∑
i∈I

∞∑
t=0

βt|U(Cit , H
i
t)|

]
<∞,

limT↑∞ E[QT |Gt] ≥ 0, for all t ≥ 0.

The representative household consumes the I goods of the economy and provides labor to

all the sectors. For any (C,H) ∈ A , let

J (C,H) :=
∑
i∈I

Ji(Ci, H i), with Ji(Ci, H i) := E

[ ∞∑
t=0

βtU(Cit , H
i
t)

]
, for all i ∈ I.
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The representative household seeks to maximize its objective function by solving

max
(C,H)∈A

J (C,H). (1.7)

We choose above a separable utility function as Miranda-Pinto and Young [30] does, meaning

that the representative household optimizes its consumption and hours of work for each sector

independently but under a global budget constraint. The following proposition provides an

explicit solution to (1.7).

Proposition 1.7. Assume that (1.7) has a solution (C,H) ∈ A . Then, for all i, j ∈ I, the
household’s optimality condition reads, for any t ∈ N,

P it
W i
t

=
1

1 + κit
(H i

t)
−φ(Cit)

−σ, (1.8a)

P it

P jt
=

1 + κjt
1 + κit

(
Cit

Cjt

)−σ

. (1.8b)

Note that the discrete-time processes C and H cannot hit zero by definition of A , so that

the quantities above are well defined.

Proof. Suppose that σ ̸= 1. We first check that A is non empty. Assume that, for all t ∈ N
and i ∈ I, C̃it = 1 and H̃ i

t =
P it (1+κ

i
t)

W i
t

, then

E

[∑
i∈I

∞∑
t=0

βt|U(C̃it , H̃
i
t)|

]
≤
∑
i∈I

∞∑
t=0

βt

(
1

1− σ
+

1

1 + φ
E

[(
P it (1 + κit)

W i
t

)1+φ
])

.

≤
∑
i∈I

∞∑
t=0

βt
(

1

1− σ
+

P(1 + κit)
1+φ

1 + φ

)
< +∞,

using (1.6). We also observe that Q built from H̃, C̃ satisfies Qt = 0, for t ∈ N. Thus

(H̃, C̃) ∈ A .

Let now (Ĉ, Ĥ) ∈ A be such that J (Ĉ, Ĥ) = max
(C,H)∈A

J (C,H).

We fix s ∈ N and i ∈ I. Let η = ±1, 0 < h < 1, As ∈ Gs, ∆(i,s) := (1{i=k,s=t})k∈I,t∈N and

θ(i,s) := 1
2(1 ∧

W i
s

P is(1+κ
i
s)
)Ĉis ∧ Ĥ i

s ∧ 1 > 0. Set

C := Ĉ + ηhθ(i,s)1As∆
(i,s) and H := Ĥ + ηhθ(i,s)1As∆

(i,s)P
i(1 + κi)

W i
.

We observe that for (j, t) ̸= (i, s), C
j
t = Ĉjt and H

j
t = Ĥj

t and we compute

C
i
s ≥ Ĉis − θ(i,s) ≥ 1

2
Ĉis > 0.
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Similarly, we obtain H
i
s > 0. We also observe that C ≤ 3

2 Ĉ and H ≤ 3
2Ĥ. Finally, we have

that ∑
j∈I

W j
t H

j
t −

∑
j∈I

P jt (1 + κjt )C
j
t =

∑
j∈I

W j
t Ĥ

j
t −

∑
j∈I

P jt (1 + κjt )Ĉ
j
t .

This allows us to conclude that (C,H) ∈ A .

We have, by optimality of (Ĉ, Ĥ),

J (Ĉ, Ĥ)− J (C,H) =
∑
j∈I

Jj(Ĉj , Ĥj)−
∑
j∈I

Jj(C
j
, H

j
) ≥ 0.

However, for all (t, j) ̸= (s, i), C
j
t = Ĉjt and H

j
t = Ĥj

t , then

E
[
βsU(Ĉis, Ĥ

i
s)
]
− E

[
βsU

(
Ĉis + ηhθ(i,s)1As , Ĥ

i
s + ηhθ(i,s)1As

P is(1 + κis)

W i
s

)]
≥ 0,

i.e.
1

h
E
[
U(Ĉis, Ĥ

i
s)− U

(
Ĉis + ηhθ(i,s)1As , Ĥ

i
s + ηhθ(i,s)1As

P is(1 + κis)

W i
s

)]
≥ 0.

Letting h tend to 0, we obtain

E
[
ηθ(i,s)1As

∂U

∂x
(Ĉis, Ĥ

i
s) + ηθ(i,s)1As

P is(1 + κis)

W i
s

∂U

∂y
(Ĉis, Ĥ

i
s)

]
≥ 0.

Since the above holds for all As ∈ Gs, η = ±1 and since θ(i,s) > 0, then

∂U

∂x
(Ĉis, Ĥ

i
s) +

P is(1 + κis)

W i
s

∂U

∂y
(Ĉis, Ĥ

i
s) = 0,

leading to (1.8a).

For j ∈ I \ {i} and θ(i,j,s) := 1
2

(
1 ∧ P js (1+κ

j
s)

P is(1+κ
i
s)

)
(1 ∧ Ĉis ∧ Ĉ

j
s) > 0, setting now

C := Ĉ + ηh1Asθ
(i,j,s)

(
∆(i,s) −∆(j,s) P

i(1 + κi)

P j(1 + κj)

)
and H := Ĥ,

and using similar arguments as above, we obtain (1.8b).

When σ = 1, we carry out an analogous proof.

1.3. Markets equilibrium

We now consider that firms and households interact on the labor and goods markets.

Definition 1.8. A market equilibrium is a G-adapted positive random process (W,P ) such

that

1. Condition (1.6) holds true for (W,P ).
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2. The goods’ and labor’s market clearing conditions are met, namely, for each sector i ∈ I,
and for all t ∈ N,

Y i
t = Cit +

∑
j∈I

Zijt and H i
t = N i

t ,

where Nt = n(At,W t, P t, κt, ζt), Zt = z(At,W t, P t, κt, ζt), Y = FA(N,Z) with (n, z)

an admissible solution (1.5a)-(1.5b) to (1.3), from Proposition 1.6 while C and H sat-

isfy (1.8a)-(1.8b) for (W,P ).

In the case of the existence of a market equilibrium, we can derive equations that must

be satisfied by the output production process Y and the consumption process C.

Proposition 1.9. Assume that there exists a market equilibrium as in Definition 1.8. Then,

for t ∈ N, i ∈ I, it must hold that
Y i
t = Cit +

∑
j∈I

Λij(dt)

(
Cjt
Cit

)−σ

Y j
t ,

Y i
t = Ait

[
Ψi(dt)(C

i
t)

−σY i
t

] ψi

1+φ
∏
j∈I

[
Λji(dt)

(
Cit

Cjt

)−σ

Y i
t

]λji
,

(1.9)

where Ψ and Λ are given, for d ∈ [0, 1)I × [0, 1)I×I × [0, 1)I , by

Ψ(d) :=

(
ψi

1− τ i

1 + κi

)
i∈I

, (1.10)

Λ(d) :=

(
λji

1− τ i

1 + ζ
ji
t

1 + κj

1 + κi

)
j,i∈I

. (1.11)

Proof. Let i, j ∈ I and t ∈ N. Combining Proposition 1.6 and Proposition 1.7, we obtain

Zjit = λji
1− τ it

1 + ζjit

1 + κjt
1 + κit

(
Cit

Cjt

)−σ

Y i
t . (1.12)

From Propositions 1.6 and 1.7 again, we also have

N i
t = ψi

1− τ it
1 + κit

(H i
t)

−φ(Cit)
−σY i

t .

The labor market clearing condition in Definition 1.8 yields

N i
t =

[
ψi

1− τ it
1 + κit

(Cit)
−σY i

t

] 1
1+φ

. (1.13)

Then, by inserting the expression of N i
t given in (1.13)and Zjit given in (1.12) into the pro-

duction function F , we obtain the second equation in (1.9). The first equation in (1.9) is

obtained by combining the market clearing condition with (1.12) (at index (i, j) instead of

(j, i)).
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1.4. Output and consumption dynamics and associated growth

For each time t ∈ N and noise realization, the system (1.9) is nonlinear with 2I equations

and 2I variables, and its well-posedness is hence relatively involved. Moreover, it is compu-

tationally heavy to solve this system for each tax trajectory and productivity scenario. We

thus consider a special value for the parameter σ which allows to derive a unique solution

in closed form. From now on, and following [19, page 63], we assume that σ = 1, namely

U(x, y) := log(x)− y1+φ

1+φ on (0,∞)2.

Theorem 1.10. Assume that

1. σ = 1,

2. II − λ is not singular,

3. II − Λ(dt)
⊤ is not singular for all t ≥ 0.

Then there exists a unique (Ct, Yt) satisfying (1.9). Moreover, with eit :=
Y it
Cit

for i ∈ I, we
have

et = e(dt) := (II − Λ(dt)
⊤)−11, (1.14)

and using Bt = (Bit)i∈I :=
[
Ai
t + vi(dt)

]
i∈I with

vi(dt) := log

(eit)
− φψi

1+φ
(
Ψi(dt)

) ψi

1+φ
∏
j∈I

(
Λji(dt)

)λji , (1.15)

we obtain

Ct = exp
(
(II − λ)−1Bt

)
. (1.16)

Proof. Let t ∈ N. When σ = 1, the system (1.9) becomes for all i ∈ I,
Y i
t = Cit +

∑
j∈I

Λij(dt)

(
Cit

Cjt

)
Y j
t ,

Y i
t = Ait

[
Ψi(dt)e

i
t

] ψi

1+φ
∏
j∈I

[
Λji(dt)C

j
t e
i
t

]λji
.

(1.17)

For any i ∈ I, dividing the first equation in (1.17) by Cit , we get

eit = 1 +
∑
j∈I

Λij(dt)e
j
t ,

which corresponds to (1.14), thanks to (1.2). Using
∑

j∈I λ
ji = 1− ψi and Y i

t = eitC
i
t in the

second equation in (1.17), we compute

Cit = Ait(e
i
t)
− φψi

1+φ
[
Ψi(dt)

] ψi

1+φ
∏
j∈I

[
Λji(dt)

]λji∏
j∈I

(Cjt )
λji .

Applying log and writing in matrix form, we obtain (II−λ) log(Ct) = Bt, implying (1.16).
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Remark 1.11. The matrix λ is generally not diagonal, and therefore, from (1.16), the sectors

(in output and in consumption) are linked to each other through their respective productivity

process. Similarly, an introduction of tax in one sector affects the other ones.

Remark 1.12. For any t ∈ N, i ∈ I, we observe that

Bit = Ai
t + vi(dt), (1.18)

where vi(·) is defined using (1.15). Namely, Bt is the sum of the (random) productivity

term and a term involving the taxes. The economy is therefore subject to fluctuations of two

different natures: the first one comes from the productivity process while the second one comes

from the tax processes.

We now look at the dynamics of production and consumption growth.

Theorem 1.13. For any t ∈ N∗, let ∆ϖ
t := log (ϖt) − log (ϖt−1), for ϖ ∈ {Y,C}. Then,

with the same assumptions as in Theorem 1.10,

∆ϖ
t ∼ N

(
mϖ
t , Σ̂

)
, for ϖ ∈ {Y,C},

with

Σ̂ = ε2(II − λ)−1Σ(II − λ⊤)−1,

mC
t = (I − λ)−1 [µ+ v(dt)− v(dt−1)] ,

(mY
t )

i = (mC
t )

i + log(ei(dt))− log(ei(dt−1)), for all i ∈ I,

where µ and ε2Σ are the mean and the variance of the stationary process Θ (Remark 1.2), v

is defined in (1.15) and e in (1.14).

