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Abstract. The rough Bergomi model introduced by Bayer, Friz and Gatheral [3] has been outperforming

conventional Markovian stochastic volatility models by reproducing implied volatility smiles in a very realistic

manner, in particular for short maturities. We investigate here the dynamics of the VIX and the forward variance

curve generated by this model, and develop efficient pricing algorithms for VIX futures and options. We further

analyse the validity of the rough Bergomi model to jointly describe the VIX and the SPX, and present a joint

calibration algorithm based on the hybrid scheme by Bennedsen, Lunde and Pakkanen [4].

1. Introduction

Volatility, though not directly observed nor traded, is a fundamental object on financial markets, and has

been the centre of attention of decades of theoretical and practical research, both to estimate it and to use it for

trading purposes. The former goal has usually been carried out under the historical measure (P) while the latter,

through the introduction of volatility derivatives (VIX and related family), has been evolving under the pricing

measure Q. Most models used for pricing purposes (Heston [19], SABR [17], Bergomi [5]) are constructed

under Q and are of Markovian nature (making pricing, and hence calibration, easier). Recently, Gatheral,

Jaisson and Rosenbaum [14] broke this routine and introduced a fractional Brownian motion as driving factor

of the volatility process. This approach (Rough Fractional Stochastic Volatility, RFSV for short) opens the

door to revisiting classical pricing and calibration conundrums. They, together with the subsequent paper by

Bayer, Friz and Gatheral, (see also [1, 12]) in particular showed that these models were able to capture the extra

steepness of the implied volatility smile in Equity markets for short maturities, which continuous Markovian

stochastic volatility models fail to describe. The icing on the cake is the (at last!!) reconciliation between the

two measures P and Q within a given model, showing remarkable results both for estimation and for prediction.

One of the key issues in Equity markets is, not only to fit the (SPX) implied volatility smile, but to do so

jointly with a calibration of the VIX (Futures and ideally options). Gatheral’s [15] double mean reverting process

is the leading (Markovian) continuous model in this direction, while models with jumps have been proposed

abundantly by Carr and Madan [9] and Kokholm and Stisen [20]. This issue was briefly tackled by Bayer, Friz

and Gatheral [3] for a particular rough model (rough Bergomi), and we aim here at providing a deeper analysis

of VIX dynamics under this rough model and at implementing pricing schemes for VIX Futures and options.

Our main contribution is a precise link between the forward variance curve (ξT (·))T≥0 and the initial forward

variance curve ξ0(·) in the rough Bergomi model. This in turn, allows us not only to provide simulation methods
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for the VIX, but also to refine the log-normal approximation of [3] for VIX Futures, matching exactly the first

two moments. Finally, we develop an efficient algorithm for VIX Futures calibration, upon which we build a joint

calibration method with the SPX. As opposed to the Cholesky approach in [3], we adapt the hybrid-scheme by

Bennedsen, Lunde and Pakkanen [4] with better complexity O(n log n) . Assuming the universality of the Hurst

parameter H across VIX and SPX allows us to compute efficiently prices recursively with complexity O(n). In

passing, we also investigate the joint consistency of VIX and SPX in the market. The organisation of the paper

follows accordingly: we first introduce the rough Bergomi model and its main properties (Section 2), before

presenting its pricing power for VIX Futures (Section 3), and finally develop the joint calibration algorithm in

Section 4.

2. Rough volatility and the rough Bergomi model

Comte and Renault[7] were the first to propose a stochastic volatility model in which the instantaneous

volatility is driven by a fractional Brownian motion, with a Hurst index restricted to be greater than 1/2.

Recently Gatheral, Jaisson and Rosenbaum [14] presented a new approach with a Hurst index smaller than 1/2,

producing extremely good fits to observed volatility data under the physical measure P. These models form the

so-called Rough Fractional Stochastic Volatility (RFSV) family that is understood as a natural extension of the

classical volatility models driven by standard Brownian motion. Our work focuses on the pricing measure Q and

we assume through this paper that the model presented by Gatheral, Jaisson and Rosenbaum [14] under P is a

reasonable model. Finally, and most importantly, we follow the recent paper by Bayer, Friz and Gatheral [3],

in order to extend the RFSV model to pricing schemes under the measure Q. More precisely, Bayer, Friz and

Gatheral [3] proposed the following model for the log stock price process X := log(S):

(2.1)
dXt = −1

2
Vtdt+

√
VtdWt, X0 = 0

Vt = ξ0(t)E(2νCHVt), V0 > 0,

with ν, ξ0(·) > 0, E(·) is the Doléans-Dade [10] stochastic exponential and CH :=
√

2HΓ(2−H+)
Γ(H+)Γ(2−2H) , where, for

notational convenience (throughout the paper), we use the symbols H± := H ± 1
2 . All the processes are defined

on a given filtered probability space (Ω,F , (Ft)t≥0,Q) supporting the two standard Brownian motions W and Z

(see below). The initial forward variance curve is observed at inception, and we therefore assume without loss

of generality that it is F0-measurable. The process V, defined as

(2.2) Vt :=

∫ t

0

(t− u)H−dZu,

is a centred Gaussian process with covariance structure

E(VtVs) = s2H
∫ 1

0

(
t

s
− u

)H−

(1 − u)H−du, for any s, t ∈ [0, 1].

We shall also introduce, for any 0 ≤ T ≤ t the notations

(2.3) Vt,T :=

∫ t

T

(t− u)H−dZu and VT
t :=

∫ T

0

(t− u)H−dZu.

Note in particular that VT
T = VT . The two standard Brownian motions W and Z are correlated with correlation

parameter ρ ∈ (−1, 1). Here, ξT (t) denotes the forward variance observed at time T for a maturity equal to t.
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More precisely, if σ2
T (t) denotes the fair strike of a variance swap observed at time T and maturing at t, then

σ2
T (t) =

1

t− T

∫ t

T

ξT (u)du,

or equivalently ξT (t) = d
dt

(
(t− T )σ2

T (t)
)
. For any fixed t > 0, the process (ξs(t))s≤t, is a martingale, i.e.

E[ξs(t)|Fu] = ξu(t), for all u ≤ s ≤ t. Furthermore, VT
t is a centred Gaussian process with variance

(2.4) V(VT
t ) =

t2H − (t− T )2H

2H
, for t ≥ T,

and covariance structure

(2.5) E
(
VT
t VT

s

)
=

∫ T

0

[(t− u)(s− u)]
H− du =

(s− t)H−

H+

{
tH+F

(
−t
s− t

)
− (t− T )H+F

(
T − t

s− t

)}
,

for any t < s, where we introduce the function F : R− → R as

(2.6) F(u) := 2F1 (−H−,H+, 1 +H+, u) ,

and 2F1 is the hypergeometric function [2, Chapter 15]. Finally, the quadratic variation of V is given by

(2.7) [V]t =
t2H

2H
, for t ≥ 0.

