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Abstract. We study concentration properties for laws of non-linear Gaussian functionals
on metric spaces. Our focus lies on measures with non-Gaussian tail behaviour which are
beyond the reach of Talagrand’s classical Transportation-Cost Inequalities (TCIs). Moti-
vated by solutions of Rough Differential Equations and relying on a suitable contraction
principle, we prove generalised TCIs for functionals that arise in the theory of regularity
structures and, in particular, in the cases of rough volatility and the two-dimensional Para-
bolic Anderson Model. In doing so, we also extend existing results on TCIs for diffusions
driven by Gaussian processes.
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1. Introduction

Talagrand’s Transportation-Cost Inequalities (TCIs) have been well studied in the liter-
ature, especially due to their connections with concentration of measure, exponential inte-
grability and deviation estimates. Typically, they are of the following form: a probability
measure µ, defined on a metric space (X, g), satisfies the p-TCI for p ≥ 1 if there exists
C > 0 such that for any other probability measure ν on X,

Wp(µ, ν) ≤
√

CH(ν | µ), (1.1)

where Wp is the p-Wasserstein distance with respect to g and H the relative entropy or
Kullback-Leibler divergence (see Section 2 for the precise definitions). Such inequali-
ties were first considered by Marton [37] and Talagrand [44] and further investigated by
Bobkov-Götze [6], Otto-Villani [40] to name only a few.

A crucial feature of p-TCIs is their close relation to the Gaussian distribution. In partic-
ular, Talagrand [44] first showed that Gaussian measures satisfy a 2-TCI with a dimension-
free constant C, while Feyel-Üstünel [17] proved a similar inequality on abstract Wiener
spaces and with respect to the Cameron-Martin distance. It was moreover established [6, 14]
that the 1-TCI, the weakest among p-TCIs, is equivalent to Gaussian concentration.

Apart from Gaussian measures themselves, the laws of many Gaussian functionals of
interest, such as solutions to stochastic differential equations, satisfy p-TCI inequalities. In
particular, the 1-TCI, on pathspace for the law of a multidimensional diffusion process

dYt = b(Yt)dt + σ(Yt)dXt, (1.2)

with X a standard Brownian motion and b, σ bounded and Lipschitz continuous, was proved
in [14]. The case where X is a fractional Brownian motion (fBm) with Hurst parameter
H > 1

2 was studied by Saussereau [43]. There, it was shown that the law of Y satisfies a
1-TCI on pathspace if either X is one-dimensional or X is multi-dimensional and σ is not
state-dependent. Subsequently, Riedel [41] extended the results of [43] by showing that, for
a wide class of Gaussian drivers X with paths of finite r-variation for some r ≤ 2, the law
of Y satisfies a (2 − ϵ)-TCI for all ϵ ∈ (0, 2) and with respect to finite r-variation metrics.

The work of [41] establishes TCIs under the assumption that the driver X has equal or
higher path regularity than standard Brownian motion. In this regime, pathwise solution
theories are available via Young integration. For the case of rougher signals, namely fBm
with Hurst parameter H ∈ ( 1

4 ,
1
2 ], (1.2) can be treated in the framework of Lyons’ theory of

rough paths [36]. In a nutshell, a pathwise solution theory is available upon considering an
enhanced driver X consisting of X along with its iterated integrals. The integral in (1.2) is
then considered in the sense of rough integration against the rough path X (the interested
reader is referred to [19, 23] for a thorough exposition of rough paths theory).

In contrast to the aforementioned examples, solutions of Gaussian Rough Differential
Equations (RDEs) provide a class of Gaussian functionals that fall beyond the reach of Ta-
lagrand’s p-TCIs for any p ≥ 1. Indeed, consider a Gaussian process X with paths of finite
r-variation and Cameron-Martin space H . Cass, Litterer and Lyons [10] (see also [22])
establish non-Gaussian upper bounds for tail probabilities of Y . In particular, if X admits
a rough path lift X and there exists q ∈ [1, 2) with 1/r + 1/q > 1 such that H ↪→ Cq−var

then the upper bound is that of a Weibull distribution with shape parameter 2/q (note that
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for Brownian or smoother paths one can take q = 1 and hence one obtains a Gaussian tail
estimate). Moreover, this non-Gaussian tail behaviour was shown to be sharp in the recent
work [8], where a non-Gaussian tail-lower bound was provided for an elementary RDE. In
light of these facts, one deduces that the law of Y does not enjoy Gaussian concentration
and hence cannot satisfy the p-TCI for any p ≥ 1.

Another important class of Gaussian functionals with non-Gaussian tail behaviour is pro-
vided, in mathematical finance, by rough (stochastic) volatility models [4]. These describe
the dynamics of an asset price S via SDEs of the form

dS t = S t f (ŴH
t , t)dBt, (1.3)

where ŴH is an fBm (of Riemann-Liouville type) with H < 1
2 and B is a standard Brownian

motion that is typically correlated with ŴH . Such models have been proposed due to their
remarkable consistency with financial time series data (see [4, 25] and references therein)
and calibrated volatility models suggest a Hurst parameter H of order 0.1.

Besides the fact that S solves an SDE with unbounded (linear) diffusion coefficients,
typical choices for the volatility function f are also unbounded (e.g. exponential as in the
rough Bergomi model [4], or polynomial [1]). It is thus clear that neither the (driftless)
log-price f dB nor S itself fit into the framework of Talagrand’s TCIs. Moreover, it is well
known that, for a broad class of volatility functions, p-th moments of S for p > 1 are infinite
for t > 0; see for example [35] and [24] for the cases H = 1

2 and H < 1
2 respectively.

Motivated by RDEs and rough volatility, our primary goal here is to identify a class of
TCIs that is both general enough to include Talagrand’s p-TCIs and also sufficient to capture
non-Gaussian concentration and tail behaviour. In particular, we establish TCIs of the form

α
(
Wc(µ, ν)

)
≤ H(ν | µ), (1.4)

where α : R+ → R+ is a non-decreasing deviation function vanishing at the origin, Wc
the transportation-cost with respect to a measurable cost c : X × X → [0,∞] (typically a
concave function of a metric), namely

Wc(µ, ν) = inf
π∈Π(µ,ν)

"
X×X

c(x, y)dπ(x, y),

and Π(µ, ν) the family of all couplings between µ, ν (see Section 2 for precise definitions).
A measure µ for which (1.4) holds for all measures ν on X is said to satisfy an (α, c)-TCI.
Similar types of TCIs have been considered by Gozlan and Léonard [26, 27] (see also the
survey paper [28]) under slightly different assumptions on α and c (in particular, α convex
and cost c convex function of a metric, neither satisfied in our examples of interest).