Proof. Let t ∈ N∗, from (1.18), we have, for i ∈ I,

Bit − Bit−1 = Θi
t + vi(dt)− vi(dt−1).

Combining the previous equality with (1.16), we get

∆C
t = (II − λ)−1 [Θt + v(dt)− v(dt−1)] . (1.19)

Applying Remark 1.2 leads to ∆C
t ∼ N

(
mC
t , Σ̂

)
. Using (1.14), we observe that, for i ∈ I,

(∆Y
t )

i = (∆C
t )

i + log(ei(dt))− log(ei(dt−1)),

which, using the previous characterization of the law of ∆C
t , allows to conclude.

From the previous result, we observe that output and consumption growth processes have a

stationary variance but a time-dependent mean. In the context of our standing assumption 1.3,

we can also make the following observation:
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Corollary 1.14. Let t ∈ N∗. If t ≤ t◦ (before the transition scenario) or t ≥ t⋆ (after the

transition), the carbon taxes are constant and with the same assumptions as in Theorem 1.10,

then

∆C
t = ∆Y

t = (II − λ)−1Θt. (1.20)

Theorem 1.13 and Corollary 1.14 show that our economy follows three regimes:

• Before the climate transition where carbon taxes are constant, the economy is a sta-

tionary state led by productivity.

• During the transition, the economy is in a transitory state led by productivity and

carbon taxes.

• After the transition, we reach a constant carbon price and the economy returns in a

stationary state ruled by productivity.

2. A Firm Valuation Model

When an economy is in good health, the probabilities of default are relatively low, but

when it enters a recession, the number of failed firms increases significantly. The same phe-

nomenon is observed on the loss given default. This relationship between default rate and

business cycle has been extensively studied in the literature: Nickell [32] quantifies the de-

pendency between business cycles and rating transition probabilities while Bangia [3] shows

that the loss distribution of credit portfolios varies highly with the health of the economy, and

Castro [11] uses an econometric model to show the link between macroeconomic conditions

and the banking credit risk in European countries.

Following these works, Pesaran [34] uses an econometric model to empirically characterize

the time series behaviour of probabilities of default and of recovery rates. The goal of that work

is ”to show how global macroeconometric models can be linked to firm-specific return processes

which are an integral part of Merton-type credit risk models so that quantitative answers to

such questions can be obtained”. This simply implies that macroeconomic variables are used

as systemic factors introduced in the Merton model. The endogenous variables typically

include real GDP, inflation, interest rate, real equity prices, exchange rate and real money

balances. One way to choose the macroeconomic variables would be to run a LASSO regression

between the logit function (p 7→ log
(

p
1−p

)
on (0, 1)) of observed default rates of firms and

a set of macroeconomic variables. We perform such an analysis on a segment of S&P’s data

in Appendix C.

In addition to this statistical work, Baker, Delong and Krugman [2] show through three

different models that, in a steady state economy, economic growth and asset returns are

linearly related. On the one hand, economic growth is equivalent to productivity growth. On

the other hand, the physical capital rate of gross profit, the net rate of return on a balanced

financial portfolio and the net rate of return on equities are supposed to behave similarly. In

particular, in the Solow model [38], the physical capital rate of gross profit is proportional to
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the return-to-capital parameter, to the productivity growth, and inversely proportional to the

gross saving. In the Diamond model [13], the net rate of return on a balanced financial portfolio

is proportional to the reduction in labor productivity growth. In the Ramsey model [36] with

a log utility function, the net rate of return on equities is proportional to the reduction in

labor productivity growth.

Consider a portfolio of N ∈ N∗ firms and fix n ∈ {1, . . . , N}. Inspired by the aforemen-

tioned works, we introduce the following assumption:

Assumption 2.1. The RN -valued return process on assets of the firms denoted by (ωt)t∈N∗ is

linear in the economic factors (consumption growth by sector introduced in (1.19)), specifically

we set for all t ∈ N,
ωt = ã∆C

t + bt,

for ã ∈ RN×I , where the idiosyncratic noise (bt)t∈N := (bnt )t∈N,1≤n≤N is i.i.d. with law

N (0,diag(σ2bn)) with σbn > 0 for n ∈ {1, . . . , N}. Moreover, (∆C
t )t∈N∗ and (bt)t∈N are inde-

pendent.

Remark 2.2. The above definition of assets returns can be rewritten, with a := ã(II −λ)−1,

as

ωt = a (Θt + v(dt)− v(dt−1)) + bt, (2.1)

according to (1.19). We call a and ã factor loadings, quantifying the extent to which ω is

related to ∆C .

We define the filtration F = (Ft)t∈N by Ft = σ (Gt ∪ σ {bs : s ∈ [0, t] ∩ N}) for t ∈ N, de-

note Et[·] := E[·|Ft] and, for all 1 ≤ n ≤ N ,

Wn
t :=

t∑
u=1

bnu. (2.2)

In addition to the empirical results on the dependency between default indicators and

business cycles, firm valuation models provide additional explanatory arguments. On the one

hand, the Merton model says that default metrics (such as default probability) depend on the

firm’s value; on the other hand, valuation models help express the firm’s value as a function

of economic cycles. Reis and Augusto [35] organize valuations models in five groups: models

based on the discount of cash flows, models of dividends, models related to the firm’s value,

models based on accounting elements creation, and sustaining models in real options.

Definition 2.3. Considering the Discounted Cash Flows method, following Kruschwitz and

Löffer [26], the firm value is the sum of the present value of all future cash flows. For any

time t ≥ 0 and firm n ∈ {1, . . . , N}, we note Fnt the free cash flows of n at t, and r > 0 the
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discount rate2. Then, the value V n
t of the firm n, at time t, is

V n
t := Et

[
+∞∑
s=0

e−rsFnt+s

]
. (2.3)

To calculate precisely the firm value, we introduce first the cash flows dynamics.

Assumption 2.4. For n ∈ {1, . . . , N}, set

Fnt+1 = Fnt e
ωnt+1 , for t ∈ N,

with Fn0 and 1
Fn0

both belonging to L∞(F0).

The following proposition, proved in Appendix B.1, studies the well-posedness of the firm

value.

Proposition 2.5. Assume that |Γ| < 1 and that

ρ := max
1≤n≤N

{
an·µ+

1

2
σ2bn +

ε2

2
|an·|2|

√
Σ|2(1− |Γ|)−2

}
< r. (2.4)

Then, for any t ∈ N and 1 ≤ n ≤ N , V n
t is well defined and for some p > 1, which does not

depend on t nor on n but on ρ and r, ∥V n
t ∥p ≤ Cp∥Fnt ∥q < +∞, for some q > 1 that depends

on p, ρ and r.

Remark 2.6. In the above proposition, (2.4) guarantees the non-explosion of the expected

discounted future cash flows of the firm. Moreover, we could remove the condition |Γ| < 1.

Indeed, we know that, by Assumption 1.1, Γ has eigenvalues with absolute value strictly

lower than one. However, we would need to alter condition (2.4) by using a matrix norm | · |s
(subordinated) s.t. |Γ|s < 1. It should also involve equivalence of norm constants between | · |
and | · |s.

Now, the question is how to obtain a more explicit expression for V n
t . We can describe

it as a function of the underlying processes driving the economy. However, this will not lead

to an easily tractable formula for V , but could be written as a fixed-point problem that can

be solved by numerical methods such as Picard iteration [7] or by deep learning methods[24].

To facilitate the forthcoming credit risk analysis, we approximate
V nt
Fnt

by the first term of an

expansion in terms of the noise intensity ε appearing in Θ (Assumption 1.1). An expanded

expression of the firm value is

V n
t = Fnt

(
1 +

+∞∑
s=1

e−rsEt

[
exp

(
an·

(
v(dt+s)− v(dt) +

s∑
u=1

Θt+u

)
+

s∑
u=1

bnt+u

)])
.

2Here, r is constant, deterministic and independent of the companies. However, in a more general setting,

it could be a stochastic process depending on the firm.
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Let us introduce, for a firm n and t ∈ N, the quantity

Vnt := Fnt

(
1 +

+∞∑
s=1

e−rsEt

[
exp

(
san·µ+ an· (v(dt+s)− v(dt)) +

s∑
u=1

bnt+u

)])
. (2.5)

We remind that Θ depends on ε according to the Standing Assumption 1.1, therefore ω accord-

ing to Assumption 2.1 and Fn according to Assumption 2.4 also. This gives the dependence

of V n on ε. From (2.5),
Vnt
Fnt

almost corresponds to the definition of
V nt
Fnt

but with the noise

term coming from the economic factor in the definition of Θ set to zero, for the dates after t,

according to (2.3), (B.1) and (2.1). We first make the following observation.

Lemma 2.7. For any n ∈ {1, . . . , N}, assume that ϱn := 1
2σ

2
bn

+ an·µ − r < 0. Then Vnt is

well defined for all t ∈ N and

Vnt = Fn0 R
n
t (d) exp (a

n·(A◦
t − v(d0))) exp (Wn

t ) , (2.6)

where W is defined in (2.2) and

Rn
t (d) :=

∞∑
s=0

eϱns exp (an·v(dt+s)). (2.7)

Moreover, with t◦ and t⋆ defined in Standing Assumption 1.3, we obtain the following explicit

form,

Rn
t (d) =



ea
n·v(dt⋆ )

1− eϱn
, if t ≥ t⋆,

t⋆−t∑
s=0

eϱns exp (an·v(dt+s)) +
ea
n·v(dt⋆ )+ϱn(t⋆−t+1)

1− eϱn
, if t◦ ≤ t < t⋆,

ea
n·v(dt◦ )

1− eϱn(t◦−t+1)

1− eϱn
+

t⋆−t∑
s=t◦−t+1

eϱnsea
n·v(dt+s) +

ea
n·v(dt⋆ )+ϱn(t⋆−t+1)

1− eϱn
, otherwise.

Proof. Let t ∈ N and introduce, for K > t⋆,

Vn,Kt := Fnt

(
1 +

K∑
s=1

e−rsEt

[
exp

(
san·µ+ an· (v(dt+s)− v(dt)) +

s∑
u=1

bnt+u

)])
. (2.8)

Similar computations as (in fact easier than) the ones performed in the proof of Proposition 2.5

show that Vnt = limK→+∞ Vn,Kt is well defined in Lq(H,E) for any q ≥ 1. Furthermore,

Vn,Kt = Fnt

(
1 +

K∑
s=1

eϱns exp (an· (v(dt+s)− v(dt)))

)
= Fnt

(
1 + e−an·v(dt)

K∑
s=1

eϱns exp (an·v(dt+s))

)
,

where ϱn is defined in the lemma, and from Assumptions 2.1 and 2.4,

Fnt = Fn0 exp

(
t∑

u=1

wnu

)
= Fn0 e

an·(v(dt)−v(d0)) exp (an·A◦
t +Wn

t ) .
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We then have

Fnt

(
1 + e−an·v(dt)

K∑
s=1

eϱns exp (an·v(dt+s))

)
= Fn0 e

−an·v(d0) exp (an·A◦
t +Wn

t )
K∑
s=0

eϱns exp (an·v(dt+s)).

(1) If t < t◦, then

Rn,K
t (d) :=

K∑
s=0

eϱns exp (an·v(dt+s))

=

t◦−t∑
s=0

eϱns exp (an·v(dt+s)) +

t⋆−t∑
s=t◦−t+1

eϱns exp (an·v(dt+s)) +

K∑
s=t⋆−t+1

eϱns exp (an·v(dt+s))

= ea
n·v(dt◦ )

1− eϱn(t◦−t+1)

1− eϱn
+

t⋆−t∑
s=t◦−t+1

eϱns exp (an·v(dt+s)) + ea
n·v(dt⋆ )+ϱn(t⋆−t+1) 1− eϱn(K−t⋆+t)

1− eϱn
.