2.1. Hybrid simulation scheme. Bayer, Friz and Gatheral [3] present a Cholesky method to simulate the

rough Bergomi model. Although exact, this method is very slow and other approaches need to be considered

for calibration purposes. Recently, Bennedsen, Lunde and Pakkanen [4] presented a new simulation scheme for

Brownian semistationary (BSS) processes. This method, as opposed to Cholesky, is an approximate method.

However, in [4] the authors show that the method yields remarkable results in the case of the rough Bergomi

model. In addition, their approach leads to a natural simulation of both the Volterra process V and the stock

price S and yields a computational complexity of order O(n log n).

Definition 2.1. Let W be a standard Brownian motion on a given filtered probability space (Ω,F , (Ft)t≥0,P).

A truncated Brownian semistationary (BSS) process is defined as B(t) =
∫ t

0
g(t−s)σ(s)dWs, for t ≥ 0, where σ

is (Ft)t≥0-predictable with locally bounded trajectories and finite second moments, and g : (0,∞) → [0,∞) is

Borel measurable and square integrable. We shall call it a BSS(α,W ) process if furthermore

(i) there exists α ∈
(
−1

2 ,
1
2

)
\ {0} such that g(x) = xαLg(x) for all x ∈ (0, 1], where Lg ∈ C1((0, 1] → [0,∞)),

is slowly varying1 at the origin and bounded away from zero. Moreover, there exists a constant C > 0

such that |L′
g(x)| ≤ C(1 + x−1) for all x ∈ (0, 1];

(ii) the function g is differentiable on (0,∞).

Under this assumption, the hybrid scheme, proposed in [4] and recalled in Appendix A, provides an efficient

way to simulate BSS processes. It applies in particular to the rough Bergomi model:

Proposition 2.2. The Volterra process V in (2.2) is a truncated BSS(H−, Z) process.

Proof. From (2.2), g(x) ≡ xH− and σ(·) ≡ 1 as in Definition 2.1, so that V is a BSS process. Since H− ∈ (−1
2 , 0),

then Lg ≡ 1, and V satisfies Definition 2.1(i); Definition 2.1(i) trivially holds, and so does the corollary. �

1A measurable function L : (0, 1] → [0,∞) is slowly varying [6] at 0 if for any t > 0, lim
x↓0

L(tx)/L(x) = 1.
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The corollary implies that we can apply the hybrid scheme to V. In particular, for κ = 1 the matrix form

representation of the scheme reads (recall that nT := ⌊nT ⌋)


V
(
1
n

)
V
(
2
n

)
...

V
(
nT

n

)

 =



Z0,1 0 · · · · · · 0

Z1,1 Z0
. . .

. . . 0

Z2,1 Z1
. . .

. . .
...

...
. . .

. . .
. . .

...

ZnT−1,1 ZnT−2 · · · Z1 Z0





1(
1
nb

∗
1

)H−(
1
nb

∗
2

)H−

...(
1
nb

∗
nT−1

)H−


,

where the coefficients {b∗i } are defined in (A.1). This matrix multiplication is, by brute force, of order O(n2),

however using discrete convolution we may use FFT to reduce it to O(n log n) as suggested in [4] .

3. Rough Bergomi and VIX

Bayer, Friz and Gatheral [3] briefly discuss the lack of consistency of the rough Bergomi model with observed

VIX options data, leading to an incorrect term structure of the VIX. In this section, we investigate in detail

the dynamics of the VIX, and propose a log-normal approximation. Additionally, we investigate the viability

of the model in terms of VIX Futures and options, and compare it to the approximation in [3].

3.1. VIX Futures in the rough Bergomi model. From now on, we fix a given maturity T ≥ 0, and define

the VIX at time T via the continuous-time monitoring formula

VIX2
T := E

(
1

∆

∫ T+∆

T

d⟨Xs, Xs⟩ds

∣∣∣∣∣FT

)
,

where ∆ is equal to 30 days. The risk-neutral formula for the VIX future VT with maturity T is then given by

(3.1) VT := E (VIXT |F0) = E

√ 1

∆

∫ T+∆

T

E (d⟨Xs, Xs⟩|FT ) ds

∣∣∣∣∣∣F0

 = E

√ 1

∆

∫ T+∆

T

ξT (s)ds

∣∣∣∣∣∣F0

 .

Note that, when T > 0, ξT (s) is a market input which is not F0-measurable, and is hence difficult to interpret

only knowing F0. We shall make repeated use of the following random variable defined for any t ≥ T , by

(3.2) ηT (t) := exp
(
2νCHVT

t

)
.

Proposition 3.1. The VIX dynamics are given by

VIXT =

{
1

∆

∫ T+∆

T

ξ0(t)ηT (t) exp

(
ν2C2

H

H

[
(t− T )2H − t2H

])
dt

}1/2

.

Proof. Using Fubini’s theorem and the instantaneous variance representation in (2.1), we can write

VIX2
T =

1

∆

∫ T+∆

T

E (Vs|FT ) ds =
1

∆

∫ T+∆

T

E
[
ξ0(t)E (2νCHVt) |FT

]
dt

=
1

∆

∫ T+∆

T

E
[
ξ0(t)ηT (t) exp

(
2νCHVt,T − ν2C2

Ht
2H

H

)∣∣∣∣FT

]
dt,

with Vt,T defined in (2.3). Since ηT (t) ∈ FT and ξ0(t) ∈ F0, this expression simplifies to

VIX2
T =

1

∆

∫ T+∆

T

ξ0(t)ηT (t)E
[

exp

(
2νCHVt,T − ν2C2

Ht
2H

H

)∣∣∣∣FT

]
dt.
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The proposition follows since Vt,T is centred Gaussian, independent of FT , with variance given in (2.4), and

E
(

e2νCHVt,T
∣∣FT

)
= E

(
e2νCHVt,T

)
= exp

(
ν2C2

H

H (t− T )2H
)
. �

The main challenge for simulation is ηT (t). However, since the latter is independent of ξ0(·), robustness of

simulation schemes for the VIX will not be affected by the qualitative properties of the initial variance curve ξ0.

Proposition 3.2. The forward variance curve ξT in the rough Bergomi model admits the representation

ξT (t) = ξ0(t)ηT (t) exp

(
ν2C2

H

H

[
(t− T )2H − t2H

])
, for any t ≥ T.

Proof. Since E (Vt|FT ) = ξT (t) by (3.1), the proposition follows from Proposition 3.1 and the equality

E (Vt|FT ) = ξ0(t)ηT (t) exp

(
ν2C2

H

H

[
(t− T )2H − t2H

])
.