A natural question upon inspection of the previous examples is whether (1.3) can be
treated in a pathwise sense, similar to (1.2). Bayer, Friz, Gassiat, Martin and Stemper [5]
argued that, while (1.3) falls outside the scope of classical geometric rough paths, a path-
wise treatment is possible via Hairer’s theory of regularity structures [31]. In brief, after
constructing an appropriate lift of the noise to a random Gaussian model Π (akin to the lift
X 7→ X) and "expanding" f with respect to the higher-order functionals in Π (in the sense
of Hairer’s modelled distributions), they obtain a pathwise formulation of (1.3). Moreover
the solution is continuous with respect to an appropriate topology in the space of models.
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This leads to the second objective of the present work, which is to obtain TCIs for Gauss-
ian functionals that arise in the theory of regularity structures. With rough volatility in mind,
an initial observation is that both Gaussian rough paths X (Theorem 3.3(1)) and models Π
(Theorem 4.14(2)) satisfy (α, c)-TCIs in rough path/model topology. In both these results, α
and c reflect the smallest order of Wiener chaos to which the components of Π (or X) be-
long. Furthermore, we show in Theorem 3.3(2) that solutions of Gaussian RDEs satisfy a
similar (α, c)-TCI where α and c are related to the smoothness of the driving path and in
particular to the exponent q mentioned above. An (α, c)-TCI for a class of modelled distri-
butions, on the rough volatility regularity structure, under the assumption that f grows at
most polynomially is provided in Theorem 4.23. In this case, α and c reflect both the growth
of f and the order of the fixed Wiener chaos to which Π belongs. Finally, we obtain in The-
orem 4.14(3)-(4) (α, c)-TCIs for the driftless log-price f dB in the case of polynomially or
exponentially growing f .

Our approach for proving TCIs for the aforementioned functionals relies on two main
steps and is summarised as follows: Letting (E,H , γ) be the abstract Wiener space that cor-
responds to the underlying Gaussian noise, we consider a functional Ψ, defined on E, along
with a shifted version Ψh(ω) = Ψ(ω + h) in the direction of a Cameron-Martin space ele-
ment h ∈ H . First, we obtain estimates of the distance between Ψ and Ψh in the topology of
interest (essentiallyH-continuity estimates). Then, we use either a generalised contraction
principle, Lemma 2.11, to obtain an (α, c)-TCI with appropriate cost and deviation func-
tions or a generalised Fernique theorem [21] to obtain a 1-TCI for a non-negative function
of Ψ. Moreover, we show that the (α, c)-TCIs we consider imply non-Gaussian concentra-
tion properties in Proposition 2.4.

A similar methodology can be applied to obtain a different type of inequalities for func-
tionals Ψ : E → Rm. As explained in Section 6, if Ψ is H-continuously Fréchet (or Malli-
avin) differentiable then it is possible to obtain Weighted Logarithmic Sobolev Inequalities
(WLSIs) via contraction (see Proposition 6.2 for the corresponding contraction principle)
under some additional assumptions on the H-gradient. WLSIs and their connections with
concentration properties and weighted Poincaré inequalities have been explored by Bobkov-
Ledoux [7] and further studied by Cattiaux-Guillin-Wu [12] (see also [11, 33, 45]).

The contribution of this work is thus threefold: (a) We prove new TCIs for Gaussian
functionals arising in rough volatility and in rough path and regularity structure contexts.
In passing, Lemma 2.11 and Theorem 3.3(2) extend [41] to the setting of RDEs driven
by Gaussian noise rougher than Brownian motion; (b) The (α, c)-TCIs we consider imply
well-known tail estimates (via Corollary 2.6): (i) the TCIs for Gaussian rough paths and
models imply the tail upper bounds for random variables on a fixed Wiener chaos from [34];
(ii) the TCI for Gaussian RDEs allows us to recover the tail upper bounds from [10, 22]
(Corollary 3.5); (c) Apart from rough volatility, we transfer some of our arguments and
prove TCIs in the setting of the 2d-Parabolic Anderson Model (2d-PAM) (Theorem 5.1),
a well-studied singular SPDE that can be solved in the framework of regularity structures.
This case highlights significant differences from rough volatility due both to the infinite
dimensionality of the dynamics and to the essential requirement for renormalisation needed
to define the solution map.
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The rest of this article is organised as follows: We introduce (α, c)-TCIs along with their
consequences and characterisation in Section 2. In Section 3, we present TCIs for Gaussian
rough paths and RDEs. Section 4 is devoted to the rough volatility regularity structure.
Apart from presenting our results on TCIs, this section also serves as an elementary intro-
duction to some notions and language of the general theory. In Section 5 we present our
results on TCIs for the 2d-PAM. Finally, in Section 6 we obtain a generalised contraction
principle for WLSIs and leverage tools from Malliavin calculus to demonstrate examples
of Gaussian functionals that satisfy such inequalities. The proofs of some technical lemmas
from Section 4 are collected in Appendix A.

2. Transportation-cost inequalities

In this section, we introduce a family of transportation-cost inequalities (TCIs) for prob-
ability measures on an arbitrary metric space X. In contrast to the majority of the literature,
our definition does not require X to be Polish. The reason for choosing this degree of
generality is that some of our results apply to situations where the underlying space does
not necessarily satisfy this property (e.g. the "total" space of modelled distributions (4.19)
on the rough volatility regularity structure). After introducing the necessary notation, we
provide some characterisations and consequences for the class of (α, c)-TCIs of interest in
Section 2.1. In Section 2.2 we prove a generalised contraction principle which is used to
obtain several of our main results in the following sections.

Throughout the rest of this work, the lattice notation ∧,∨ is used to denote the minimum
and maximum of real numbers and ≲ denotes inequality up to a multiplicative constant. The
Borel σ-algebra and space of Borel probability measures on X are denoted by B(X),P(X)
respectively. We use the notation ν ≪ µ to denote absolute continuity of a measure ν with
respect to µ. For i = 1, . . . , n, the i-th marginal of a measure π ∈ P(Xn) is denoted by
[π]i and the m-product measure by π⊗m. For an interval I ⊂ R (resp. I ⊂ R+) the convex
conjugate (resp. monotone convex conjugate) of a convex function f : I → R is defined for
s ∈ I by f ∗(s) := supt∈I{st − f (t)} (resp. f⋆(s) := supt∈I{st − f (t)}).