(2) If t◦ ≤ t < t⋆, then

K∑
s=0

eϱns exp (an·v(dt+s)) =

t⋆−t∑
s=0

eϱns exp (an·v(dt+s)) +

K∑
s=t⋆−t+1

eϱns exp (an·v(dt+s))

=

t⋆−t∑
s=0

eϱns exp (an·v(dt+s)) + ea
n·v(dt⋆ )+ϱn(t⋆−t+1) 1− eϱn(K−t⋆+t)

1− eϱn
.

(3) If t ≥ t⋆, then

K∑
s=0

eϱns exp (an·v(dt+s)) =

K∑
s=0

eϱns exp (an·v(dt⋆)) = ea
n·v(dt⋆ )

1− eϱn(K+1)

1− eϱn
.

Finally, eϱn(K+1) and eϱn(K−t⋆+t) converge to 0 for ϱn < 0 as K tends to infinity, and the

result follows.

It follows from Lemma 2.7 that at time t ∈ N, the (proxy of the) firm value Vnt is a function

of the productivity processes At, the carbon taxes processes τ, ζ, κ, the parameters Fn0 , a
n·,

σ2bn , ε and the different parameters introduced in Section 1. Moreover, we can make precise

the law of Vnt |Gt.

Corollary 2.8. For all t ∈ N,

(logVnt )1≤n≤N |Gt ∼ N
(
log(Fn0 ) +m(d, t,A◦

t ),diag[tσ
2
bn ]
)
,

with for n ∈ {1, . . . , N},

mn(d, t,A◦
t ) := an· (A◦

t − v(d0)) + log(Rn
t (d)).
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Proof. Let t ≥ 1 and n ∈ {1, . . . , N}, we have from (2.6)

Vnt = Fn0 R
n
t (d) exp (a

n·(A◦
t − v(d0))) exp

(
t∑

u=1

bnu

)
,

then

log(Vnt ) = log(Fn0 ) + log(Rn
t (d)) + an·(A◦

t − v(d0)) +
t∑

u=1

bnu.

Therefore log(Vnt )|Gt ∼ N
(
log(Fn0 R

n
t (d)) + an·(A◦

t − v(d0)), tσ
2
bn
)
and the conclusion follows.

The following remark whose proof is in Appendix B.2 gives the law of the firm value at

time t+ T conditionally on Gt, with t, T ∈ N.

Remark 2.9. For t, T ∈ N and 1 ≤ n ≤ N , denote

Kn(d, t, T,A◦
t ,Θt) := mn(d, t,A◦

t )+log

(
Rn
t+T (d)

Rn
t (d)

)
+an·ΓΥT−1Θt+an·

(
T∑
u=1

Υu−1

)
µ, (2.9)

and

Ln(t, T ) := σ2bn(t+ T ) + ε2
T∑
u=1

(an·ΥT−u)Σ(a
n·ΥT−u)

⊤. (2.10)

We have

log(Vnt+T )|Gt ∼ N (log(Fn0 ) +Kn(d, t, T,A◦
t ,Θt),Ln(t, T )) .

In the following, we will work directly with Vnt instead of V n
t , as it appears to be a tractable

proxy (its law can be easily identified). Indeed, this is justified when the noise term in the

productivity process is small as shown in the following result [2].

The following proposition, whose proof is given in Appendix B.3, shows that
Vnt
Fnt

and
V nt
Fnt

gets closer as ε gets to 0.

Proposition 2.10. Assume that |Γ| < 1 and that (2.4) is satisfied, then

E
[∣∣∣∣V n

t

Fnt
− Vnt
Fnt

∣∣∣∣] ≤ Cε,

for some positive constant C (depending on t, ρ).

3. Credit Risk Model

3.1. General information on credit risk

In credit risk assessment, Internal Rating Based (IRB) [33] introduces four parameters:

the probability of default (PD) measures the default risk associated with each borrower, the

exposure at default (EAD) measures the outstanding debt at the time of default, the loss given

default (LGD) denotes the expected percentage of EAD that is lost if the debtor defaults, and

the effective maturity T represents the duration of the credit. With these four parameters,

we can compute the portfolio loss L, with a few assumptions:
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Assumption 3.1. Consider a portfolio of N ∈ N∗ credits. For 1 ≤ n ≤ N ,

(1) (EADn
t )t∈N∗ is a R+

∗ -valued deterministic process;

(2) (LGDn
t )t∈N∗ is a (0, 1]-valued deterministic process;

(3) Bn is a deterministic scalar. We will also denote Bn :=
Bn

Fn0
.

Even if the LGD and the EAD are assumed here to be deterministic, we could take them to

be stochastic. In particular, they could (or should) depend on the climate transition scenario:

(1) the LGD could be impacted by the premature write down of assets - that is stranded

assets - due to the climate transition, while (2) the EAD could depend on the bank’s balance

sheet, which can be modified according to the bank’s policy (if related to climate transition).

This will be the object of future research.

Remark 3.2. We recall that for all n ∈ {1, . . . , N}, we consider Vnt , defined in (2.5), to be the

proxy value of firm n at time t and its conditional law given in Corollary 2.8. In the Merton

model that we follow, the default of entity n occurs when Vnt falls below a given barrier Bn,

related to the net debt, given in Assumption 3.1(3).

Definition 3.3. For t ≥ 1, the potential loss of the portfolio at time t is defined as

LNt :=
N∑
n=1

EADn
t · LGDn

t · 1{Vnt ≤Bn}. (3.1)

We take the point of view of the bank managing its credit portfolio and which has to

compute various risk measures impacting its daily/monthly/quarterly/yearly routine, some of

which may be required by regulators. We are also interested in understanding and visualizing

how these risk measures evolve in time and particularly how they change due to carbon tax

paths, i.e. due to transition scenarios. This explains why all these measures are defined below

with respect to the information available at t, namely the F-filtration.
We now study statistics of the process (LNt )t≥0, typically its mean, variance, and quantiles,

under various transition scenarios. This could be achieved through (intensive) numerical

simulations, however we shall assume that the portfolio is fine grained so that the idiosyncratic

risks can be averaged out. The above quantities can then be approximated by only taking

into account the common risk factors. We thus make the following assumption:

Assumption 3.4. For all t ∈ N∗, the family (EADn
t )n=1,...,N is a sequence of positive

constants such that

1.
∑
n≥1

EADn
t = +∞;

2. there exists υ > 0 such that
EADnt∑N
n=1 EADnt

= O(N−( 1
2
+υ)), as N tends to infinity.
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The following theorem, similar to the one introduced in [20, Propositions 1, 2] and used

when a portfolio is perfectly fine grained, shows that we can approximate the portfolio loss

by the conditional expectation of losses given the systemic factor.

Theorem 3.5. For all t ∈ N, define

LG,N
t := E

[
LNt
∣∣Gt] = N∑

n=1

EADn
t · LGDn

t · Φ
(
log(Bn)−mn(d, t,A◦

t )

σbn
√
t

)
,

where mn(d, t,A◦
t ) is defined in Corollary 2.8. Under Assumptions 3.1 and 3.4, LNt − LG,N

t

converges to zero almost surely as N tends to infinity, for all t ∈ N.

This implies that, at each time t ∈ N, in the limit, we only require the knowledge of LG,N
t

to approximate the distribution of LNt . In the following, we will use LG,N
t as a proxy for LNt .

Proof. Let t ∈ N. We have

LG,N
t = E

[
LNt
∣∣Gt]

= E

[
N∑
n=1

EADn
t · LGDn

t · 1{Vnt ≤Bn}

∣∣∣∣∣Gt
]

from (3.1)

=

N∑
n=1

EADn
t · LGDn

t · E
[
1{Vnt ≤Bn}

∣∣∣Gt] from (1) and (3) in Assumption 3.1

=

N∑
n=1

EADn
t · LGDn

t · P [Vnt ≤ Bn}|Gt]

=

N∑
n=1

EADn
t · LGDn

t · Φ
(
log(Bn)− log(Fn0 )−mn(d, t,A◦

t )

σbn
√
t

)
from Corollary 2.8.

The rest of the proof requires a version of the strong law of large numbers (Appendix of [20,

Propositions 1, 2]), where the systematic risk factor is A◦
t .

For stress testing, it is fundamental to estimate through some statistics of loss, bank’s

capital evolution. In particular, some key measures for the bank to understand the (dynamics

of the) risk in its portfolios of loans are the loss and the probability of default conditionally

to the information generated by the risk factors. We would like to understand how these key

measures are distorted when we introduce carbon taxes and, to this aim, we rely on the results

derived in Section 1 and Section 2. Precisely, given a portfolio of N ∈ N∗ counterparts, each

of which belonging to any sector, for a date t ∈ N and a horizon T ∈ N, we would like to

know these risk measures at t of the portfolio at horizon T .

Definition 3.6. Let t ≥ 0 be the time at which the risk measures are computed over a period

T ≥ 1. As classically done (and shown in Figure 1), the potential loss is divided into three

components [39]:
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• The conditional Expected Loss (EL) is the amount that an institution expects to lose

on a credit exposure seen at t and over a given time horizon T. It has to be quanti-

fied/included into the products and charged to the clients, and reads

ELN,Tt := E
[
LG,N
t+T

∣∣∣Gt] .
In the normal course of business, a financial institution should set aside an amount

equal to EL as a provision or reserves, even if it should be covered from the portfolio’s

earnings.

• The conditional Unexpected Loss (UL) is the amount by which potential credit losses

might exceed EL. UL should be covered by risk capital. For α ∈ (0, 1),

ULN,Tt,α := VaRα,N,Tt − ELN,Tt , where 1− α = P
[
LG,N
t+T ≤ VaRα,N,Tt

∣∣∣Gt] . (3.2)

• The Stressed Loss (or Expected Shortfall or ES) is the amount by which potential credit

losses might exceed the capital requirement VaRαt (L
N
s ):

ESN,Tt,α := E
[
LNt+T

∣∣∣LNt+T ≥ VaRα,N,Tt ,Gt
]
, for α ∈ (0, 1).

Figure 1: Loss distribution. Source: Page 8 in [39].

In the following sections, we write the expression of the portfolio EL and UL as functions of

the parameters and of the processes introduced above, and introduce the entity’s probability

of default.

3.2. Expected loss

The following proposition computes the default probability of each firm and the portfolio

EL.
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Proposition 3.7. Let (Υu)u∈N and (Rn
u(d))u∈N (with n ∈ {1, . . . , N}) be as in Appendix A

and (2.7). For (a, θ) ∈ RI × RI , t ∈ N, T ∈ N∗, and n ∈ {1, . . . , N}, define

Ln(d, t, T, a, θ) := Φ

(
log(Bn)−Kn(d, t, T, a, θ)√

Ln(t, T )

)
,

where Kn(d, t, T, a, θ) and Ln(t, T ) are defined in Remark 2.9. Then, the (conditional) proba-

bility of default of the entity n at time t over the horizon T is

PDn
t,T,d := P

(
Vnt+T ≤ Bn|Gt

)
= Ln(d, t, T,A◦

t ,Θt), (3.3)

and the (conditional) EL of the portfolio at time t over the horizon T reads

ELN,Tt,d := ELN,Tt =

N∑
n=1

EADn
t+T · LGDn

t+T · Ln(d, t, T,A◦
t ,Θt). (3.4)

Proof. Let t ∈ N and T ∈ N∗, for 1 ≤ n ≤ N , (2.9) gives the law of log(Vnt+T )|Gt, we directly

obtain (3.3). Moreover,

ELN,Tt,d = E
[
LG,N
t+T |Gt

]
= E

[
N∑
n=1

EADn
t+T · LGDn

t+T · Φ
(
log(Bn)− log(Fn0 )−mn(d, t+ T,A◦

t+T )

σbn
√
t+ T

)∣∣∣∣∣Gt
]

=
N∑
n=1

EADn
t+T · LGDn

t+T · E
[
Φ

(
log(Bn)−mn(d, t+ T,A◦

t+T )

σbn
√
t+ T

)∣∣∣∣Gt] ,
where the last equality comes from Assumption 3.1(1)-(3). However,

mn(d, t+ T,A◦
t+T ) = an·

(
A◦
t+T − v(d0)

)
+ log(Rn

t+T (d))

= an·

(
A◦
t +

t+T∑
u=t+1

Θu − v(d0)

)
+ log(Rn

t+T (d))

= mn(d, t,A◦
t ) + log(Rn

t+T (d))− log(Rn
t (d)) + an·

T∑
u=1

Θt+u.