�

Bayer, Friz and Gatheral [3] did not derive such a representation for ξT , and their approach for pricing VIX

derivatives relies on an approximation which avoids the computations developed in this section. Proposition 3.2

allows for a better understanding of the process ξT , and for an innovative approach to price VIX derivatives.

3.2. Upper and lower bounds for VIX Futures.

Theorem 3.3. The following bounds hold for VIX Futures:

(3.3)
1

∆

∫ T+∆

T

√
ξ0(t) exp

(
ν2C2

H

4H

[
(t− T )2H − t2H

])
dt ≤ VT ≤

{
1

∆

∫ T+∆

T

ξ0(s)ds

}1/2

.

Proof. The conditional Jensen’s inequality gives

VT = E (VIXT |F0) = E

√ 1

∆

∫ T+∆

T

ξT (s)ds

∣∣∣∣∣∣F0

 ≤

√√√√E

(
1

∆

∫ T+∆

T

ξT (s)ds

∣∣∣∣∣F0

)
.

Furthermore, since ξ0 is F0-adapted, Fubini’s theorem along with the martingale property of ξT yield the upper

bound VT = E (VIXT |F0) ≤
√

∆−1
∫ T+∆

T
ξ0(s)ds. To obtain a lower bound we use the representation in

Proposition 3.2, and Cauchy-Schwarz’s inequality, and Fubini’s theorem, so that

VT = E (VIXT |F0) = E

√ 1

∆

∫ T+∆

T

ξ0(t)ηT (t) exp

(
ν2C2

H

H
[(t− T )2H − t2H ]

)
dt

∣∣∣∣∣∣F0


≥ E

[
1

∆

∫ T+∆

T

√
ξ0(t)ηT (t) exp

(
ν2C2

H

2H

[
(t− T )2H − t2H

])
dt

∣∣∣∣∣F0

]

=
1

∆

∫ T+∆

T

√
ξ0(t)E

(√
ηT (t)

)
exp

(
ν2C2

H

2H

[
(t− T )2H − t2H

])
dt

=
1

∆

∫ T+∆

T

√
ξ0(t) exp

(
ν2C2

H

4H

[
t2H − (t− T )2H

])
exp

(
ν2C2

H

2H

[
(t− T )2H − t2H

])
dt

=
1

∆

∫ T+∆

T

√
ξ0(t) exp

(
ν2C2

H

4H

[
(t− T )2H − t2H

])
dt,

since ηT (t)1/2 is log-normal (Proposition 3.1), so that E(
√
ηT (t)) = exp

(
ν2C2

H

4H

[
t2H − (t− T )2H

])
. �
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We perform a numerical experiment to check the tightness of the bounds obtained in Proposition 3.3). For

this analysis we consider three qualitative scenarios for the initial forward variance curve:

(3.4) Scenario 1 : ξ0(t) = 0.2342; Scenario 2 : ξ0(t) = 0.2342(1 + t)2; Scenario 3 : ξ0(t) = 0.2342
√

1 + t.

Figures 1 suggest that the lower bound given in Proposition 3.3) is surprisingly tight for very different shapes
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Figure 1. Bounds vs. Monte Carlo (Truncated Cholesky) in all three scenarios.

of ξ0. This can be explained with the following argument: consider a simplified and deterministic version of the

VIX futures price in Proposition 3.1), denoted by

ϕ(T ) :=

√
1

∆

∫ T+∆

T

f(t)dt =

√
f(T ) +

∆

2
f ′(T ) +

∆2

6
f ′′(T ) + O(∆3),

for some strictly positive (deterministic) function f ∈ C2(R). We further introduce

ψ(T ) :=
1

∆

∫ T+∆

T

√
f(t)dt =

√
f(T ) +

∆

4

f ′(T )√
f(T )

+ O(∆2),

which is the corresponding lower bound by Cauchy-Schwarz’s (or Jensen’s) inequality, so that

ϕ(T )2 − ψ(T )2 = ∆2

(
f ′′(T )

6
− f ′(T )2

16f(T )

)
+ O(∆3).
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Hence, we observe that for small ∆, as it is the case in VIX futures, the lower bound is very close from the

original value which explains (at least for the deterministic case) the behaviour observed in Figure 1.

3.3. Numerical implementation of VIX process. In this section, we investigate different simulation schemes

for the VIX in the rough Bergomi model.

3.3.1. Hybrid scheme and forward Euler approach. In order to simulate the process (VT
t )t∈[T,T+∆] it is important

to notice from (2.3) that the kernel has a singularity only for VT
T , hence we may overcome this by simulating the

process using the hybrid scheme from Section 2.1. Then, we may easily extract Z and simulate (VT
t )t∈(T,T+∆]

using the forward Euler scheme with complexity O(n). A forward Euler scheme is chosen in this case due

to the fact that the kernel in (2.3) no longer has a singularity for t ∈ (T, T + ∆] and this method is faster

than the hybrid scheme. Once (VT
t )t∈[T,T+∆] is simulated, numerical integration routines may be used to

simulate the VIX process using the expression in Proposition 3.1. It must be pointed out that this approach

is computationally expensive and memory consuming since it involves to simulate the Volterra process using

the hybrid scheme with complexity of O(n log n) and additionally, each VT
t by forward Euler. The simulation

algorithm can be summarised as follows:

Algorithm 3.4 (VIX simulation in the rough Bergomi model). Fix a grid T = {ti}i=0,...,nT
and κ ≥ 1.

(1) Simulate the Volterra process (Vt)t∈[0,T ] using the hybrid scheme in Appendix A, yielding a sample of

the random variable VT
T = VT ;

(2) extract the path of the Brownian motion Z driving the Volterra process.

Zti = Zti−1 + nH− (V(ti) − V(ti−1)) , for i = 1, . . . , κ,

Zti = Zti−1 + Zi−1, for i > κ;

(3) fix a grid T = {τj}j=0,...,N on [T, T + ∆] and approximate the continuous-time process VT by the

discrete-time version ṼT defined via the following forward Euler scheme:

ṼT
τ0 := VT

T and ṼT
τj :=

nT∑
i=1

Zti − Zti−1

(τj − ti−1)−H−
, for j = 1, . . . , N ;

(4) compute the VIX process via numerical integration, for example using a composite trapezoidal rule:

VIXT ≈

 1

∆

N−1∑
j=0

Q2
T,τj

+Q2
T,τj+1

2
(τj − τj−1)


1/2

,

where Q2
T,τj

:= ξ0(τj) exp
(

2vCH ṼT
τj

)
exp

(
ν2C2

H

H

(
(τj − T )2H − τ2Hj

))
.

Remark 3.5. Step 4 may obviously be replaced by any available numerical integration routine, but one must

then carefully choose the partition in Step 3.