Definition 2.1. Let (X, g) be a metric space, c : X×X → [0,∞] a measurable function and
µ, ν ∈P(X).

(1) The transportation cost between µ and ν with respect to the cost function c reads

Wc(µ, ν) := inf
π∈Π(µ,ν)

"
X×X

c(x, y)dπ(x, y),

where Π(µ, ν) is the collection of couplings between µ and ν:

Π(µ, ν) :=
{
π ∈P(X × X) : [π]1 = µ, [π]2 = ν

}
.

(2) The relative entropy of ν with respect to µ is given by

H(ν | µ) :=


∫
X

log
(

dν
dµ

)
dν, if ν ≪ µ,

+∞, otherwise.

Remark 2.2. For p ∈ [1,∞], a Polish space X and a metric g that induces the topology
of X, W1/p

gp is the p-Wasserstein distance between µ and ν.
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Definition 2.3. Let (X, g) be a metric space and µ ∈P(X).
(1) Let c : X × X → [0,∞] be a measurable function with c(x, x) = 0 for all x ∈ X

and α : [0,∞] → [0,∞] be a lower semicontinuous function with α(0) = 0. We
say that µ satisfies the (α, c)-TCI (and write µ ∈ Tα(c)) with cost function c and
deviation function α if for all P(X) ∋ ν ≪ µ,

α
(
Wc(µ, ν)

)
≤ H(ν | µ).

(2) Let p ∈ [1,∞). We say that µ satisfies Talagrand’s p-TCI and write µ ∈ Tp(C) for
some C > 0 if µ ∈ Tα(gp) with α(t) = Ct2/p.

2.1. Consequences and characterisation. (α, c)-TCIs with convex α and c given by a
metric (or a convex function thereof), as well as the larger family of norm-entropy inequali-
ties, were studied in [26, 27]. Here, we are interested in a class of TCIs where α is piecewise
convex and, for most of the applications of interest, c is a concave function of a metric. At
this point, we provide a characterisation for the TCIs of interest and then show some of
their consequences in terms of exponential integrability and deviation estimates.

Proposition 2.4. Let X be a Polish space, α1, α2 : [0,∞] → [0,∞] be convex, increasing,
continuous functions such that α1(0) = α2(0) = 0 and c : X × X → [0,∞] be lower
semicontinuous. The following are equivalent:

(i) µ ∈P(X) satisfies Tα(c) with α = α1 ∧ α2.
(ii) For all s ≥ 0 and f , g ∈ L1(µ) such that for µ⊗2-almost every (x, y) ∈ X2,

f (x) + g(y) ≤ c(x, y), (2.1)

we have ∫
X

esgdµ ≤ exp
{
−s

∫
X

f dµ + α⋆1 ∨ α
⋆
2 (s)

}
.

(iii) Let g ∈ L1(µ) such that Pc(g)(·) := supx∈X
{
g(x) − c(x, ·)} ∈ L1(µ). For all s ≥ 0,∫

X

esgdµ ≤ exp
{

s
∫
X

Pc(g)dµ + α⋆1 ∨ α
⋆
2 (s)

}
.

Proof. (i) ⇐⇒ (ii) Let ν ∈ P(X), ν ≪ µ and denote by α̃ the extension of α to R by
setting α̃ = 0 on (−∞, 0). By Kantorovich duality [28, Theorem 2.2],

Wc(µ, ν) = sup
{ ∫
X

f dµ+
∫
X

gdν : f ∈ L1(µ), g ∈ L1(ν), f (x)+g(y) ≤ c(x, y) µ⊗2-a.e. on X2
}
.

By continuity and monotonicity there exists, modulo re-labelling, t∗ ∈ [0,∞] such that the
set {a1 ≤ α2} coincides with [0, t∗]. Since α̃ is non-decreasing, Tα(c) is equivalent to

α̃
( ∫
X

f dµ +
∫
X

gdν
)
≤ H(ν | µ).

for all such test functions f , g.
Case 1 : Assume that f , g, ν are such that

∫
X

f dµ +
∫
X

gdν ≤ t∗. Then

α̃
( ∫
X

f dµ +
∫
X

gdν
)
= α̃1

( ∫
X

f dµ +
∫
X

gdν
)
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and α̃1 : R→ R is continuous and convex. By properties of convex-conjugate functions,

α̃1(t) = α̃∗∗1 (t) = sup
s∈R

{
st − α̃∗1(s)

}
holds for all t ∈ R, and thus, for all s ∈ R,

s
∫
X

gdν − H(ν | µ) ≤ −s
∫
X

f dµ + α̃∗1(s).

Case 2 : f , g, ν are such that
∫
X

f dµ +
∫
X

gdν ≥ t∗. Similarly to Case 1, we obtain

s
∫
X

gdν − H(ν | µ) ≤ −s
∫
X

f dµ + α̃∗2(s).

Hence for all f , g, ν and all s ∈ R we have

s
∫
X

gdν − H(ν | µ) ≤ −s
∫
X

f dµ + α̃∗1(s) ∨ α̃∗2(s).

Optimising over ν and noting that H∗(·|µ)(g) = log
∫

egdµ and that for i = 1, 2, s ≥ 0
α̃∗i (s) = α⋆i (s) the conclusion follows.
(ii) ⇐⇒ (iii). Assume (ii); notice that h = −Pcg is the smallest function satisfying
g(x) + h(y) ≤ c(x, y). The inequality thus follows by applying (i) to g and f = −Pc(g). The
converse follows from the fact that for all f satisfying (2.1) for some fixed g, Pcg ≤ − f . □

Remark 2.5. The previous proposition generalises the characterisation of convex TCIs
given in Theorem 3.2. of [28] which is obtained by setting α1 = α2.

In the case where c = dp, for some p ≤ 1, Tα(c) implies the following exponential
integrability properties.

Corollary 2.6. Let (X, d) be a Polish space, x0 ∈ X, µ ∈ P(X) such that d(x0, ·) ∈ L1(µ).
If µ ∈ Tα(dp) for some p ∈ (0, 1] and α = α1 ∧ α2 as in Proposition 2.4, then

(i) for all s ≥ 0,
∫
X

exp {sdp(x0, x)} dµ(x) is finite;
(ii) if for some t0 ≥ 0,C > 0 and all t ∈ (0, t0) we have α(t) ≥ Ct2, then there exists λ0

such that for all λ < λ0,∫
X

exp
{
λ2

2
d2p(x0, x)

}
dµ(x) < ∞.