For all θ ∈ Rd, according to (A.1),(
T∑
u=1

Θt+u

∣∣∣∣∣Θt = θ

)
∼ N

(
ΓΥT−1θ +

(
T∑
u=1

Υu−1

)
µ, ε2

T∑
u=1

ΥT−uΣ(ΥT−u)
⊤

)
,

Let n ∈ {1, . . . , N}, therefore,(
an·

T∑
u=1

Θt+u

∣∣∣∣∣Gt
)

∼ N

(
an·ΓΥT−1Θt + an·

(
T∑
u=1

Υu−1

)
µ, ε2

T∑
u=1

(an·ΥT−u)Σ(a
n·ΥT−u)

⊤

)
.
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Then(
log(Bn)−mn(d, t+ T,A◦

t+T )

σbn
√
t+ T

∣∣∣∣Gt) ∼ Sn(T )
σbn

√
t+ T

X n +
log(Bn)−Kn(d, t, T,A◦

t ,Θt)

σbn
√
t+ T

, (3.5)

where (X n)1≤n≤N ∼ N (0, IN ), and where Kn(d, t, T,A◦
t ,Θt) is defined in (2.9) and where

Sn(T ) := ε

√√√√ T∑
u=1

(an·ΥT−u)Σ(an·ΥT−u)⊤.

We then have

E
[
Φ

(
Sn(T )

σbn
√
t+ T

X n +
log(Bn)−Kn(d, t, T,A◦

t ,Θt)

σbn
√
t+ T

)∣∣∣∣Gt]
= EXn

[
Φ

(
Sn(T )

σbn
√
t+ T

X n +
log(Bn)−Kn(d, t, T,A◦

t ,Θt)

σbn
√
t+ T

)]
=

∫ +∞

−∞
Φ

(
Sn(T )

σbn
√

(t+ T )
x+

log(Bn)−Kn(d, t, T,A◦
t ,Θt)

σbn
√
(t+ T )

)
ϕ(x)dx

= Φ

(
log(Bn)−Kn(d, t, T,A◦

t ,Θt)√
Ln(t, T )

)
,

where Ln(t, T ) is defined in (2.10), and the conclusion follows.

The last equality comes from the following result found in [37, Page 1063]: if Φ and ϕ are

the Gaussian cumulative distribution and density functions, then for a, b ∈ R,∫ +∞

−∞
Φ(a+ bx)ϕ(x)dx = Φ

(
a√

1 + b2

)
.

3.3. Unexpected loss

At time t ∈ N, it follows from the definition of UL in (3.2) that we need to compute

the quantile of the (proxy of the) loss distribution LG,N
t . For α ∈ (0, 1), we obtain from

Theorem 3.5,

1− α = P
[
LG,N
t+T ≤ VaRα,N,Tt

∣∣∣Gt]
= P

[
N∑
n=1

EADn
t+T · LGDn

t+T · Φ
(
log(Bn)−mn(d, t+ T,A◦

t+T )

σbn
√
t+ T

)
≤ VaRα,N,Tt

∣∣∣∣∣Gt
]
.

However, it follows from (3.5),

1− α = PX 1,...,XN

[
N∑
n=1

EADn
t+T · LGDn

t+T · Φ
(

Sn(T )
σbn

√
t+ T

X n +
log(Bn)−Kn(d, t, T,A◦

t ,Θt)

σbn
√
t+ T

)
≤ VaRα,N,Tt

]
.

(3.6)
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Since the quantile function is not linear, one cannot find an analytical solution. Therefore, a

numerical solution is needed. Recall that we must simulate (X 1, . . . ,XN ) to find VaRα,N,Tt ,

which will also be a function of the random variables (A◦
t ,Θt), of dimension 2I. This can be

solved for example by Monte Carlo [22] or by deep learning techniques [5].

3.4. Projection of one-year risk measures

At this stage, we use (3.3) to compute, for each n ∈ {1, . . . , N}, the probability of default of

a given firm n at maturity T , stressed by (deterministic) carbon taxes d. We can also calculate

EL according to (3.4) and UL from (3.6). We just need the parameters, especially an, σ2bn ,

Fn0 , and Bn. We can distinguish two ways to determine them:

1. Firm’s view: an, σ2bn and Fn0 are calibrated on the firm’s historical free cash flows,

while Bn relates to the principal of its loans.

2. Portfolio’s view: if we assume that there is just one risk class in the portfolio so

that all the firms have the same an, σ2bn , and Bn (and not Bn), then knowing the

historical default of the portfolio, we can use a log-likelihood maximization as in Gordy

and Heitfield [21] to determine them.

Let us introduce the following assumption related to the portfolio view.

Assumption 3.8. There is only one risk class in the given portfolio, namely for any 1 ≤ n ≤
N , an = a1, σ2bn = σ2b1 , and B

n = B1.

In practice, banks need to compute the one-year probability of default. We thus simplify

the risk measures introduced previously by taking from now T = 1.

Corollary 3.9. Under Assumption 3.8, for t ∈ N and 1 ≤ n ≤ N , the one-year (conditional)

probability of default of firm n at time t is

PDn
t,1,d = Φ

(
log(B1)−K1(d, t, 1,A◦

t ,Θt)√
L1(t, 1)

)
. (3.7)

Proof. Let t ∈ N and 1 ≤ n ≤ N ,

Kn(d, t, 1,A◦
t ,Θt) = mn(d, t,A◦

t ) + log(R1
t+1(d))− log(R1

t (d)) + a1·ΓΥ0Θt + a1·Υ0µ

= m1(d, t,A◦
t ) + log(R1

t+1(d))− log(R1
t (d)) + a1·ΓΘt + a1·µ

= K1(d, t, 1,A◦
t ,Θt),

given that Υ0 = II and from Assumption 3.8. We also have

Ln(t, 1) = σ2b1(t+ 1) + (a1·Υ0)Σ(a
1·Υ0)

⊤ = σ2b1(t+ 1) + (a1·)Σ(a1·)⊤ = L1(t, 1).
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3.4.1. Expected loss

The following corollary, whose proof follows from Corollary 3.9, gives a simplified formula

for EL.

Proposition 3.10. Under Assumption 3.8, the one-year (conditional) EL of the portfolio at

time t is (with PD1
t,1,d defined in Corollary 3.9)

ELN,Tt,d =

(
N∑
n=1

EADn
t+1 · LGDn

t+1

)
· PD1

t,1,d. (3.8)

3.4.2. Unexpected loss

We saw in (3.6) that determining the UL is not possible analytically and is numerically

intensive (since quantiles depend on rare events and because of the dimension of the macroe-

conomic factors). However, Assumption 3.4 allows us to further simplify the formula for

UL.

Corollary 3.11. Under Assumption 3.8, the one-year (conditional) UL of the portfolio at

time t is

ULN,Tt,d,α =

(
N∑
n=1

EADn
t+T · LGDn

t+T

)[
Φ

(
S1(t, T )Φ−1(1− α) + log(B1)−K1(d, t, T,A◦

t ,Θt)

σb1
√
t+ T

)
− PD1

t,1,d

]
.

(3.9)

Proof. From (3.6), we have

1− α = PX 1,...,XN

[
N∑
n=1

EADn
t+T · LGDn

t+T · Φ
(
Sn(T )X n + log(Bn)−Kn(d, t, T,A◦

t ,Θt)

σbn
√
t+ T

)
≤ VaRα,N,Tt

]
,

but with Corollary 3.9,

1− α = PX 1

[
Φ

(
S1(t, T )X 1 + log(B1)−K1(d, t, T,A◦

t ,Θt)

σb1
√
t+ T

)
≤ VaRα,N,Tt∑N

n=1 EAD
n
t+T · LGDn

t+T

]

= PX 1

[
S1(t, T )X 1 + log(B1)−K1(d, t, T,A◦

t ,Θt)

σb1
√
t+ T

≤ Φ−1

(
VaRα,N,Tt∑N

n=1 EAD
n
t+T · LGDn

t+T

)]

= PX 1

[
X 1 ≤ 1

S1(t, T )

(
σb1

√
t+ TΦ−1

(
VaRα,N,Tt∑N

n=1 EAD
n
t+T · LGDn

t+T

)
− log(B1) +K1(d, t, T,A◦

t ,Θt)

)]
.

Then the corollary follows from

VaRα,N,Tt =

(
N∑
n=1

EADn
t+T · LGDn

t+T

)
·Φ
(
S1(t, T )Φ−1(1− α) + log(B1)−K1(d, t, T,A◦

t ,Θt)

σb1
√
t+ T

)
.
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3.5. Sensitivity of losses to carbon price

We would like to quantify the variation of losses for a given variation in the carbon price.

Definition 3.12. For our portfolio of N firms and for α ∈ (0, 1), we introduce the sensitivity

of expected and unexpected losses to carbon taxes, at time t ∈ N over the horizon T ∈ N∗,

and for a given sequence of carbon taxes d, respectively denoted ΓN,T,ELt,d (U) and ΓN,T,UL
t,d,α (U),

as being,

ΓN,T,ELt,d (U) := lim
ϑ→0

ELN,Tt,d+ϑU − ELN,Tt,d

ϑ
and ΓN,T,UL

t,d,α (U) := lim
ϑ→0

ULN,Tt,d+ϑU,α −ULN,Tt,d,α

ϑ
,

where U ∈ ([0, 1)I × [0, 1)I×I × [0, 1)I)N is chosen so that there exists a neighbourhood v of

the origin so that for all ϑ ∈ v, d+ ϑU ∈ ([0, 1)I × [0, 1)I×I × [0, 1)I)N.

These sensitivities can be computed and understood in different ways depending of the

direction U: either in relation to the entire tax trajectory, or in relation to all taxes at a given

date, or in relation to one of the three taxes, or in relation to a sector, and so on. We could

also (and will so in a future note) give the results for stochastic carbon price in the transition

period. In this case, if the productivity Θ and the carbon price δ are independent, it is enough

to add in the previous results, the expectation conditionally to δ.

4. Estimation and calibration

Assume that the time unit is year. We will calibrate the model parameters on a set of data

ranging from year t0 to t1. In practice, t0 = 1978 and t1 = t◦ = 2021. For each sector i ∈ I
and 0 ≤ t < t◦, we observe the output Y

i
t , the labor N

i
t , the intermediary input (Zjit )j∈I , and

the consumption Cit (recall that the transition starts at year t◦ so [0, t◦) is the past). For the

sake of clarity, we will omit the dependence of each estimated parameter on t◦.

4.1. Calibration of carbon taxes

We assume here that the carbon price is deterministic. The regulator fixes the transition

time horizon t⋆ ∈ N∗, the carbon price at the beginning of the transition Pcarbon > 0, at the

end of the transition δt⋆ > Pcarbon, and the annual evolution rate ηδ > 0. Then, for all t ∈ N,

δt =


Pcarbon, if t < t◦,

Pcarbon(1 + ηδ)
t−t◦ , if t ∈ {t◦, . . . , t⋆},

Pcarbon = δt◦(1 + ηδ)
t⋆−t◦ , otherwise.