3.3.2. Truncated Cholesky approach. Alternatively, one could use the more expensive, yet exact, Cholesky de-

composition to simulate VT on [T, T + ∆] since its covariance structure is known from (2.5). However, com-

putational complexity aside, with the same grid T as in Algorithm 3.4, numerical experiments suggest that

the determinant of the covariance matrix is equal to zero when using more than nT = 8 discretisation points.

Hence, although valid in theory, the Cholesky approach is not feasible numerically. This fact implies that there

exists strong linear dependence. In fact, for any ε > 0, the strict inequality corr(VT
t1 ,V

T
t1+ε) < corr(VT

t2 ,V
T
t2+ε)

holds for all T < t1 < t2, as well as the following:
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Proposition 3.6. The limit lim
ε↓0

corr(VT
t ,VT

t+ε) = 1 holds for any t ∈ [T, T + ∆].

Proof. This follows readily from the continuity in  L2 of the map t 7→ VT
t :

E[(VT
t+ε − VT

t )2] =

∫ T

0

[(t+ ε− u)H− − (t− u)H− ]2du

=

[
(T + ε)1+2H+ − ε1+2H+ + T 1+2H+

1 + 2H+
− 2T 1+H+εH+

1 +H+
2F1

(
−H+, 1 +H+, 2 +H+,−

T

ε

)]
.

Applying the identity [2, page 564]

2F1(a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1

(
a, a− c+ 1, a− b+ 1;

1

z

)
+

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)

1

(−z)b 2
F1

(
b, b− c+ 1, b− a+ 1;

1

z

)
to the case (a, b, c) = (−H+, 1 +H+, 2 +H+) and using properties of the Gamma function along with the fact

that 2F1 (a, 0, c, z) ≡ 1, we obtain

2F1

(
−H+, 1 +H+, 2 +H+,−

T

ε

)
=

1 +H+

1 + 2H+

(
T

ε

)H+

2F1

(
−H+, 2 + 2H+,−2H+,

−ε
T

)
.

Finally, the series representation of 2F1 [2, Chapter 15.1.1] implies that 2F1

(
−H+, 2 + 2H+,−2H+,

−ε
T

)
con-

verges to 1 as ε tends to zero, and hence that E[(VT
t+ε − VT

t )2] tends to zero. �

In light of Proposition 3.6, we model exactly the dependence structure on the first 8 grid points t1, . . . , t8, then

truncate the Cholesky decomposition and compute the correlations ρi := corr(VT
t8+i

,VT
t8+i+1

), for i = 0, . . . , n−9

to approximate the process by adequately rescaling and correlating each pair of subsequent grid points. In

contrast to the hybrid + forward Euler scheme, the computational complexity is much lower, since the Cholesky

method is truncated with only 8 components. The VIX simulation algorithm therefore reads as follows:

Algorithm 3.7 (VIX simulation (truncated Cholesky)). Fix a grid T = {τj}j=0,...,N on [T, T + ∆],

(i) compute the covariance matrix of (VT
τj )i=j,...,8 using (2.5);

(ii) generate {VT
τj}j=1,...,N by correlating and rescaling using (2.5):

VT
τj =

√
V(VT

τj )

ρ(VT
τj−1

,VT
τj )VT

τj−1√
V(VT

τj−1
)

+
√

1 − ρ(VT
τj−1

,VT
τj )2N (0, 1)

 , for j = 9, . . . , N ;

(iii) compute the VIX via numerical integration as in Algorithm 3.4(4).

3.3.3. Numerical experiment. We compute the price of VIX Futures using the simulation algorithm introduced

in the previous section. We set the same parameters as in [3] and [4]:

(3.5) ξ0 = 0.2352, H = 0.07, ν = 1.9
CH

√
2H

2
≈ 1.2287, κ = 2.

We perform 105 simulations for the hybrid scheme + forward Euler (HS+FE) method, while 106 simulations

are used for the truncated Cholesky. Figure 2 suggests that both methods agree qualitatively and converge

to a similar output. In particular, the truncated Cholesky approach seems to suffer from larger oscillations as

maturity increases, even with 106 simulations. Nevertheless, Figure 2 indicates that the Monte-Carlo variance

increases in T for both schemes, which is confirmed in Figure 3, where the error also increases with maturity.

On the other hand, Figure 4 shows that the HS+FE methods is slower than the truncated Cholesky method,

which is consistent with the computational complexities discussed in the previous section. In particular, the

computational time of the Cholesky method is almost constant when using parallel computing. Figure 4 also
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suggests that large simulations are needed to obtain precise prices. In light of this analysis, both methods

seem to approximate the required output in a decent manner. Even if the truncated Cholesky approach gives

a considerably fast output for each maturity, it is not considered for calibration, since its computational time

grows linearly in the number of maturities, making the algorithm too slow for reasonable calibration. Instead,

we will use the truncated Cholesky approach as a benchmark for the upcoming approximations.
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Figure 2. VIX Futures using HS+FE and truncated Cholesky
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Figure 3. Monte-Carlo standard deviations, with 105 simulations.
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Figure 4. Monte-Carlo standard deviations and computational times for a fixed maturity

(T = 2 years) for both methods using efficient parallel computing.
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3.4. The VIX process and log-normal approximations. We now investigate approximate methods to

price VIX futures and options. We define the FT -measurable random variable ∆VIX2
T =

∫ T+∆

T
ξT (t)dt. In [3],

Bayer, Friz and Gatheral assumed that log(∆VIX2
T ) follows a Gaussian distribution, and computed directly its

first and second moments, which hence fully characterise the distribution of ∆VIX2
T . However, since the sum

of log-normal random variables is not (in general) log-normal, the fact that ξT is log-normal does not imply

that ∆VIX2
T is. In a different context (geometric Brownian motion and Asian options), Dufresne [11] proved

that, under certain conditions, an integral of log-normal variables asymptotically converges to a log-normal.

This approximation has been widely used for many applications [11], and Dufresne’s result motivates Bayer-

Friz-Gatheral’s assumption. We provide here exact formulae for the mean and variance of this distribution, and

compare them numerically to those by Bayer-Friz-Gatheral.

Proposition 3.8. The following holds:

σ2 := V(log(∆VIX2
T )) = −2 logE(∆VIX2

T ) + logE
(
(∆VIX2

T )2
)
,

µ := E(log(∆VIX2
T )) = logE(∆VIX2

T ) − σ2

2
.

Furthermore, E(∆VIX2
T ) =

∫ T+∆

T
ξ0(t)dt and

(3.6) E
[
(∆VIX2

T )2
]

=

∫
[T,T+∆]2

ξ0(u)ξ0(t) exp

{
ν2C2

H

H

[
(u− T )2H + (t− T )2H − u2H − t2H

]}
eΘu,tdudt.

where Θu,t is equal to zero if u = t and otherwise equal to Θu∨t,u∧t, where

Θu,t := 2ν2C2
H

{
u2H − (u− T )2H + t2H − (t− T )2H

2H
+ 2

(u− t)H−

H+

[
tH+F

(
−t
u− t

)
− (t− T )H+F

(
T − t

u− t

)]}
.