Proof.
(i) Let f = dp(x0, ·), ⟨dp(x0, ·)⟩ :=

∫
X

dp(x0, y)dµ(y). From the elementary inequality
|xp − yp| ≤ |x − y|p valid for all x, y ≥ 0, along with the triangle inequality, then

f (x) − dp(x, y) = dp(x, x0) − dp(x, y) ≤ dp(x0, y), for all x ∈ X.

Taking the supremum over X, it follows that Pc f (y) ≤ dp(x0, y), hence by assump-
tion Pc f ∈ L1(µ). In view of Proposition 2.4(ii) we obtain∫

X

exp
{
sdp(x0, x)

}
dµ(x) ≤ exp

{
s⟨dp(x0, ·)⟩ + α⋆1 ∨ α

⋆
2 (s)

}
,

and the proof is complete.
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(ii) We apply an argument from [14, Page 2704]. Let γ ∈P(R) be a standard Gaussian
measure. An application of Fubini’s theorem then yields∫
X

exp
{
λ2

2
d2p(x0, x)

}
dµ(x) =

∫
X

∫
R

exp
{
λsdp(x0, x)

}
dγ(s)dµ(x)

≤

∫
R

∫
X

exp
{
|λs|dp(x0, x)

}
dµ(x)dγ(s)

≤

∫
R

exp
{
|λs|⟨dp(x0, ·)⟩ + α⋆1 ∨ α

⋆
2
(
|λs|

)}
dγ(s),

where the last inequality follows from (i). From the assumptions on α then both α1
and α2 are super-quadratic near the origin, hence α∗1, α

∗
2 are sub-quadratic away

from the origin and in particular there exists C, s0 > 0 such that α∗1(s)∨α∗2(s) ≤ Cs2

for all s > s0. The integral in the last display is then clearly finite for |s| < (1 ∨
s0)/|λ|. As for |s| ≥ (1 ∨ s0)/|λ| we have |λs| ≤ λ2s2, α⋆1 ∨ α

⋆
2
(
|λs|

)
≤ Cλ2s2, hence

the integrand is upper bounded by exp{(⟨dp(x0, ·)⟩ +C)λ2s2}. Since γ is a Gaussian
measure, the latter is integrable, provided that λ is small enough (and in fact for all
|λ| < 1/

√
2(⟨dp(x0, ·)⟩ +C).

□

Apart from exponential integrability, (α, c)-TCIs are useful to obtain deviation estimates
from the Law of Large Numbers (LLN). In particular, let {Xn; n ∈ N} be an independent and
identically distributed sample from a measure µ ∈P(X) and

Ln :=
1
n

n∑
k=1

δXi ∈P(X) (2.2)

the n-sample empirical measure. A consequence of Sanov’s theorem in large deviations (
see e.g. [15], Theorem 2.2.1) is that, for all r > 0 and d a metric for the topology of weak
convergence in P(X),

lim sup
n→∞

logP
[
d(Ln, µ) ≥ r

]
≤ − inf

{ν:d(ν,µ)≥r}
H(ν | µ).

In other words, H(· | µ) provides an asymptotic, exponential decay rate for the probability
of being "far" from the LLN limit µ. In many practical applications, the pre-asymptotic
terms that are ignored from large deviation estimates play an important role. The following
proposition and Corollary 2.8 show that it is possible to get non-asymptotic (i.e. for all n as
opposed to "large" n) deviation estimates under the assumption that µ ∈ Tα(c).

Proposition 2.7. (Deviation estimates) Let X be a Polish space, µ ∈ P(X) and Ln as
in (2.2). The following are equivalent:

(i) µ ∈ Tα(c) with α = α1 ∧ α2 as in Proposition 2.4.
(ii) For all f , g ∈ L1(µ) such that f (x) + g(y) ≤ c(x, y) for µ⊗2-almost every (x, y) ∈ X2,

then, for all n ∈ N and r > 0,

1
n

logP
[∫
X

f dLn +

∫
X

gdµ ≥ r
]
=

1
n

logP

1
n

n∑
k=1

f (Xk) +
∫
X

gdµ ≥ r

 ≤ −α(r).
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Proof. The proof is identical to that of Theorem 2 from [27] with the difference that α is
not convex but rather piecewise convex. To avoid repetition, we shall only sketch the main
steps. To this end, we have from Kantorovich duality, monotonicity and continuity of α that

µ ∈ Tα(c) ⇐⇒ α̃
( ∫
X

f dµ +
∫
X

gdν
)
≤ H(ν | µ)

for all f , g that satisfy the assumptions of (2) and α̃ the extension of α to R by 0. In turn the
latter is equivalent to

tα̃(t) ≤ inf
{
H(ν | µ) : ν s.t.

∫
X

f dν +
∫
X

gdµ = t
}
= Λ∗ϕ(t), for all t ∈ R,

where for each fixed ϕ = ( f , g) (see Equation (21) from the aforementioned reference) Λ∗ϕ
is the convex conjugate of the log-Laplace transform Λ(s) =

∫
X

exp{s f (x) +
∫

gdµ}dµ(x)
(this is essentially a consequence of Cramér’s theorem for large deviations of iid random
variables, [15], Theorem 3.5.1). The forward implication is then complete by a Markov
inequality argument which makes no use of convexity for α and is thus omitted. For the
converse, one has that the deviation estimate in (2) implies α ≤ Λ∗ϕ (which is also indepen-
dent of convexity assumptions on α) which in turn is equivalent to µ ∈ Tα(c). □

Corollary 2.8. Let (X, d) be a Polish space, µ ∈P(X), Ln as in (2.2) and x0 ∈ X such that
d(x0, ·) ∈ L1(µ). Moreover, assume that µ ∈ Tα(dp) for some p ∈ (0, 1], with α := α1 ∧α2 a
super-quadratic deviation function as in Corollary 2.6(ii). Then there exist Cp, s0 > 0 such
that for all n ∈ N and s > s0,

1
n

logP

1
n

n∑
k=1

d(Xk, x0) ≥ s

 ≤ −Cps2p.