We denote for any sector i ∈ I,

• t = t◦ the first year of the transition;

• Y i
t◦ the output at time t◦;

• P it◦ the aggregate price at time t◦;
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• Cit◦ the sectoral consumption (or value added) of households at time t◦.

The taxes are calibrated on realized emissions [14], based on Devulder and Lisack [12], to the

chosen year t◦, then for all i ∈ I:

• the tax rate on firms production is set such that

τ it◦Y
i
t◦P

i
t◦ = PcarbonE

i,F
t◦ ,

where Ei,Ft◦ are the GHG emissions (in tonnes of CO2-equivalent) by all the firms of the

sector i at t◦. Then for all t ∈ {t◦, . . . , t⋆}, we have

τ it (δt) := δt
Ei,Ft◦
Y i
t◦P

i
t◦

,

• the tax rate on households final consumption is set such that

κit◦P
i
t◦C

i
t◦ := PcarbonE

i,H
i,t◦
,

where Ei,Ht◦ is the GHG emitted (in tonnes of CO2-equivalent) by households through

their consumption in sector i. Then for all t ∈ {t◦, . . . , t⋆}, we have

κit(δt) := δt
Ei,Hi,t◦
P it◦C

i
t◦

.

• the tax rate on firms intermediate consumption, for each sector i and j, is set such that

I∑
j=1

ζjit◦P
j
t◦Z

ji
t◦ := PcarbonE

i,F
t◦ .

Then for all t ∈ {t◦, . . . , t⋆}, we have

ζjit (δt) = δt
Ei,Ft◦

I × P jt◦Z
ji
t◦

.

The values
Ei,Ft◦
Y it◦P

i
t◦
,
Ei,CO2,H
i,t◦
P it◦C

i
t◦

and
Ei,Ft◦

I×P jt◦Z
ji
t◦

represent the carbon intensities of sector i pro-

duction, consumption and intermediary input respectively, which we assume fixed over the

transition. This is a very strong assumption here, because we can think that the greening

of the economy will lead to a decrease in carbon intensity. Moreover, we assume that taxes

increase. However, there are several scenarios that could be considered, including taxes that

would increase until a certain year before leveling off or even decreasing. The tax on produc-

tion would increase when the tax on households would stabilize or disappear (in order to avoid

social movements) and so on. The framework can be adapted to various sectors, scenarios,

and tax evolutions.
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4.2. Calibration of economic parameters

As in [16], we assume a unitary Frisch elasticity of labor supply so φ = 1 and the utility

of consumption is logarithmic so σ = 1. Similarly, for any i, j ∈ I, the input shares, λij , are

estimated as dollar payments from sector j to sector i expressed as a fraction of the value of

production in sector j. The parameter ψi is then obtained by

ψi = 1−
∑
j∈I

λji,

and we get (λ̂
ij
)i,j∈I and (ψ̂i)i∈I . We can then compute the functions Ψ in (1.10) and Λ

in (1.11). We can also compute the sectoral consumption growth
(
∆C
t = (log(Cit)− log(Cit−1))j∈I

)
t∈t0,...,t1−1

directly from data.

Without carbon tax in any sector, it follows from (1.20) in Corollary 1.14 that, for each

t ∈ {t0, . . . , t1−1}, the computed consumption growth ∆C
t is equal to ∆C

t = (II−λ̂)−1Θ̂t when

II − λ̂ is not singular; hence Θ̂t = (II − λ̂)∆C
t and we can easily compute the estimations µ̂,

Γ̂, and Σ̂, and then µ̂ and Σ̂ of the VAR(1) parameters µ, Γ, Σ, µ, and Σ (all defined in

Standing Assumption 1.1).

4.3. Calibration of firm and of the credit model parameters

Recall that we have a portfolio with N ∈ N∗ firms (or credit) at time t◦. For each firm n ∈
{1, . . . , N}, we have its historical cash flows (Fnt )t∈t0,...,t1−1, hence its log-cash flow growths.

We assume that we can divide our portfolio inM ≤ N disjunct groups g1, . . . , gM so that each

group represents a single risk class. For any t ∈ {t0, . . . , t1−1} and 1 ≤ m ≤M , we denote by

rmt (resp. dmt ) the number of firms in gm rated at the beginning of the year t (resp. defaulted

during the year t). In particular, rt0 = #gm. Within each group gm, all the firms behave in the

same way as there is only one risk class. We fix m⋆ := min {n ∈ {1, . . . , N} such that n ∈ gm}
and, for each n ∈ gm, a

n = am⋆ , σbn = σbm⋆ , and B
n = Bm⋆ . We then proceed as follows:

1. Knowing the consumption growth
(
∆C
t

)
t∈{t0,...,t1−1}, we calibrate the factor loading âm⋆

and the standard deviation σ̂m⋆ , according to Assumptions 2.1 and 2.4, appealing to

the regression∑
n∈gm

ωnt = (#gm)a
m⋆∆C

t +
√
#gmσbm⋆ut where ut ∼ N (0, 1), for all t ∈ {t0, . . . , t1−1}.

2. We then estimate the barrier Bm⋆ by MLE as detailed in Gordy and Heitfield in [21,

Section 3]:

we compute

B̂m⋆ := argmax
Bm⋆∈R+

L(Bm⋆),
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where L(Bm⋆) is the log-likelihood function defined by

L(Bm⋆) :=

t1−1∑
t=t0

log

(∫
R2I

P[Dm⋆ = dmt |(a, θ)]dP[(A◦
t ,Θt) ≤ (a, θ)]

)
,

and where

P[Dm⋆ = dmt |(A◦
t ,Θt)] =

(
rmt
dmt

)
(PDm⋆

t,1,0)
dmt
(
1− PDm⋆

t,1,0

)rmt −dmt
,

with Dm⋆ the Binomial random variable standing for the conditional number of defaults,

and PDm⋆
t,1,0 in Corollary 3.9, depending on σbm⋆ = σ̂bm⋆ , a

m⋆ = âm⋆ , d = 0 and on Bm⋆ .

4.4. Expected and Unexpected losses

Suppose that we have chosen or estimated all the economic parameters (φ, σ, ψ,λ, µ,Γ,Σ)

and firm specific parameters ((Bn,an, Fn0 , σbn)1≤n≤N ), thanks to the previous equations. We

give ourselves a trajectory of carbon price δ, then, for all t ∈ {t◦, . . . , t⋆}, PD, EL and UL are

computed by Monte Carlo simulations following the formulae below. We simulate M ∈ N∗

paths of (Θp
t◦ , . . . ,Θ

p
t⋆) indexed by p ∈ {1, . . . ,M}, as a VAR(1) process, and we derive

((A◦
t◦)

p, . . . , (A◦
t⋆)

p). For any t ∈ {t◦, . . . , t⋆}:

• for any n ∈ {1, . . . , N}, from (3.7), the estimated one-year probability of default of

firm n is

P̂D
n,M

t,1,d :=
1

M

M∑
p=1

Φ

(
log(Bn)−Kn(d, t, 1, (A◦

t )
p,Θp

t )√
Ln(t, 1)

)
, (4.1)

• the one-year expected loss is, from (3.8),

ÊL
N,T

t,d :=
1

M

M∑
p=1

N∑
n=1

EADn
t+1 · LGDn

t+1 · P̂D
n,M

t,1,d , (4.2)

• the one-year unexpected loss is, from (3.9),

ÛL
N,T

t,d,α := qα,M

{ N∑
n=1

EADn
t+1 · LGDn

t+1 · Φ

(
log(Bn)−Kn(d, t, 1, (A◦

t )
p,Θp

t )√
Ln(t, 1)

)}
1≤p≤M

−ÊL
N,T

t,d ,

(4.3)

where qα,M ({Y 1, . . . , YM}) denotes the empirical α-quantile of the distribution of Y .

4.5. Summary of the process

More concretely, the goal is to project, for a given portfolio, the T = 1 year probability

of default, as well as the expected and unexpected losses between year t◦ and year t⋆, given

(1) the number of firms rated rt and defaulted dt between t0 and t1 − 1, (2) all the firms’

cash flows (Fnt )1≤n≤N between t0 and t1 − 1,w (3) the macroeconomic variables observed

between t0 and t1 − 1, and (4) the carbon price dynamics (δt)t∈{t◦,...,t⋆} or carbon taxes

dynamics (dt)t∈{t◦,...,t⋆} given by the regulator. We proceed as follows:

Page 31



Propagation of carbon taxes in credit portfolio through macroeconomic factors

1. From the macroeconomic historical data, we estimate the productivity parameters Γ̂, µ̂

and Σ̂, as well as the elasticities ψ̂ and λ̂ as described in Subsection 4.2.

2. For each n ∈ {1, . . . , N}, we estimate the parameters Bn, σbn , a
n using Subsections 4.3,

yielding B̂n, σ̂bn , â
n.

3. We compute the carbon taxes from the carbon price dynamics (dt)t◦≤t≤t⋆ as defined in

Subsection 4.1, then the tax function v defined in (1.15).

4. We fix a large enough integer M , and simulate M paths of the productivity pro-

cess (Θp
t )t◦≤t≤t⋆ , then we derive ((A◦

t )
p)t◦≤t≤t⋆ as defined in Assumption 1.1. For

each n ∈ {1, . . . , N}, we compute the one-year probability of default P̂D
n,M

t,1,d , for each t◦ ≤
t ≤ t⋆, using (4.1).

5. We compute the expected (resp. unexpected) losses ÊL
N,T

t,d (resp. ÛL
N,T

t,d,α), for each t◦ ≤
t ≤ t⋆, using (4.2) (resp. (4.3)).

6. We fix the direction U and a small step ϑ, and repeat 3.-4.-5. replacing d by d + ϑU.

Finally, we approach the sensitivity of the losses with respect to the carbon taxes d by

finite differences, i.e. for each t◦ ≤ t ≤ t⋆,

Γ̂N,T,ELt,d (U) :=
1

ϑ

(
ÊL

N,T

t,d+ϑU − ÊL
N,T

t,d

)
and Γ̂N,T,UL

t,d,α (U) :=
1

ϑ

(
ÛL

N,T

t,d+ϑU,α − ÛL
N,T

t,d,α

)
.

(4.4)

In the sequel, we choose the direction U ∈ ([0, 1)I × [0, 1)I×I × [0, 1)I)t⋆+1 which is equal

to 1 at t and 0 everywhere else, for each time t, and a step ϑ = 1%.

5. Results

5.1. Data

We work on data related to the French economy:

1. Annual consumption, labor, output (displayed on Figure E.10 and Figure E.11), and

intermediary inputs come from Eurostat from 1978 to 2019 (check [4] for details) and

are expressed in billion Euros. We also assume that 2020’s data are the same as 2019’s

ones in order not to account for the impact of the COVID-19 crisis on data. We thus

consider that t◦ = 2021.

2. The 21 Eurostat sectors are grouped in four categories, Very High Emitting, Very Low

Emitting, Low Emitting, High Emitting, based on their carbon intensities (Appendix

D).

3. The taxes are calibrated on the realized emissions [14] (expressed in tonnes of CO2-

equivalent) of the chosen starting year (2021).
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4. To perform LASSO regression (Appendix C) questioning the relationship between credit

risk and economics conditions (as we assumed in Section 3), we use S&P ratings for

data on the ratings and default, on a yearly basis from 1995 to 2019, of 7046 large

US companies belonging to 13 sectors. We can analyze and use them to compute the

historical probability of default (displayed Figure E.12) and the migration matrix by

sector. The USA macroeconomic time series can be found in the World Bank database

and in the FRED Saint-Louis database [15].