Remark 3.9. Since all the integrals in the proposition are computed over compact intervals, they are finite as

long as ξ0 is well behaved on [T, T + ∆]. Assuming this is indeed the case is not restrictive in practice as ξ0

represents the initial forward variance curve; note in particular that continuity of ξ0 is sufficient.

Remark 3.10. The reason why Θu,t is defined that way is for numerical purposes. Indeed, when u < t,

Θu,t is not well defined since F(x) only makes sense when x ≤ 1 (details on the radius of convergence of

hypergeometric functions can be found in [2][Page 556]), even though the integral representation (3.6) is still

well defined. However, most numerical packages implement hypergeometric functions via series expansions. The

trick from Θu,t to Θu,t allows us to bypass this issue.

Proof of Proposition 3.8. The expectation follows directly from the tower property and Fubini’s theorem. For

the second moment, we use the decomposition

E
(
(∆VIX2

T )2
)

= E

(∫ T+∆

T

∫ T+∆

T

ξT (u)ξT (t)dtdu

)
=

∫ T+∆

T

∫ T+∆

T

E (ξT (u)ξT (t)) dtdu

where in the last step we use that ξT (s) is FT -measurable in order to apply Fubini. Using the representation

obtained in Proposition 3.2, we get

(3.7) E (ξT (u)ξT (t)) = ξ0(u)ξ0(t) exp

{
ν2C2

H

H

[
(u− T )2H − u2H + (t− T )2H − t2H

]}
E
(
eϑu,t

)
,

where the random variable

ϑu,t := 2νCH

∫ T

0

[
(u− s)H− + (t− s)H−

]
dZs
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is Gaussian with zero expectation and variance

V(ϑu,t) = 4ν2C2
H

(
u2H − (u− T )2H + t2H − (t− T )2H

2H
+ 2

∫ T

0

(u− s)H−(t− s)H−ds

)

= 4ν2C2
H

{
u2H − (u− T )2H + t2H − (t− T )2H

2H
+

2(u− t)H−

H+

[
tH+F

(
−t
u− t

)
− (t− T )H+F

(
T − t

u− t

)]}
.

Then,

E (ξT (u)ξT (t)) = ξ0(u)ξ0(t) exp

(
ν2C2

H

H

(
(u− T )2H + (t− T )2H − u2H − t2H

))
exp

(
V(ϑu,t)

2

)
,

and the second moment follows from the immediate computation

E
(
(∆VIXT )2

)
=

∫ T+∆

T

∫ T+∆

T

E [ξT (u)ξT (t)] dudt

=

∫ T+∆

T

∫ T+∆

T

ξ0(u)ξ0(t) exp

{
ν2C2

H

H

[
(u− T )2H + (t− T )2H − u2H − t2H

]}
e

1
2V(ϑu,t)dudt,

after defining Θu,t := exp
(
1
2V(ϑu,t)

)
. �

In order to provide closed-form expressions for VIX Futures and options, we enforce the following assumption:

Assumption 3.11. ∆VIX2
T is log-normal.

In fact, this is almost the same as the assumption by Bayer, Friz and Gatheral [3]; however, they did not

compute the variance exactly as in Proposition 3.8, and instead considered the lognormal approximation

Assumption 3.12 (Bayer-Friz-Gatheral). log(∆VIX2
T ) is Gaussian with mean µ̃ and variance σ̃2 given by

σ̃2 =
4ν2C2

H

∆2H2
+

∫ T

0

[
(T − s+ ∆)H+ − (T − s)H+

]2
ds and µ̃ = log

∫ T+∆

T

ξ0(t)dt− σ̃2

2
.

Lemma 3.13. A VIX future is worth

VT =


∆−1/2

√∫ T+∆

T

ξ0(t)dt exp

(
−σ

2

8

)
, under Assumption 3.11,

∆−1/2

√∫ T+∆

T

ξ0(t)dt exp

(
− σ̃

2

8

)
, under Assumption 3.12.

Proof. Since, by assumption ∆1/2VIXT
∆
= exp

(
µ+σN (0,1)

2

)
, the price of a VIX future directly reads

E (VIXT |F0) = ∆−1/2E
(

∆1/2VIXT

)
= ∆−1/2 exp

(
µ

2
+
σ2

8

)
,

and the second case follows analogously. �

As opposed to the simulation schemes, the log-normal approximation does depend on the qualitative proper-

ties of the initial forward variance curve ξ0(·). Hence, different curves should be analysed to check the robustness

of the method. We now exploit the approximation in Assumption 3.11 to obtain a closed-form Black-Scholes

type formulae for European options on the VIX.
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Lemma 3.14. For 0 ≤ t ≤ T , let VT (t) := E (VIXT |Ft) denote the price at time t of a VIX future maturing

at T . Then, under Assumption 3.11, a European Call option on a VIX future maturing at T is worth

CV
T := E [(VT (T ) −K)+|F0] = ∆−1/2

√∫ T+∆

T

ξ0(t)dt exp

(
−σ

2

8

)
Φ(d1) −KΦ(d2),

where K̃ := [log(K2∆)−log
∫ T+∆

T
ξ0(t)dt+σ2/2]/σ, d1 := −K̃+ 1

2σ and d2 := −K̃, with σ2 as in Proposition 3.8

Proof. Under Assumption 3.11, the lemma follows directly from the following trivial computations:

E (VT (T ) −K)+ =

∫ ∞

K̃

[
∆−1/2 exp

(µ
2

+
σz

2

)
−K

]
+
ϕ(z)dz =

1√
∆

exp

(
µ

2
+
σ2

8

)∫ ∞

K̃

ϕ
(
z − σ

2

)
dz−KΦ(d2).