Proof. The functions f = −g = dp(x0, ·) satisfy all the assumptions of Proposition 2.7.
Indeed, (2.1) holds by triangle inequality and integrability is satisfied by assumption. With
this choice and another application of the triangle inequality we obtain for all s > Eµg,

1
n

logP
[1
n

n∑
k=1

dp(Xk, x0) ≥ 2s
]
≤

1
n

logP
[1
n

n∑
k=1

f (Xk) −
∫
X

gdµ ≥ s
]
≤ −α(s).

From Hölder’s inequality and the super-quadratic growth of α it follows that

1
n

logP
[1
n

n∑
k=1

d(Xk, x0) ≥ (2s)1/p
]
≤ −Cs2,

and the proof is complete by substituting S by (s/2)p. □

Remark 2.9. The assumption that X is Polish is sufficient to guarantee the validity and
well-posedness of the Kantorovich-dual formulation of the transportation cost Wc, used
implicitly for example in the proof of Proposition 2.4.
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2.2. A generalised contraction principle. Contraction principles for Talagrand’s inequal-
ities (1.1) have been proved in [14, Lemma 2.1] and [41, Lemma 4.1]. The previous results
concern Lipschitz maps of measures that satisfy Talagrand’s T2(C). We now prove a gen-
eralised contraction principle for maps that satisfy a certain type of "uniform continuity"
condition. We start with an assumption on the domain space of the contraction principle.

Assumption 2.10. X is a Polish space, cX : X × X → [0,∞] is a measurable function and
there exists a measure µ ∈P(X) and a constant C > 0 such that, for every ν ∈P(X),(

inf
π∈Π(ν,µ)

"
X×X

c2
X

(x1, x2)dπ(x1, x2)
) 1

2

≤
√

CH(ν | µ).

Lemma 2.11 (Extended contraction principle). Under Assumption 2.10, let Y be a met-
ric space, cY : Y × Y → [0,∞] a measurable function and assume that there exists a
measurable map Ψ : X → Y and r ≥ 1 such that for all x1, x2 ∈ X0 ⊂ X, with µ(X0) = 1,

cY
(
Ψ(x1),Ψ(x2)

)
≤ L(x1)

[
cX(x1, x2) ∨ cX(x1, x2)

1
r

]
,

where L ∈ Lp∗(X, µ) for p∗ = 2 ∨ (r/r − 1). Then µ̃ = µ ◦ Ψ−1 ∈ Tα(cY), where, for some
constant C > 0, α(t) = Ct2 ∧ t2r.

Proof. Without loss of generality we may assume C = 1. Let ν̃ ∈ P(Y) and assume that
H(ν̃ | µ̃) is finite. Choose ν ∈ P(X) such that ν̃ = ν ◦ Ψ−1 and ν ≪ µ (note that there
is at least one ν which fulfills this condition; e.g. ν0(dx) := dν̃/dµ̃(Ψ(x))µ(dx)). Then, an
application of Hölder’s inequality yields

inf
π̃∈Π(ν̃,µ̃)

"
Y×Y

cY(y1, y2)dπ̃(y1, y2) ≤ inf
π∈Π(ν,µ)

"
X×X

cY
(
Ψ(x1),Ψ(x2)

)
dπ(x1, x2)

≤ inf
π∈Π(ν,µ)

"
X×X

L(x1)
[
cX(x1, x2) ∨ cX(x1, x2)

1
r

]
dπ(x1, x2)

= inf
π∈Π(ν,µ)

"
{cX≤1}

L(x1)cX(x1, x2)
1
r dπ(x1, x2)

+ inf
π∈Π(ν,µ)

"
{cX>1}

L(x1)cX(x1, x2)dπ(x1, x2)

≤ ∥L∥Lr/(r−1)

(
inf

π∈Π(ν,µ)

"
{cX≤1}

cX(x1, x2)dπ(x1, x2)
) 1

r

+ ∥L∥L2

(
inf

π∈Π(ν,µ)

"
{cX>1}

cX(x1, x2)2dπ(x1, x2)
) 1

2

≲
(
H(ν | µ)

) 1
2r
+

(
H(ν | µ)

) 1
2
≲

(
H(ν | µ)

) 1
2r
∨

(
H(ν | µ)

) 1
2
.

The proof is complete upon invoking the identity

H(ν̃ | µ̃) = inf
{
H(ν | µ); ν ∈P(X) : ν ◦ Ψ−1 = ν̃

}
(2.3)

which holds when X is a Polish space. □
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Remark 2.12. The previous lemma is used in the proof of most of our main results. We
emphasise here that for the identity (2.3) to hold, it is sufficient to require that X is Polish
(and not Y). In view of the latter, the same is true for the contraction principle.

3. TCIs for Gaussian rough differential equations

Our first result concerns the solutions of Rough Differential Equations (RDEs) driven
by a Gaussian process with continuous paths. Throughout this section, Cp-var(I;Rd) is the
Banach space of continuous Rd-valued paths of finite p-variation, defined on the compact
interval I ⊂ [0,∞]; the p-variation distance is denoted by gp-var.

Definition 3.1. (Gaussian rough paths) Let T > 0, p ∈ [1, 3) and X be a d-dimensional,
continuous Gaussian process on [0,T ] with paths of finite p-variation.

(1) A geometric p-rough path X over X is a pair

X = L (X) := (X,X) ∈ C
(
[0,T ]2;Rd ⊕ Rd⊗d

)
,

such that the following hold P-almost surely:
(a) (Chen’s relation) Xs,t = Xs,u + Xu,t and Xs,t = Xs,u + Xu,t + Xs,u ⊗ Xu,t for all

0 ≤ s ≤ u ≤ t ≤ T.
(b) (p-variation regularity) ∥X∥pp-var := sup(ti)∈P[0,T ]

∑
i

(
|Xti,ti+1 |+

∣∣∣Xti,ti+1

∣∣∣)p
is finite,

where P[0,T ] is the collection of finite dissections of [0,T ].
(2) The inhomogeneous p-variation metric gp-var is defined for two geometric p-rough

paths by gp-var(X,Y) := ∥X − Y∥p-var.
(3) The spaceD0,p

g ([0,T ];Rm) of geometric p-rough paths is defined as the completion
of the set {L ( f ), f ∈ C∞} with respect to gp-var.

Remark 3.2. The metric space (D0,p
g ([0,T ];Rd), gp-var) is Polish [23, Proposition 8.27].

The second-order processX is typically given by the iterated integralXs,t =
∫ t

s (Xr−Xs)⊗dXr
which is defined as a limit (in probability) of piecewise linear approximations.