5.2. Calibration of economics parameters

For the parameters σ and φ, we use the same values as in Gali [16]: a unitary log-

utility σ = 1 and a unitary Frisch elasticity of labor supply φ = 1. We have the parameters

of the multisectoral model (ψ̂i)i∈I and (λ̂ji)i,j∈I in Table 1 and in Table 2.

Emissions Level Very High High Low Very Low

Elasticity of labor supply 0.083 0.163 0.234 0.374

Table 1: Elasticity of labor supply ψ̂

Emissions Level Very High High Low Very Low

Very High 0.243 0.010 0.241 0.037

High 0.001 0.302 0.212 0.098

Low 0.053 0.042 0.412 0.107

Very Low 0.004 0.015 0.134 0.220

Table 2: Elasticity of intermediary inputs λ̂

We obtain the productivity parameters in Table 3, 4, 5.

Emissions Level Very High High Low Very Low

×10−3 5.655 -0.71 0.509 2.901

Table 3: µ̂

Emissions Level Very High High Low Very Low

Very High -0.301 0.077 0.020 0.011

High 0.0820 0.083 -0.001 0.032

Low -0.218 0.225 0.160 0.292

Very Low 0.552 0.629 0.348 0.674

Table 4: Γ̂

In our simulation, we consider four deterministic transition scenarios giving four determin-

istic carbon price trajectories. The scenarios used come from the NGFS simulations, whose

descriptions are given on the NGFS website [31] as follows:
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Emissions Level Very High High Low Very Low

Very High 1.199 0.142 0.009 0.055

High 0.142 0.341 0.041 0.035

Low 0.009 0.041 0.040 0.016

Very Low 0.055 0.035 0.016 0.047

Table 5: Σ̂× 103

• Net Zero 2050 is an ambitious scenario that limits global warming to 1.5◦C through

stringent climate policies and innovation, reaching net zero CO2 emissions around 2050.

Some jurisdictions such as the US, EU and Japan reach net zero for all greenhouse gases

by this point.

• Divergent Net Zero reaches net-zero by 2050 but with higher costs due to divergent

policies introduced across sectors and a quicker phase out of fossil fuels.

• Nationally Determined Contributions (NDCs) includes all pledged policies even

if not yet implemented.

• Current Policies assumes that only currently implemented policies are preserved, lead-

ing to high physical risks.

We consider a time horizon of ten years with t◦ = 2021 as starting point, a time step of

one year and t⋆ = 2030 as ending point. For each scenario, we compute the average annual

growth of the tax as displayed in the fourth column of Table 6.

Scenario
2020 Carbon

Price (e/ton)
2030 Carbon

Price (e/ton)
Average Annual

Growth Rate (%)

Current Policies 39.05 39.05 0.

NDCs 39.05 76.46 6.42

Net Zero 2050 39.05 162.67 13.24

Divergent Net Zero 96.43 395.21 10.63

Table 6: Carbon price in 2020 and 2030, and average annual growth over ten years

5.3. Calibration of taxes

We compute the evolutions of the carbon tax rate on production, τ , the carbon tax rate

on final consumption, κ, and the carbon tax rate on the firm’s intermediate consumption, ζ,

for each sector based on the realized emissions, and report the average in Table 7, Table 8,

and Table 9. Moreover, the evolutions of carbon price between 2020 and 2030 are shown on

Figure 2. Given that carbon intensities are constant, carbon taxes will follow the same trends.

Eurostat does not provide information on the level of emissions associated with households’

consumption from the Very High Emitting group (see Appendix D for more details on groups

definition), so we assume that they are the as in High Emitting group. The corresponding tax
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Figure 2: Annual carbon price per scenario

Emissions level Very High High Low Very Low

Current Policies 4.301 4.301 0.459 0.014

NDCs 6.151 6.151 0.656 0.02

Net Zero 2050 8.883 8.883 0.948 0.03

Divergent Net Zero 19.029 19.029 2.031 0.063

Table 7: Average annual carbon tax on households’ consumption from each sector between 2020 and 2030

(in %)

is thus zero. The highest level of taxation for households’ consumption comes from the High

Emitting group (involved for cooking and heating) and from the Low Emitting one (involved

for constructing, commuting, and travelling).

Emissions level Very High High Low Very Low

Current Policies 4.006 1.605 0.413 0.069

NDCs 5.73 2.296 0.591 0.098

Net Zero 2050 8.275 3.315 0.853 0.142

Divergent Net Zero 17.728 7.102 1.827 0.304

Table 8: Average annual carbon tax on firms’ production in each sector between 2020 and 2030 (in %)

On firms’ production side, the Very High Emitting group is the highest taxed (because

agriculture and farming emit large amounts of GHG like methane), and is naturally followed

by the High Emitting one which emits significant amounts of CO2.

On the taxation of firms’ intermediary consumption, we observe expected patterns. For

example, the carbon tax applied on inputs produced by the Very High Emitting sector and
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Emissions level / Output Very High High Low Very Low

Current Policies 5.612 3.945 11.074 2.198

NDCs 8.027 5.642 15.839 3.143

Net Zero 2050 11.592 8.148 22.874 4.539

Divergent Net Zero 24.833 17.454 49.002 9.724

(a) Input: Very High

Emissions level / Output Very High High Low Very Low

Current Policies 2.059 1.440 4.050 0.806

NDCs 2.945 2.060 5.793 1.153

Net Zero 2050 4.253 2.975 8.366 1.665

Divergent Net Zero 9.111 6.373 17.922 3.566

(b) Input: High

Emissions level / Output Very High High Low Very Low

Current Policies 0.395 0.277 0.778 0.155

NDCs 2.945 2.06 5.793 1.153

Net Zero 2050 0.815 0.573 1.608 0.319

Divergent Net Zero 1.746 1.227 3.445 0.684

(c) Input: Low

Emissions level / Output Very High High Low Very Low

Current Policies 0.435 0.307 0.860 0.170

NDCs 0.621 0.439 1.230 0.243

Net Zero 2050 1.923 1.357 3.807 0.752

Divergent Net Zero 0.897 0.633 1.777 0.351

(d) Input: Very Low

Table 9: Average annual carbon tax on firms’ intermediary input from each sector between 2020 and 2030

(in %)

consumed by the Low Emitting one is very high. This is explained by the fact that many

inputs used by sectors belonging to the Low Emitting group (such as Manufacture of food

products, beverages and tobacco products) are produced by Agriculture which belongs to Very

High Emitting group. Similar comments can be done for the other sectors. Those results thus

show that sectors are not only affected by their own emissions, but also by the emissions from

the sectors from which they consume products.

We now calibrate our model on the historical data assuming no carbon tax as detailed in

Section 4.2 and perform simulations.

5.4. Output and consumption growth

We compute the mean of the annual consumption growth and related 95% confidence

interval for each sector and each scenario. Results are displayed on Figure 3. Additionally,

we compute the average annual consumption growth over the ten-year period, as illustrated

in Table 10.
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Emissions level Very High High Low Very Low Total

NDCs -0.343 -0.115 -0.095 -0.016 -0.140

Net Zero 2050 -1. -0.323 -0.268 -0.046 -0.399

Divergent Net Zero -2.119 -0.599 -0.519 -0.098 -0.786

Table 10: Average annual consumption growth evolution with respect to the Current Policies scenario between

2020 and 2030 (in %)

It follows from the Total column in Table 10 that the average annual growth between 2020

and 2030 is decreasing. The Divergent Net Zero is the economic worst case (the best one for

the climate) where the carbon ton would cost 395.21e in 2030. The Current Policies is the

economic best case (the worst one for the climate) where the carbon ton would cost 39.05e in

2030. The difference of annual consumption growth between the worst and the best scenarios

is of about −0.786%.

Figure 3: Mean and 95% confidence interval of the annual consumption growth from 2020 to 2030

The four scenarios are clearly discriminating. In the Divergent Net Zero scenario, our

model shows, on the last subplot in Figure 3, a drop in consumption growth, with respect to

the Current Policies scenario, that starts at 0.438% in 2020 and increases every year until

a 1.258% drop is reached in 2030. Cumulatively, from 2020 to 2030, a drop of 7.860% is

witnessed.

We can compare this value to 2.270% which is the GDP drop between the Net Zero 2050

and Current Policies scenarios obtained with the REMIND model in [29]. The difference

observed with REMIND can be explained by the fact that our model does not specify how

the collected carbon taxes are reinvested or redistributed. We could, for example, head the

investment towards low-carbon energies, which would have the effect of reducing the tax on

these sectors. Moreover, in our model, carbon price is assumed to increase uniformly (which

implies that emissions would increase indefinitely - which is not desirable) from 2020 to 2030,

while in REMIND an adjustment of the carbon price growth rate is being made in 2025.

Furthermore, productivity is totally exogenous in our model while there are exogenous labor

productivity and endogenous technological change for green energies in REMIND, which is

expected to have a downward effect on the evolution of carbon price. However, we recall that

our model has the benefit to be stochastic and multisectoral.
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Now, it follows from both Figure 3 and Table 10 that the introduction of carbon taxes is

less adverse for the Very Low Emitting and Low Emitting groups than for the High Emitting

and Very High Emitting ones. The slowdown is highest for the Very High Emitting group,

which was anticipated given that the tax on firms was the highest. However, we can see

that, even in the best case scenario, the consumption growth in the Low Emitting group

stabilizes or begins to decline. It is probably because we are working on French data and the

industrial production in the French economy structurally decreases. Moreover, the slowdown

could be accelerated by the climate transition, not only because this sector emits GHG, but

also because its intermediary inputs are from High Emitting and Very High Emitting sectors.

On the other hand, the Very Low Emitting sector continues its strong growth because it emits

less and because France is driven by the service industry. Finally, the consumption in the two

most polluting sectors suffers from a slowdown higher than the whole consumption slowdown

and lower than in the two least polluting ones.

5.5. Firm Valuation

Here, we consider a representative firm characterized by its cashflow Ft◦−1 at t◦ − 1, with

standard deviation σb and by the contribution a of sectoral consumption growth to its cash

flows growth. We would like to know how the value of this company evolves during the

transition period and with the carbon price introduced in the economy. Consider Ft◦−1 =

e1,000,000, σb = 5.0%, a = [0.25, 0.25, 0.25, 0.25] (each sector has the same contribution to

the growth of the cash flows of the firm), the interest rate r = 5%. For M = 1000 simulations

of the productivity processes (Θt,At)t◦≤t≤t⋆ , we compute the firm value using (2.6). We can

analyze both the average evolution of the firm value per year and per scenario (Figure 4) and

the empirical distribution of the firm value per scenario (Figure 5).

Figure 4: Average annual firm value per scenario in million euros per year

We see that even if the value of the firm grows each year, this growth is affected by the

severity of the transition scenario. The presence of the carbon tax in the economy clearly
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reduces the firm value.

Figure 5: Firm value distribution per scenario and per year

The introduction of the transition scenario distorts the density function of the firm value,

and in particular, moves it to the left.

5.6. Credit Risk

Consider a fictitious portfolio of N = 12 firms described in Table 11 below. This choice is

made to ease the reproducibility of the result since the default data are proprietary data of

BPCE. Note that the growths in the cash flows of Firm 2, 4, 6, and 8 are respectively driven

by the Very High Emitting, High Emitting, Low Emitting, and Very Low Emitting groups.

5.6.1. Probabilities of default (PD)

We use the parameters of the portfolio and firms as detailed in Table 11 to compute annual

PDs over ten years using the closed-form formulae (4.1). We then report, in Figure 6, the

average annual PD and its annual evolution.