�

3.4.1. Numerical tests of the log-normal approximation. We perform a numerical analysis of the approximation

by pricing VIX Futures using the parameters in (3.5). We consider 106 simulations and the three qualitative

scenarios introduced in (3.4) for the forward variance curve. Figures 5 suggest that the approximation is accurate

0.0 0.5 1.0 1.5 2.0
Maturity

0.185

0.190

0.195

0.200

0.205

0.210

0.215

0.220

0.225

0.230

P
ri

ce

VIX Futures scenario 1

Log-normal approximation

Truncated Cholesky

0.0 0.5 1.0 1.5 2.0
Maturity

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

D
if
fe

re
n
ce

Absolute difference

0.0 0.5 1.0 1.5 2.0
Maturity

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

P
ri

ce

VIX Futures scenario 2

Log-normal approximation

Truncated Cholesky

0.0 0.5 1.0 1.5 2.0
Maturity

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

D
if
fe

re
n
ce

Absolute difference

0.0 0.5 1.0 1.5 2.0
Maturity

0.225

0.230

0.235

0.240

0.245

0.250

0.255

P
ri

ce

VIX Futures scenario 3

Log-normal approximation

Truncated Cholesky

0.0 0.5 1.0 1.5 2.0
Maturity

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

D
if
fe

re
n
ce

Absolute difference

Figure 5. Log-normal approximations vs. Monte Carlo (Truncated Cholesky) in all three scenarios.

being the difference of order 10−3 or less. The oscillating nature of the difference is also a good sign since it

is probably caused by the Monte Carlo error and does not show any monotonicity. Furthermore, the method
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shows to be robust for different type of curves ξ0(·). Moreover, the log-normal approximation seems to converge

to the true mean, avoiding the oscillations of the Truncated Cholesky method. Therefore, we may conclude that

the log-normal approximation produces a good output, with desired smoothness properties. On the other hand,

we also analyse European VIX Call options repeating the previous parameters and considering the flat forward

variance curve from Scenario 1. Figure 6 shows that the log-normal approximation is accurate for at-the-money
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Figure 6. Log-normal approximation vs. Monte Carlo (Truncated Cholesky) with 106 simulations

options. Nevertheless, the difference increases with maturity, and hence one must be careful when using this

approximation to price options with long maturities. However, in practice, on Equity markets, liquid maturities

are only up to two years.

3.4.2. Numerical tests. We benchmark Bayer-Friz-Gatheral’s approximation against ours with the parameters

in (3.5). Figures 7 and 8 suggest that both are similar. In particular, we observe that the variance deviates as

maturity increases. Nevertheless, for practical purposes, both approximations agree over a four-year horizon,

long enough to cover available Futures data. Many functional forms of ξ0(t) were also tested giving similar

results as the ones shown in Figures 7 and 8. We conclude that the approximation by Bayer, Friz and Gatheral

is accurate enough for practical purposes and yields and reduces significantly the computational costs since the

computation of σ̃2 involves a single integral while our approximation requires a double integral (for σ2). In

particular, in order to generate Figure 7 our approximation was 40 times slower than Bayer, Friz and Gatheral’s.
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Figure 7. VIX Futures prices following Assumption 3.11 and Assumption 3.12.

3.5. VIX Futures calibration in rBergormi. In light of the promising results obtained in the previous sec-

tions, we create a calibration algorithm based on the log-normal approximation by Bayer, Friz and Gatheral [3].

Even if our approximation seems to be more accurate the computational cost is much larger and the difference
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Figure 8. Comparison of the variance following Assumption 3.11 (σ2) and Assumption 3.12 (σ̃2).

between both approaches has been shown to be very small. Moreover, the approach by Bayer, Friz and Gatheral

allows to compute the gradient of the objective function in a semi-explicit form, which in terms of optimisation

and calibration is extremely useful.

3.5.1. Objective function. To calibrate the model to VIX Futures, we first define the objective function

(3.8) LF(ν,H) :=
N∑
i=1

(VTi − Fi)
2,

which we minimise over (ν,H). Here (Fi)i=1,...,N are the observed Futures prices on the time grid T1 < . . . < TN ,

VTi = ∆−1/2
√∫ Ti+∆

Ti
ξ0(t)dt exp

(
− σ̃2

i

8

)
. and

σ̃2
i =

4ν2C2
H

H2
+∆2

[
(Ti + ∆)1+2H+ − ∆1+2H+ + T

1+2H+

i

1 + 2H+
− 2

T
1+H+

i ∆H+

1 +H+
2F1

(
−H+, 1 +H+, 2 +H+,−

Ti
∆

)]
,

which is the closed-form expression of the variance in Assumption 3.12. The gradient of the objective function

is an important source of information in many optimisation algorithms. To compute it, we differentiate the

objective function in (3.8) with respect to ν and H and apply the chain rule:

∂LF

∂ν
(ν,H) = −1

4

N∑
i=1

(VTi − Fi)VTi

∂σ̃2
i

∂ν
= − 1

2ν

N∑
i=1

(VTi − Fi)VTi σ̃
2
i ,

where
∂σ̃2

i

∂ν
=

8νC2
H

∆2H2
+

∫ Ti

0

(
(Ti − s+ ∆)H+ − (Ti − s)H+

)2
ds =

2σ̃2
i

ν
.

On the other hand,
∂LF

∂H
(ν,H) = −1

4

N∑
i=1

(VTi − Fi)VTi

∂σ̃2
i

∂H
, with

∂σ̃2
i

∂H
=

4ν2
∂C2

H

∂H H+ − 8ν2C2
H

∆2H3
+

∫ Ti

0

(
(Ti − s+ ∆)H+ − (Ti − s)H+

)2
ds

+
8ν2C2

H

∆2H2
+

∫ Ti

0

[
(Ti − s+ ∆)H+ 1

2 − (Ti − s)H+

] [
(Ti − s+ ∆)H+ log(Ti − s+ ∆) − (Ti − s)H+ log(Ti − s)

]
ds

=
σ̃2
i (KH − 2)

H+

+
8ν2C2

H

∆2H2
+

∫ Ti

0

[
(Ti − s+ ∆)H+ − (Ti − s)H+

] [
(Ti − s+ ∆)H+ log(Ti − s+ ∆) − (Ti − s)H+ log(Ti − s)

]
ds,
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where

∂C2
H

∂H
=

2Γ(2 −H+)

Γ(H+)Γ(1 − 2H−)

{
1 + [2ψ(2 −H+) − ψ(H+) − ψ(1 − 2H−)]H

}
and KH = H+

H

{
1 +Hψ (2 −H+) −H (ψ(H+) + ψ(1 − 2H−))

}
, where ψ is the digamma function.

3.5.2. Obtaining the initial forward variance curve. The initial forward variance curve plays a crucial role in

both the Bergomi [5] and the rough Bergomi models [3], since it is a market input. In particular it depends

on the current term structure of variance swaps. Even if variance swaps are not traded in standard exchange

markets, they are actively traded over-the-counter (OTC). This in turn means that there is no observable data

and we must establish a valuation method for variance swaps. The celebrated static replication formula by Carr

and Madan [8], applicable here since the underlying process is a continuous semimartingale, allows us to price

any variance swap. Nevertheless, out-of-money Call and Put option prices are needed for all possible strikes.

Since this information is not available in practice, one can either adopt a model-free valuation formula or directly

propose a parameterisation for the implied volatility surface. The first approach involves a discretisation of the

static replication formula, which is how the VIX index is computed by the Chicago Board Options Exchange.