Theorem 3.3. Let T > 0, p ∈ [1, 3) and X = (Xt)t∈[0,T ] be a d-dimensional, continuous,
mean-zero Gaussian process with Cameron-Martin spaceH such that

(i) X has a natural lift to a geometric p-rough path X;
(ii) there exists q with 1

p +
1
q > 1 such thatH ↪→ Cq−var([0,T ];Rd).

Next, let γ > p, V = (V1, . . . ,Vd) be Lipγ-vector fields on Rd [23, Definition 10.2] and
consider the solution (Yt)t∈[0,T ] of the RDE

dYt = V(Yt)dXt, Y0 ∈ R
m. (3.1)

Then the following hold:

(1) The law µ ∈P(D0,p
g [0,T ]) of X satisfies Tα(g1/2

p-var) with α(t) = C(t ∧ t2), C > 0.
(2) The law µ ∈ P(Cp-var([0,T ];Rm)) of Y satisfies Tα(g

1/q
p-var) with α(t) = C(t2q ∧ t2),

C > 0.

Remark 3.4. Talagrand’s inequalities for q = 1, which corresponds to Brownian or "smoother"
paths, have been proved in [41, Theorem 2.14]. Our result shows that solutions of RDEs
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with "rougher" drivers (e.g. fBm with Hurst parameter H ∈ ( 1
3 ,

1
2 )) also satisfy TCIs with a

different cost and deviation function. In fact, setting q = 1, we recover T1(C) from [41].

Proof. (1) Let s, t ∈ [0,T ]2 and

ThXs,t :=
(
Xs,t + hs,t,Xs,t +

∫ t

s
hs,r ⊗ dXr +

∫ t

s
Xs,r ⊗ dhr +

∫ t

s
hs,r ⊗ dhr

)
denote the translation of X in the direction of h ∈ H (note that the assumptions on X
guarantee that the last two integrals on the right-hand side are well-defined Young integrals).
From [41, Lemma 2.10], we have for some constant C > 0

gp-var(ThX,X)1/2 ≤ C(1 ∨ ∥x∥p-var)∥h∥H ∨ ∥h∥
1/2
H
.

Appealing to Lemma 2.11 with X = Cp-var([0,T ];Rm), Y = D0,p
g [0,T ], Ψ = X and cY be

the Cameron-Martin pseudometric onD0,p
g [0,T ] the conclusion follows.

(2) Let Yh be the solution of (3.1) driven by ThX. From [41, Lemma 2.11], we have

gp-var(Yh,Y)1/q ≤ C exp
(
N1(X; [0,T ]) + 1

)
∥h∥H ∨ ∥h∥

1/q
H
,

for some constant C > 0, where the random variable N1(X; [0,T ]) has finite moments of all
orders. Appealing to Lemma 2.11 with X = D0,p

g [0,T ],Y = Cp-var([0,T ];Rm),Ψ = Y and
cY the Cameron-Martin pseudometric onD0,p

g [0,T ] the result follows. □

The well-known estimates of [10, Theorem 6.23] (see also [22] and the lower bound from [8,
Theorem 1.1]) show that the laws of solutions of RDEs with bounded and sufficiently
smooth vector fields are Weibull-tailed with shape parameter 2/q. This non-Gaussian
tail behaviour is a consequence of rough integration which takes into account not just the
noise X but also iterated integrals of X with itself. Due to the lack of Gaussian integrability,
such measures are not expected to satisfy Talagrand’s Tr(C) inequalities for any r ≥ 1.
Nevertheless, the more general TCI Tα(c) allows us to recover the "correct" tail behaviour.
Indeed, we have the following:

Corollary 3.5. For X,Y, q as in Theorem 3.3, there exist C1,C2 > 0 such that for all R > 0,

P
[
∥X∥p-var ≥ R

]
≤ C1e−C2R and P

[
∥Y∥p-var ≥ R

]
≤ C1e−C2R2/q

.

Proof. From Theorem 3.3(1) and Corollary 2.6(ii) with X = D0,p
g [0,T ], x0 = 0, d = gp-var,

p = 1
2 , there exists λ0 > 0 such that E[exp(λ∥X∥p-var)] is finite for all λ < λ0. An application

of Markov’s inequality allows us to conclude that

P
[
∥X∥p-var ≥ R

]
≤ e−λRE

[
exp

(
λ∥X∥p-var

)]
.

Similarly to Theorem 3.3(2) and Corollary 2.6(ii) with X = Cp-var[0,T ], x0 = 0, d = gp-var,
p = 1/q, there exists λ0 > 0 such that E[exp(λ∥Y∥2/qp-var)] is finite for all λ < λ0. Once again
the conclusion follows from Markov’s inequality

P
[
∥Y∥p-var ≥ R

]
≤ e−λR

2/q
E

[
exp

(
λ∥Y∥2/qp-var

)]
.

□
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Remark 3.6. Examples of Gaussian processes X that satisfy the assumptions of Theo-
rem 3.3 include Brownian motion (in which case Y is interpreted in the Stratonovich sense),
fractional Brownian motion with Hurst exponent H ∈ ( 1

3 , 1), Brownian (and more generally
Gaussian) bridges, Ornstein-Uhlenbeck processes driven by Brownian motion and bifrac-
tional Brownian motion [41, Example 2.6] with parameters H,K satisfying HK ∈ ( 1

3 , 1).

4. TCIs for regularity structures: Rough Volatility

In this section we focus on a simple rough volatility model. To this end, let H ∈ (0, 1
2 ]

and consider the evolution of log-prices governed by the stochastic differential equation

dS t/S t = f
(
ŴH

t , t
)

dWt, S 0 = s0 > 0. (4.1)

Here W is a standard Brownian motion, f dW is an Itô integral and ŴH is a Riemann-
Liouville (or type-II) fractional Brownian motion, in particular,

ŴH
t =

∫ t

0
KH(t − r)dWr, for t ≥ 0,

where KH : [0,∞) → R denotes the power-law Volterra kernel KH(t) =
√

2HtH− 1
2 . As is

well known, the solution map of an Itô SDE is not continuous with respect to the driving
Brownian motion W. The theory of rough paths, initially developed by Lyons [36], provides
a remedy for this lack of continuity for a large class of SDEs. In particular, Lyons’ universal
limit theorem [19, Theorem 8.5] asserts that the solution of an SDE is a continuous image of
the canonical rough path lift of the noise with respect to an appropriate rough path topology.