The remarks raised for the consumption growth remain valid, only the monotony changes:

we can clearly distinguish the fourth various climate transition scenario. The probability of

default grows each year, which is consistent as uncertainty increases with time. Even in the
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n° 1 2 3 4 5 6 7 8 9 10 11 12

σbn 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.10

Fn
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Bn 3.41 3.14 3.47 3.83 3.49 3.19 3.36 3.54 4.21 3.01 2.46 2.45

an(Very High) 0.25 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.25 0.25 0.25 0.75

an(High) 0.25 0.0 0.5 1.0 0.5 0.0 0.0 0.0 0.50 0.50 0.25 -0.16

an(Low) 0.25 0.0 0.0 0.0 0.5 1.0 0.5 0.0 0.25 0.25 0.50 0.16

an(Very Low) 0.25 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.25 -0.25 -0.50 -0.16

Table 11: Characteristics of the portfolio

Figure 6: Average annual probability of default of the portfolio per scenario and year in %

Current Policies scenario, the PD goes from 5.970% in 2021 to 7.024% in 2030. Moreover,

the increase is emphasized when the transition scenario gets tougher from an economic point

of view. Between the worst-case (Divergent Net Zero) scenario and the best-case (Current

Policies) one, the difference in average default probability reaches 1.911% in 2030. Over the

next 10 years, the annual average PD for the Current Policies scenario is 6.579%, for the

NDCs scenario is 6.882%, for the Net Zero 2050 scenario is 7.478%, and for the Divergent

Net Zero scenario is 8.490%. It is no surprise that the introduction of a carbon tax increases

the portfolio’s average probability of default.

In Figure 7 above, we can also observe that, for each company, the evolution of PD depends

on the sector that is at the origin of the growth of its cash flows. As expected, the PD grows

throughout the years, and the growth is even more abrupt when the sector to which the

company belongs to is polluting.
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Figure 7: Average annual probability of default per scenario and per firm

5.6.2. Expected and unexpected losses

We compute the EL and UL using (4.2) and (4.3), assuming that LGD and EAD are

constant over the years and LGDn = 45% and EADn = e1 million for each firm n described

in Table 11. The annual exposure of the notional portfolio of N = 12 firms thus remains

fixed and is equal to e12 millions. We then express losses as a percentage of the firm’s or

portfolio’s exposure. Table 12 and Table 13 show the average annual EL and UL.

Emissions level Firm 2 Firm 4 Firm 6 Firm 8 Portfolio

Current Policies 0.19 0.387 0.593 0.613 2.898

NDCs 0.204 0.413 0.609 0.616 3.030

Net Zero 2050 0.234 0.464 0.639 0.62 3.291

Divergent Net Zero 0.327 0.539 0.684 0.627 3.733

Table 12: Average annual EL as a percentage of exposure

Figure 8: EL of the portfolio in % of the exposure per scenario and per year.

We observe in Table 12 and Figure 8 that, as expected (notably because the LGD is not

stressed), the different scenarios remain clearly differentiated for the EL. EL as a percentage of
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the portfolio’s exposure increases with the year and the carbon price/taxes. For the portfolio

as a whole, we see that the average annual EL increases by 62% between the two extreme

scenarios. Moreover, still focusing on the two extreme scenarios, the average annual EL

increases by 72% for Firm 2 belonging to the Very High Emitting group while it increases by

2% for Firm 8 belonging to the Very Low Emitting group.

EL being covered by the provisions coming from the fees charged to the client, an increase

in EL implies an increase in credit cost.

Therefore, somehow, companies from the most polluting sectors will be charged more than

those from the least polluting sectors.

Emissions level Firm 2 Firm 4 Firm 6 Firm 8 Portfolio

Current Policies 0.895 0.27 0.205 0.368 1.683

NDCs 0.941 0.282 0.209 0.369 1.755

Net Zero 2050 1.031 0.305 0.215 0.371 1.895

Divergent Net Zero 1.19 0.336 0.224 0.373 2.133

Table 13: Average annual UL as a percentage of exposure

Figure 9: UL of the portfolio in % of the exposure per scenario and per year

Similarly for the UL, we observe the difference between the scenarios from Table 13 and

Figure 9. For the portfolio as a whole, we see that the average annual UL increases by 27%

between the two extreme scenarios. Moreover, still focusing on the two extreme scenarios, the

average annual UL increases by 32% for Firm 2 belonging to the Very High Emitting group

while it increases by 2% for Firm 8 belonging to the Very Low Emitting group.

UL being covered by the economic capital coming from the capital gathered by the share-

holders, an increase in UL implies a decrease in the bank’s profitability. Therefore, in some

way, granting loans to companies from the most polluting sectors will affect banks more

negatively than doing so to companies from the least polluting sectors.
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We therefore observe that the introduction of a carbon price will not only increase the

banking fees charged to the client (materialized by the provisions via the expected loss) but

will also reduce the bank’s profitability (via the economic capital that is calculated from the

unexpected loss).

Finally, for more in-depth analysis, Figure F.15 (respectively Figure F.16) shows the dis-

tortions of the distribution of EL (respectively UL) per scenario and per year.

5.6.3. Losses’ sensitivities to carbon taxes

Finally, we compute the sensitivity of our portfolio losses to carbon taxes using (4.4).

Since the scenarios are deterministic, this quantity allows us to measure some form of model

uncertainty. Indeed, for a given scenario, it allows to capture the level by which the computed

loss would vary should that assumed deterministic scenario deviate by a certain percentage.

For each time t, we choose the direction U ∈ ([0, 1)I × [0, 1)I×I × [0, 1)I)t⋆+1 which is equal to

1 at t and 0 everywhere else, and a step ϑ = 1%. A carbon price change of 1% will cause a

change in EL of Γ̂N,Tt,d (EL) and a change in UL of Γ̂N,Tt,d,α(UL). We report the results in Table 14

and Table 15.

For example, over the next ten years, if the price of carbon varies by 1% around the

scenario NDCs, the EL will vary by 1.402% while the UL will change by 1.148% around this

scenario.

Emissions level Firm 2 Firm 4 Firm 6 Firm 8 Portfolio

Current Policies 1.561 1.581 1.191 0.827 1.280

NDCs 1.777 1.687 1.261 0.904 1.402

Net Zero 2050 2.142 1.864 1.386 1.035 1.631

Divergent Net Zero 2.668 2.096 1.562 1.215 1.973

Table 14: Average annual EL sensitivity to carbon price in %

Emissions level Firm 2 Firm 4 Firm 6 Firm 8 Portfolio

Current Policies 1.299 1.290 1.042 0.547 1.135

NDCs 1.463 1.365 1.102 0.583 1.148

Net Zero 2050 1.726 1.485 1.206 0.634 1.197

Divergent Net Zero 2.070 1.632 1.352 0.681 1.472

Table 15: Average annual UL sensitivity to carbon price in %

The greater the sensitivity, the more polluting the sector is. This is to be expected as

carbon taxes are higher in these sectors. In addition, the sensitivity of the portfolio is smaller

than that in the most polluting sectors, and greater than that in the least polluting ones.

Finally, we notice that the variation of the EL is slightly more sensitive than the variation

of the UL. This means that the bank’s provisions will increase a bit more than the bank’s

capital, or that the growth of the carbon taxes will impact customers more than shareholders.
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Conclusion

In this work, we study how the introduction of carbon taxes would propagate in a credit

portfolio. To this aim, we first build a dynamic stochastic multisectoral model in which we

introduce carbon taxes calibrated on sectoral greenhouse gases emissions. We later use the

Discounted Cash Flows methodology to compute the firm value and introduce the latter in

the Merton model to project PD, EL and UL. We finally introduce losses’ sensitivities to

carbon taxes to measure the uncertainty of the losses to the transition scenarios. This work

opens the way to numerous extensions mobilizing diverse and varied mathematical tools. In

the climate-economic model, exogenous and deterministic scenarios as well as heterogeneous

agents are assumed while one could consider agent-based or mean-field games models where

a central planner decides on the carbon taxes and agents (companies or households) optimize

production, prices, and consumption according to the tax level. In the credit risk part, the

LGD is assumed to be deterministic, constant, and independent of the carbon taxes. In our

forthcoming research, we will analyze how the LGD is affected by the stranding of assets.

We furthermore assume that EAD and thus bank balance sheets remain static over the years

while the transition will require huge investments. One could thus introduce capital in the

model. Finally, we have adopted a sectoral view, while one could alternatively assess the

credit risk at the counterpart level and thus penalize or reward companies according to their

individual and not sectoral emissions.
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Appendix A. Vector Autoregressive Model (VAR):

Detailed proofs in Hamilton [23], and Kilian and Lütkepohl [25]. Assume that (Θt)t∈N
follows a VAR, i.e. for all t ∈ N∗,

Θt = µ+ ΓΘt−1 + Et, where for t ∈ Z, Et ∼ N (0,Σ)

with µ ∈ RI and where the matrix Γ ∈ RI×I has eigenvalues all strictly less than 1 in absolute

value. We have the following result that can be easily show in VAR’s literature.

• (Θt)t∈N is weak-stationary.

• If Θ0 ∼ N (µ,Σ) with µ := (II − Γ)−1µ, and vec(Σ) = (II×I − Γ
⊗

Γ)−1vec(Σ), then

for t ∈ Z, Et ∼ N (0,Σ) with Σ ∈ RI×I .

• For t, T ∈ N, we note Υt :=
∑t

v=0 Γ
v, then

T∑
u=1

u∑
v=1

Γu−vEt+v =
T∑
u=1

ΥT−uEt+u,

• For t, u ∈ N,

Θt = µ+

∞∑
v=1

ΓvEt−v and Θt+T = ΓTΘt +ΥT−1µ+
T∑
v=1

ΓT−vEt+v.

• For t, T ∈ N,(
T∑
u=1

Θt+u

∣∣∣∣∣Θt

)
∼ N

(
ΓΥT−1Θt +

(
T∑
u=1

Υu−1

)
µ,

T∑
u=1

ΥT−uΣ(ΥT−u)
⊤

)
, (A.1)

and in particular (Θt+1|Θt) ∼ N (µ+ ΓΘt,Σ).

Appendix B. Proofs

Appendix B.1. Existence condition of the Firm Value

Proof of Proposition 2.5. Let t ∈ N, n ∈ {1, . . . , N}. For s > 0, from Assumption 2.4, we

observe that

Fnt+s = Fnt exp

(
s∑

u=1

wnt+u

)
. (B.1)

Let K ∈ N∗ and define

V n,K
t := Et

[
K∑
s=0

e−rsFnt+s

]
. (B.2)
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We now show that limK→+∞ V n,K exists, in particular that Et
[
e−rsFnt+s

]
is summable. To

this end, we first observe that

V n,K
t = Fnt

(
1 +

K∑
s=1

e−rsEt

[
exp

(
s∑

u=1

wnt+u

)])
.

We now give an upper bound for ∥ exp
(∑s

u=1w
n
t+u

)
∥p for some p > 1. We observe that,

using (2.1),

s∑
u=1

wnt+u = an·

(
s∑

u=1

Θt+u + v(dt+s)− v(dt)

)
+

s∑
u=1

bnt+u. (B.3)

From Assumption 1.1 and (1.1), it follows

Θt+u = µ+ ε

(
ΓuZt +

u∑
v=1

Γu−vEt+v

)
.

We define Υk :=
∑k

v=0 Γ
v and observe that

|Υk| ≤ (1− |Γ|)−1 . (B.4)

Since

s∑
u=1

u∑
v=1

Γu−vEt+v =
s∑

v=1

Υs−vEt+v,

we compute
s∑

u=1

Θt+u = µs+ εΓΥs−1Zt + ε
s∑

v=1

Υs−vEt+v.

Then (B.3) reads

s∑
u=1

wnt+u = εan·ΓΥs−1Zt + san·µ+ ε
s∑

v=1

an·Υs−vEt+v + an· (v(dt+s)− v(dt)) +
s∑

u=1

bnt+u.