It is not easy, however, to extend this computation for large maturities (VIX is a 30-day ahead index), where

liquidity of options may play a major role. On the other hand, the second approach allows to calibrate a model

using available data and additionally allows to interpolate / extrapolate available option data to all strikes and

maturities. In this work we follow the latter approach, with the eSSVI parameterisation [18] for the implied

volatility surface, which is a refinement of the SSVI parametrisation introduced in [16]:

(3.9) σ2
BS(t, k)t = w(t, k) :=

θt
2

{
1 + ρ(θt)φ(θt)k +

√
(φ(θt)k + ρ(θt))

2
+ 1 − ρ(θt)2

}
,

where θt is the observed ATM variance curve, and where the shape function φ(·) takes the form φ(θ) =

ηθ−λ(1 + θ)λ−1. For the correlation parameter ρ(·) we restrict it to the following functional form:

(3.10) ρ(θ) = (A− C)e−Bθ + C, for (A,C) ∈ (−1, 1)2, B ≥ 0,

ensuring that |ρ(·)| ≤ 1. We shall indistinctly refer to the total implied variance by σ2
BS(·)t or w(·), where σBS(·)

represents the implied volatility. Gatheral and Jacquier [16] found (sufficient and almost necessary) conditions

on the parameters ρ, φ(·), η and λ preventing arbitrage. In the eSSVI formulation, the correlation has a term

structure (3.10), and care must be taken in order to preclude arbitrage. Concretely, following [18], the restriction

(3.11) |θ∂θ(ρ(θ)) + ρ(θ)γ| ≤ γ,

where γ := ∂θ(θφ(θ))/φ(θ), is a necessary condition to preclude calendar spread arbitrage. To prevent butterfly

arbitrage, exactly as in the SSVI parameterisation, it is sufficient [16, Theorem 4.2] to check that the inequality

θtφ
2(θt)(1 + |ρ(θt)|) ≤ 4 holds for all maturity t. In this parameterisation, variance swaps can be computed in

closed form, as proved by Martini [21], based on earlier works by Gatheral [13] and Fukasawa [12]:

Proposition 3.15. The fair strike (in total variance) of a variance swap in the eSSVI model reads

σ0(t)2t := −2E log

(
St

S0

)
=
b2t + 2at(ct + θt)

2a2t
,

where χt := 1
4 [1 − ρ(θt)

2]θtφ(θt), and

at = 1 +
θtφ(θt)

2

(
ρ(θt) −

χt

2

)
, bt = θtφ(θt) [χt − ρ(θt)] , ct = θtφ(θt)χt.
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Recalling the relation between variance swaps and the forward variance curve, we have

ξ0(t) =
d

dt

(
tσ2

0(t)
)

= σ2
0(t) + t

d

dt
σ2
0(t).

Remark 3.16. In order to interpolate/extrapolate the eSSVI, it is necessary to also interpolate/extrapolate θt

for all t. However, θt is only observed on a discrete set of maturity dates, and consequently, cubic splines are

used to interpolate/extrapolate all other maturities.

3.5.3. Calibration algorithm and numerical results. We first calibrate the eSSVI parameterisation (3.9) on the

SPX implied volatility surface on the 4th of December 2015. Figure 9 shows the fit for the shortest, medium

and longest maturities available in the data set. For short maturities the eSSVI is not able to fully capture the

volatility smile, however as maturity increases the fit improves remarkably. For VIX Futures, the calibration
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Figure 9. eSSVI calibration results on 4/12/2015 using traded SPX options.

algorithm reads as follows:

Algorithm 3.17 (VIX Futures calibration algorithm in the rough Bergomi model).

(i) Calibrate eSSVI to available SPX option data;

(ii) compute the variance swap term structure (σ0(t)2)t≥0 using Proposition 3.15;

(iii) extract the initial forward variance curve, ξ0(·) via ξ0(t) ≈ σ2
0(t) +

σ2
0(t+ε)−σ2

0(t−ε)
2ε t (with ε = 1E − 8);

(iv) minimise (over ν,H) the objective function in (3.8).

Figures 10-12 suggest that the model fits very well the observed VIX Futures term structure for different

dates. Moreover, we notice that both the model and the observed data are qualitatively equal in terms of
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convexity/concavity. In the rough Bergomi model this information is obtained from option prices through ξ0,

which suggests a correspondence in the market between VIX futures and SPX options. However, we also observe

that in all three cases the error is greater for short maturities, mimicking the calibration limits of eSSVI for

short maturities, as detailed in Section 3.5.2.
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Figure 10. VIX Futures calibration on 4/12/2015. Optimal parameters: (H, ν) = (0.09237, 1.004).
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Figure 11. VIX Futures calibration on 22/2/2016. Optimal parameters: (H, ν) = (0.10093, 1.00282).
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Figure 12. VIX Futures calibration on 4/1/2016. Optimal parameters: (H, ν) = (0.0509, 1.2937).

Remark 3.18. The reader should recall the importance of the initial forward variance curve (ξ0(t))t≥0 in the

VIX Futures process, since (Vt)t≥0 depends on the whole path of ξ0 up to time t. Therefore, even if ξ0 is only

misspecified for short maturities (as is the case of the eSSVI), this affects the whole term structure of the VIX

process (for details we refer the reader to Section 3). Therefore, an improved ξ0 estimation would not only

increase the accuracy of the model for short maturities, but also for the whole term structure.
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Remark 3.19. Our calibration involves two different data sets, SPX options and VIX Futures: the Vanilla

quotes are extracted from the CBOE delayed option quotes page2 and the VIX Futures from the CBOE VIX

futures historical data page3. We perform an aggregation of the different Future quotes, since they are quoted

on a Future per Future basis, and check the consistency between the two data sets by comparing the left end

extrapolation of the Futures curve with the theoretical VIX computed from option prices.

4. From VIX Futures to SPX options

In this final chapter we assess whether the Hurst parameter H obtained through the VIX Futures calibration

algorithm is consistent with SPX options. For this purpose, we calibrate the rough Bergomi model to SPX

option data by fixing the parameter H and letting the algorithm calibrate ν and ρ. One of the main reasons to

fix H is that the hybrid scheme introduced in Section 2.1 remarkably reduces its complexity to O(n), since the

O(n logn) complexity of the Volterra is computed only once and reused afterwards. Therefore, by fixing H the

pricing scheme is much faster when several valuations are performed, as is the case of a calibration algorithm.

4.1. Pricing in the rough Bergomi model. We present a pricing scheme, where the Volterra process V is

simulated using a hybrid scheme, while a standard Euler scheme generates the paths of the stock process:

Algorithm 4.1 (Simulation of the rough Bergomi model). Consider the grid T := {ti}i=0,...,nT
, and fix κ ≥ 1.