As explained in [5, Section 2], the SDE (4.1) is beyond the reach of rough paths theory
since ŴH and W are not independent and because calibrated rough volatility models fea-
ture [25] Hurst indices H < 1

4 . Nevertheless, as shown in [5], the continuity of the rough
volatility solution map can be recovered in the framework of Hairer’s theory of regularity
structures [31]. The main idea is to enhance the noise ”dW” with sufficient higher-order
functionals defined with respect to a fixed regularity structure T . The enhanced solution
map is then continuous with respect to the topology of models defined on T (see Definition
4.8) .

Definition 4.1. Let A ⊂ R be a locally finite (e.g. discrete) index set that is bounded from
below. A regularity structure is defined as a pair (T ,G) of a vector space T (the structure
space) and a group G (the structure group) with the following properties:

(i) T =
⊕
α∈A Tα, where for each α ∈ A,Tα is a Banach space. Each element τ ∈ Ta

is said to have degree (or homogeneity) α and we write |τ| = α. For each τ ∈ T ,
∥τ∥α denotes the norm of the component of τ in Tα.

(i) G is a group of linear transformations on T such that for each Γ ∈ G, α ∈ A,
τα ∈ Tα,

Γτα − τα ∈
⊕
β<α

Tβ. (4.2)

Remark 4.2. A useful analogy is that of a regularity structure as an abstraction of Taylor
expansions. In particular, one can think that for each α ∈ A, Tα and T contain monomials
of degree α and abstract Taylor polynomials respectively. The action of G on T can be
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thought of as "re-expansion" of a Taylor polynomial with respect to a different base point.
Then, at a formal level, (4.2) expresses the fact that the difference between a monomial of
degree α and its re-expanded version will be a polynomial of degree β < α. For example,
re-expanding the second degree monomial x2 ∈ T2 around 1 gives us

Γ1x2 − x2 = (x − 1)2 − x2 = −2x + 1 ∈ T0 ⊕ T1 =
⊕
β<2

Tβ.

4.1. The rough volatility regularity structure. We now define the concrete rough volatil-
ity regularity structure, tailor-made to (4.1), as constructed in [5]. First, we introduce a finite
set of symbols that provide the building blocks for the abstract Taylor expansions. To this
end, let M ∈ N, κ ∈ (0,H) and

S :=
{
1,Ξ, I(Ξ), . . . , I(Ξ)M,ΞI(Ξ),ΞI(Ξ)2, . . . ,ΞI(Ξ)M

}
.

Here, the symbol Ξ corresponds, up to realisation (Definition 4.4) to the underlying noise
dW = Ẇ and I denotes convolution with respect to the kernel KH . The degrees of the
symbols are postulated as follows:

Symbol 1 Ξ I(Ξ) I(Ξ)M ΞI(Ξ)M

Degree 0 − 1
2 − κ H − κ M(H − κ) M(H − κ) − 1

2 − κ

The number M is chosen to be the smallest number for which I(Ξ)M+1Ξ has a positive
homogeneity (more precisely, this choice implies that the modelled distribution lift of f dW
belongs to a space DγT (Γ) of positive regularity with γ > 0, see Definition 4.19, (4.14)
below) to the reconstruction theorem for modelled distributions Thus it suffices to consider
M such that |ΞI(Ξ)M+1| = (M + 1)(H − κ) − 1

2 − κ > 0. Thus we take

M := M(H, κ) := max
{
m ∈ N : m(H − κ) −

1
2
− κ ≤ 0

}
. (4.3)

Remark 4.3. For very small κ ∈ (0,H), we have that m(H − κ) − 1
2 − κ ≤ 0 if and only if

m ≤ (κ + 1
2 )/((H − κ)) =: M, which tends to 1

2H from above. When κ is close to H, say of
the form κ = H − ε, then m(H − κ)− 1

2 − κ ≤ 0 if and only if m ≤ (H − ε+ 1
2 )/ε =: M, which

tends to infinity.

The index set and structure space are then defined by A := {|τ| : τ ∈ S} and

T = span{S} =
⊕
α∈A

Tα :=
⊕
α∈A

span{τ ∈ S : |τ| = α}. (4.4)

Turning to the structure group, we let G := {Γh , h ∈ R} ⊂ L (T ) such that for all h ∈ R:

Γh1 = 1, ΓhΞ = Ξ, ΓhI(Ξ) = I(Ξ) + h1, (4.5)

and
Γhττ

′ = ΓhτΓhτ
′, (4.6)

for all τ, τ′ ∈ S such that ττ′ ∈ S. The expression ττ′ should be interpreted as a formal
product between symbols. The maps Γh are then extended to T by linearity. The group
property of G is inherited by the additive structure of the real numbers.

A model for a regularity structure is a concrete interpretation of the abstract Taylor poly-
nomials and their re-expansion rules. Part of the flexibility of the theory is owed to the fact



TRANSPORTATION-COST INEQUALITIES FOR NON-LINEAR GAUSSIAN FUNCTIONALS 15

that monomials can be very irregular functions and even Schwartz distributions. In the next
definition, L (X,Y) denotes the space of continuous, linear operators between two topologi-
cal vector spaces X and Y , X∗ denotes the continuous dual space of X and ⟨·, ·⟩ : X∗×X → R
is the duality pairing ⟨x∗, x⟩ := x∗(x).

Definition 4.4. Let (T ,G) be the rough volatility regularity structure. A model for (T ,G)
over R is a pair (Π,Γ) of "realisation" and "re-expansion" maps

Π : R→ L (T ; (C∞c (R)∗) Γ : R × R→ G,

that satisfy the following properties:
• For s, t, z ∈ R, the abstract "Chen’s relation" Πt = ΠsΓs,t holds and Γs,t = Γs,zΓz,t;
• for all τ ∈ T , λ ∈ (0, 1), s, t in a compact set, Γs,t ∈ G, ϕλs (·) = λ−1ϕ(λ−1(· − s)) ∈

C∞c (R) with supp(ϕ) ⊂ (−1, 1)∣∣∣⟨Πsτ, ϕ
λ
s ⟩
∣∣∣ ≲ λ|τ|, Γs,tτ = τ +

∑
τ′:|τ′ |<|τ|

cτ′(s, t)τ′,

with |cτ′(s, t)| ≲ |s − t||τ|−|τ
′ |.