Observe that under Assumption 1.3, there exists a constant C > 0 such that

sup
n,s,t

exp (an· (v(dt+s)− v(dt))) ≤ C . (B.5)

Thus, using the independence of Zt, (Et+v)v≥1, (b
n
t+v)v≥1, we obtain

Et

[
exp

(
p

s∑
u=1

wnt+u

)]
≤Cp exp

(
pεan·ΓΥs−1Zt + psan·µ

)
E

[
exp

(
pε

s∑
v=1

an·Υs−vEt+v + p
s∑

u=1

bnt+u

)]
.

(B.6)
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Since

E

[
exp

(
p

s∑
u=1

bnt+u

)]
= exp

(
p2

2
sσ2bn

)
, (B.7)

we compute

E [exp (pεan·Υs−vEt+v)] = exp

(
ε2p2

2
|an·Υs−v

√
Σ|2
)

≤ exp

(
ε2p2

2
|an·|2|

√
Σ|2(1− |Γ|)−2

)
.

(B.8)

One could also have found above a finer upper bound. Combining (B.7)-(B.8) with (B.6), we

obtain

Et

[
exp

(
p

s∑
u=1

wnt+u

)]
≤ Cp exp

(
pεan·ΓΥs−1Zt + p2ρs

)
.

Using similar computations as above, we also get (because Υs−1 and Zt is stationary and

Gaussian)

E [exp (pεan·ΓΥs−1Zt)] ≤ Cp, (B.9)

and hence ∥∥∥∥∥exp
(

s∑
u=1

wnt+u

)∥∥∥∥∥
p

≤ Cpe
pρs.

Under (2.4), we then obtain∑
s≥0

e−rs

∥∥∥∥∥exp
(

s∑
u=1

wnt+u

)∥∥∥∥∥
p

< +∞,

for some p > 1. Set 1 < p̃ := p
1+ϵ , for ϵ > 0 small enough. Then, using Hölder’s inequality

(with 1
p̃ = 1

p +
1
p/ϵ),

E
[
|V n,K
t |p̃

]
≤ CpE

[
|Fnt |

p
ϵ

]
< +∞,

since ∥Fnt ∥q <∞ for any q ≥ 1.

Appendix B.2. Conditional distribution of the firm value

Proof of Remark 2.9. Let t, T ≥ 1, we have from (2.6),

Vnt+T = Fn0 R
n
t+T (d) exp

(
an·(A◦

t+T − v(d0))
)
exp

(
t+T∑
u=1

bnu

)
= Fn0 R

n
t+T (d) exp (−an·v(d0)) exp

(
an·A◦

t+T

)
exp

(
Wn
t+T

)
But A◦

t+T = A◦
t +

∑t+T
u=t+1Θu, then

Vnt+T = Fn0 R
n
t+T (d) exp (a

n·(A◦
t − v(d0))) exp

(
an·

t+T∑
u=t+1

Θu

)
exp

(
Wn
t+T

)
= Fn0 R

n
t+T (d) exp (a

n·(A◦
t − v(d0))) exp

(
an·

T∑
u=1

Θt+u +Wn
t+T

)
.
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But recall from Remark 1.2 and Appendix A, for all u ∈ {1, . . . , T},

Θt+u = ΓuΘt +Υu−1µ+ ε
u∑
v=1

Γu−vEt+v,

then

T∑
u=1

Θt+u =

T∑
u=1

ΓuΘt+

T∑
u=1

Υu−1µ+ε

T∑
u=1

u∑
v=1

Γu−vEt+v = ΓΥT−1Θt+

(
T∑
u=1

Υu−1

)
µ+ε

T∑
v=1

ΥT−vEt+v.

From Assumptions 1.1 and 2.1, we have(
T∑
u=1

an·Θt+u +Wn
t+T

∣∣∣∣∣Gt
)

∼ N

(
an·ΓΥT−1Θt + an·

(
T∑
u=1

Υu−1

)
µ, ε2

T∑
u=1

(an·ΥT−u)Σ(ΥT−ua
n·)⊤ + σ2bn(t+ T )

)
,

and the conclusion follows.

Appendix B.3. Convergence of (Vnt − V n
t )/F

n
t o zero

Proof of Proposition 2.10. For K ∈ N∗, recall the expressions of V n,K
t in (B.2) and Vn,Kt

in (2.8) and note that

E
[∣∣∣∣V n

t

Fnt
− Vnt
Fnt

∣∣∣∣] ≤ E

[∣∣∣∣∣V n
t

Fnt
− V n,K

t

Fnt

∣∣∣∣∣
]
+ E

[∣∣∣∣∣V n,K
t

Fnt
− Vn,Kt

Fnt

∣∣∣∣∣
]
+ E

[∣∣∣∣∣Vn,Kt

Fnt
− Vnt
Fnt

∣∣∣∣∣
]
.(B.10)

Using Hölder’s inequality and Proposition 2.5, one gets that the first term in the right hand

side of the above inequality goes to zero asK goes to +∞. Similarly, using Hölder’s inequality

and (the beginning of the proof of) Lemma 2.7, one shows that the last term in the right hand

side of the above inequality goes to zero as K goes to infinity. It remains thus to study the

middle term to obtain the desired result. Observe that

V n,K
t − Vn,Kt

Fnt
=

(
K∑
s=1

e−rsEt

[
exp

(
san·µ+ an·(v(dt+s)− v(dt)) +

s∑
u=1

bnt+u

)
∆s

])
,

with

∆s := exp

{
ε

s∑
u=1

an·Zt+u

}
− 1, (B.11)

using (B.3) and (1.1). We first compute, by independence,∣∣∣∣∣Et
[
exp

(
san·µ+ an·(v(dt+s)− v(dt)) +

s∑
u=1

bnt+u

)
∆s

]∣∣∣∣∣
= E

[
exp

(
san·µ+ an·(v(dt+s)− v(dt)) +

s∑
u=1

bnt+u

)]
|Et [∆s]|

≤ C exp

(
san·µ+

1

2
sσ2bn

)
Et [|∆s|] ,
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using (B.5). We then obtain

∥(V n,K
t − Vn,Kt )/Fnt ∥1 ≤

(
K∑
s=1

CeϱnsE [|∆s|]

)
,

where ϱn is defined in Lemma 2.7. We can rewrite (B.11) as

∆s = ε

∫ 1

0
exp

(
ελ

s∑
u=1

an·Zt+u

)
s∑

u=1

an·Zt+udλ.

For p > 1, using Hölder’s inequality, we deduce from the previous expression

E [|∆s|] ≤ εE

[∣∣∣∣∣
∫ 1

0
exp

(
ελ

s∑
u=1

an·Zt+u

)
dλ

∣∣∣∣∣
p] 1

p

E

[∣∣∣∣∣
s∑

u=1

an·Zt+u

∣∣∣∣∣
q] 1

q

, (B.12)

with q the conjugate exponent to p.

We first compute by convexity

E

[∣∣∣∣∣
s∑

u=1

an·Zt+u

∣∣∣∣∣
q]

≤ sq−1
s∑

u=1

E [|an·Zt+u|q] ≤ Cqs
q,

where the last inequality follows since Zt+u ∼ N (0,Σ).

We now turn to the first term in the right hand side of (B.12),

Using Jensen’s inequality, we have

E

[∣∣∣∣∣
∫ 1

0
exp

(
ελ

s∑
u=1

an·Zt+u

)
dλ

∣∣∣∣∣
p]

≤
∫ 1

0
E

[
exp

(
ελp

s∑
u=1

an·Zt+u

)]
dλ.

Since Zt+u = ΓuZt +
∑u

v=1 Γ
u−vEt+v, we write

Et

[
exp

(
pελ

s∑
u=1

an·Zt+u

)]
= exp

(
pελ

s∑
u=1

an·ΓuZt

)

× Et

[
exp

(
pελ

s∑
u=1

an·
u∑
v=1

Γu−vEt+v

)]
.

By (B.4), |Υk| ≤ (1− |Γ|)−1 where Υk :=
∑k

v=0 Γ
v. We compute

s∑
u=1

an·
u∑
v=1

Γu−vEt+v =
s∑

v=1

an·Υs−vEt+v.

Using (B.8) and recalling that λ ∈ [0, 1], we get

Et

[
exp

(
pελ

s∑
u=1

an·
u∑
v=1

Γu−vEt+v

)]
≤ exp

(
s
ε2p2

2
|an·|2|

√
Σ|2(1− |Γ|)−2

)
.
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Thus, appealing to (B.9), we get

E

[
exp(εpλ

s∑
u=1

an·Zt+u)

]
≤ Cp,ϵ exp

(
s
ε2p2

2
|an·|2|

√
Σ|2(1− |Γ|)−2

)
.

Finally, combining the above inequalities, we obtain

E [|∆s|] ≤ Cp,ϵεs exp

(
s
ε2p

2
|an·|2|

√
Σ|2(1− |Γ|)−2

)
,

and then
K∑
s=1

CeϱnsE [|∆s|] ≤ ε

K∑
s=1

Cp,ϵse
p(ρ−r)s.

For p− 1 > 0 small enough, we thus get

∥(V n,K
t − Vn,Kt )/Fnt ∥1 ≤

K∑
s=1

CeϱnsE [|∆s|] ≤ Cε.

The proof is thus concluded letting K goes to infinity in (B.10).

Appendix C. Factor selection by LASSO regression

We use the logit of the default rate as an explained variable and the macroeconomic

variables as explanatory variables.

Coef Importance Percentage

Industry value added growth -0.433 0.433 73.979

Real GDP per capita growth -0.073 0.073 12.485

Unemployment rate 0.046 0.046 7.934

Stocks returns -0.033 0.033 5.602

Export of goods and services 0 0 0

Real GDP growth 0 0 0

Inflation rate 0 0 0

10-year interest rate 0 0 0

Table C.16: Factor selection by LASSO

Appendix D. Sectoral groups

We use output and GHG emissions by sector to compute carbon intensity (which is the

the tons of GHG emitted per euros of output) per sector. Then we compute their annual

average and we group the sectors together if their annual average carbon intensities are close.

1. High Emitting
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• Electricity, gas, steam and air conditioning supply

• Mining and quarrying

• Water supply, sewerage, waste management and remediation activities

2. Very High Emitting (Agriculture, Forestry and Fishing)

• Agriculture, forestry and fishing

3. Low Emitting (Construction, Manufacturing and Transportation)

• Construction

• Manufacture of coke and refined petroleum products

• Manufacture of machinery and equipment not elsewhere classified

• Manufacture of computer, electronic and optical products

• Manufacture of electrical equipment

• Manufacture of food products, beverages and tobacco products

• Manufacture of other transport equipment

• Wholesale and retail trade, repair of motor vehicles and motorcycles

• Manufacturing

• Transportation and storage

4. Very Low Emitting

• Accommodation and food service activities

• Arts, entertainment and recreation, other service activities, activities of household

and extra-territorial organizations and bodies

• Financial and insurance activities

• Information and communication

• Professional, scientific and technical activities, administrative and support service

activities

• Public administration, defence, education, human health and social work activities

• Real estate activities.
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Appendix E. Plots of historical data

We plot the data described in Section 5.1.

Figure E.10: Nominal consumption, labor, and output (described in item 1)

Figure E.11: Consumption, labor, and output growth (described in item 1)

Figure E.12: Historical data of a chosen portfolio - France - from 1995 to 2018 (described in item 4)
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Appendix F. Figures

Figure F.13: Average annual EL per scenario for some firms

Figure F.14: Average annual UL per scenario for some firms

Figure F.15: Annual EL distribution per scenario
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Figure F.16: Annual UL distribution per scenario
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