(i) Simulate the Volterra process V on the grid T using the hybrid scheme;

(ii) simulate the variance process as Vt = ξ0(t)E(2νCHVt), for t ∈ T and where ([V]t)t≥0 is given in (2.7);

(iii) extract the path of the Brownian motion Z driving V:

Zti = Zti−1 + nH− (V(ti) − V(ti−1)) , for i = 1, . . . , κ,

Zti = Zti−1 + Zi−1, for i > κ;

compute {Z⊥}nT−1
i=0 where Z⊥

i
∆
=N (0, 1/nT ) is an independent standard Gaussian sample;

(iv) correlate the two Brownian motions via Wti −Wti−1 = ρZi−1 +
√

1 − ρ2Z
⊥
i−1;

(v) simulate Sti = exp(Xti) using a forward Euler scheme:

Xti+1 = Xti −
1

2
Vti(ti+1 − ti) +

√
Vti
(
Wti+1 −Wti

)
, for i = 0, . . . , nT − 1;

(vi) compute the expectation by averaging the payoff over all terminal values of each path.

4.2. Calibration of SPX options via VIX Futures. We first follow the calibration algorithm 3.17 to

obtain H and ξ0, and we then aim at minimising, over (ν, ρ), the objective function

(4.1) LC(ν, ρ) :=
L∑

j=1

N∑
i=1

(CTi,j − Cobs
i,j )2,

where CTi,j is the Call price given by the rough Bergomi model, computed using the scheme introduced in

Section 4.1, with maturity Ti and strike K(j). On the other hand, (Cobs
i,j )i,j is the set observed Call prices in the

time grid T1 < . . . < TN and strike grid K(1) < . . . < K(L). In order to optimise the calibration algorithm, we

first compute the Volterra process V , which will then be used in a forward Euler simulation at each calibration

step:

2CBOE delayed option quotes: http://www.cboe.com/delayedquote/quotetable.aspx
3CBOE VIX futures historical data: http://cfe.cboe.com/data/historicaldata.aspx
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Algorithm 4.2 (Calibration algorithm for SPX options via VIX Futures).

(i) Calibrate H and ξ0 using the VIX Futures;

(ii) compute M paths of the Volterra process, {V(u)}Mu=1 and extract the Brownian motions {Z(u)}Mu=1 driving

each process. Also, compute independent Brownian motions {Z⊥(u)}Mu=1;

(iii) evaluate the Call prices in each calibration step:

V
(u)
t = ξ0(t)E

(
2νCHV(u)

t

)
, u = 1, . . . ,M,

W (u) = ρZ(u) +
√

1 − ρ2Z⊥(u), u = 1, . . . ,M,

S
(u)
t+∆ = S

(u)
t + S

(u)
t

√
v
(u)
t

(
W

(u)
t+∆ −W

(u)
t

)
, u = 1, . . . ,M ;

(iv) compute the Call price for each available maturity {T1, . . . , TN} and set of strikes {K(1), . . . ,K(L)}:

CTi,j =
1

M

M∑
u=1

(S
(u)
Ti

−K(j))+, for i = 1, . . . , N and j = 1, . . . , L;

(v) minimise over (ν, ρ) the objective function LC(ν, ρ) in (4.1).

Remark 4.3. Item (v) in the algorithm above may change the optimal values for ν, which was initially calibrated

in (i) from the VIX Futures. Backtesting however shows that the calibration in (i) is not really affected by this.

4.3. Results. We calibrate the model on December 4, 2015, fixing H = 0.09237 obtained previously through

VIX, and plot the fit in Figure 13. The model is not fully consistent for short maturities, which may follow from

the inability of ξ0 to fully capture the smiles for these maturities, but the fit greatly improves with maturity.

Interestingly, we observe a 20% difference between the the parameter ν obtained through VIX calibration and

the one obtained through SPX. This suggests that the volatility of volatility in the SPX market is 20% higher

when compared to VIX, revealing potential data inconsistencies (arbitrage?). Nevertheless, we emphasise the

importance of an accurate ξ0 curve to improve the fit to SPX and to provide an efficient joint calibration.

0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.04

Log-moneyness

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2015-12-11

Ask

Bid

rBergomi

0.4 0.3 0.2 0.1 0.0 0.1

Log-moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2015-12-31

Ask

Bid

rBergomi

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2

Log-moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2016-01-29

Ask

Bid

rBergomi

0.8 0.6 0.4 0.2 0.0 0.2

Log-moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2016-02-26

Ask

Bid

rBergomi

1.0 0.8 0.6 0.4 0.2 0.0 0.2

Log-moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2016-03-31

Ask

Bid

rBergomi

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2

Log-moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p
lie

d
 V

o
l

S&P 500 data at maturity 2016-06-30

Ask

Bid

rBergomi

Figure 13. Calibration of SPX smiles on 4/12/2015. Calibrated parameters: (ν, ρ) = (1.19,−0.999).
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Conclusion

Following the path set by Bayer, Friz and Gatheral [3], we developed here a relatively fast algorithm to

calibrate VIX Futures and the VIX smile, consistently with the SPX smile, in the rough Bergomi model. The

clear strength of this model is that only a few parameters are needed, making the (re)calibration robust and

stable. From a trader’s point of view, we highlight some potential market discrepancy between the VIX and

the SPX, and leave a refined analysis thereof for future research.

Appendix A. The hybrid scheme

We briefly recall the hybrid scheme developed in [4]. Following the notation in Definition 2.1, we consider a

(truncated) Brownian semistationary process B(α,W ), and introduce the truncation parameter κ ∈ N. On an

equidistant grid T := {ti = i/n}i=0,...,nT
, with nT := ⌊nT ⌋, for n ≥ 2, under Definition 2.1, the hybrid scheme

for the BSS process B is approximated by Bn(ti) = B̃n(i) + B̂n(i) with

B̃n(i) =

i∧κ∑
k=1

Lg

(
k

n

)
σ

(
i− k

n

)
W i−k,k and B̂n(i) =

i∑
k=κ+1

g

(
b∗k
n

)
σ

(
i− k

n

)
W i−k,

with Lg introduced in Definition 2.1, and where

(A.1) W i :=

∫ ti+1

ti

dWs, W i,k :=

∫ ti+1

ti

(ti+k − s)
α

dWs, b∗k =

(
kα+1 − (k − 1)α+1

α+ 1

)1/α

, for k ≥ κ+ 1.

For any i, k, the random variables W i and W i,k are centred Gaussian with the following covariance structure:

E
(
W i,kW i

)
=
kα+1 − (k − 1)α+1

nα+1α+ 1
, and E

(
W i,kW j

)
= 0, for k ̸= j,

E
(
W i,kW i,j

)
=

∫ 1/n

0

(
k

n
− u

)α(
j

n
− u

)α

du, for k ̸= j, V
(
W i,k

)
=
k2α+1 − (k − 1)2α+1

n2α+12α+ 1
, V

(
W i

)
=

1

n
.
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