We shall now introduce a (random) Itô model (Π,Γ), defined on an underlying probability
space (Ω,F ,P), for the rough volatility regularity structure T (4.4). With W a Brownian
motion extended to R by letting W = 0 on (−∞, 0] and t ≥ 0, let

Πt1 = 1, ΠtΞ := Ẇ = (d/dt)W,

where the derivative is meant in the sense of distributions, i.e. for each ϕ ∈ C∞c (R) we have

⟨ΠtΞ, ϕ⟩ = ⟨Ẇ, ϕ⟩ = −
∫
R

Wsϕ̇(s)ds. (4.7)

Note that we can restrict the white noise Ẇ to any finite time interval [0,T ] by setting W = 0
on R \ [0,T ] and due to stationarity the value of ΠtΞ does not depend on t. Next, let

ΠtI(Ξ) := KH ∗ Ẇ − KH ∗ Ẇt = ŴH − ŴH(t), (4.8)

and for each m = 2, . . . ,M, ΠtI(Ξ)m = (ŴH − ŴH(t))M. Similar to the rough path frame-
work, one then considers Itô integrals

Wm
s,t :=

∫ t

s
(ŴH(r) − ŴH(s))mdWr , s < t, m = 1, . . . ,M,

and defines
ΠsΞI(Ξ)m :=

d
dt
Wm

s,t

in the sense of distributions. The maps Π· are then extended to T by linearity. Finally, for
each Γ ∈ G the (random) re-expansion maps are given by

Γs,t := ΓŴH
s −ŴH

t
(4.9)

(i.e. the right hand side results from Γh (4.5), (4.6) evaluated at h = ŴH
s − ŴH

t ).
In order to emphasise the dependence of the Itô model on the realisation of the noise we

will often write (Π,Γ) = (ΠẆ ,ΓẆ). For a fixed time horizon T > 0, we denote the space
of models (Π,Γ) for the rough volatility regularity structure T by MT (T ). The topology



16 IOANNIS GASTERATOS AND ANTOINE JACQUIER

on this space will be discussed in the next section. The object with the lowest homogeneity
in T is Ξ, which corresponds to the white noise Ẇ. For κ ∈ (0,H), the latter can be
considered as a Gaussian random element that takes values in the Besov space E := C−

1
2−κ

(see [13, Section 2.1] for a proof in a more general setting), defined as the subspace of
distributions f ∈ (C1

c (R))∗ such that for all K ⊂ R compact,

∥ f ∥− 1
2−κ,K

:= sup
s∈K

sup
ϕ∈C1

c (R),∥ϕ∥
C1≤1

supp(ϕ)⊂(−1,1),λ∈(0,1]

λ
1
2+κ

∣∣∣⟨ f , ϕλs ⟩∣∣∣ < ∞, (4.10)

and ϕλs (t) = λ−1ϕ(λ−1(t−s)) as in Definition 4.4. The collection {∥ f ∥− 1
2−κ,K

; K ⊂ R compact}

can be shown to be a family of seminorms that turn C−
1
2−κ into a Fréchet space [19, Sec-

tion 13.3.1], but for our purposes we shall restrict to K = [0,T ].

Remark 4.5. The triple (E,H , µ), whereH := L2[0,T ] is the Cameron-Martin space of Ẇ
and µ : B(E)→ [0, 1] is the law of Ẇ is an abstract Wiener space.

We shall now introduce the notions of "model lift" and of "model translation" by elements
inH (such operations have already been considered in [18, 20]).

Definition 4.6. Let (T ,G) be the rough volatility regularity structure and (Π,Γ) the Itô
model for (T ,G). The map

E ∋ ξ 7−→ L(ξ) = (Πξ,Γξ) ∈ MT (T ),

where the noise Ẇ is replaced by ξ is called the model lift. The model translation in the
direction of h ∈ H is defined by

MT (T ) ∋ Πξ 7−→ Th(Πξ) := Πξ+h ∈ MT (T ).

The translation ThΓ is defined analogously.

For fixed h ∈ H , the (deterministic) model (Πh,Γh) is given by

Πh
t 1 = 1, Πh

t Ξ = h, Πh
t I(Ξ)m = (̂h − ĥ(t))m, Πh

t ΞI(Ξ)m =
d
ds
Hm

t,s, for m = 1, . . . ,M,

where

Hm
t,s :=

∫ s

t

(̂
h(r) − ĥ(t)

)m
h(r)dr.

This last integral is well-defined since ĥ =
∫ ·

0 KH(· − r)h(r)dr ∈ CH[0,T ] and H is square-
integrable. Note that, for each t ∈ [0,T ] and m = 1, . . .M, Πh

t I(Ξ)m is function-valued.
Nevertheless, the homogeneity of this term is mH − 1

2 , which can be negative for small
enough m.

Remark 4.7. Similar to the case of random rough paths, the lift map L is well defined on
smooth functions since the integrals in Π are then standard Riemann integrals. In general,
however, due to the probabilistic step (i.e. the use of Itô integration) in the construction
of Π, such a map is only well defined µ-almost everywhere in E. As a result, L is only a
measurable map on the path space (Ω,F ,P) = (E,B(E), µ).
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4.2. TCIs for Itô models and the driftless log-price. In this section we prove some con-
tinuity estimates for Cameron-Martin shifts of Itô models and Itô integrals of the form∫ ·

0 f (ŴH
s , s)dWs. Then, we present our result, Theorem 4.14, on TCIs for Itô models and

the driftless log-price corresponding to (4.1).

Definition 4.8. (Model topology) Let (T ,G) be a regularity structure and T > 0. The
distances ∥ · ∥, � · � : MT (T )2 → [0,∞] between two models (Π1,Γ1), (Π2,Γ2) ∈ MT (T )
are defined by∥∥∥Π1,Π2

∥∥∥ ≡ ∥∥∥Π1 − Π2
∥∥∥ := sup

ϕ∈C1
c (R),∥ϕ∥

C1≤1
supp(ϕ)⊂(−1,1),λ∈(0,1]

τ∈S,s∈[0,T ]

λ−|τ|
∣∣∣∣〈(Π1

s − Π
2
s

)
τ, ϕλs

〉∣∣∣∣ (4.11)

and ���(
Π1,Γ1

)
,
(
Π2,Γ2

)��� :=
∥∥∥Π1 − Π2

∥∥∥ + sup
s,t∈[0,T ],τ∈S

A∋β<|τ|

∣∣∣(Γ1
t,s − Γ

2
t,s

)
τ
∣∣∣
β

|t − s||τ|−β
, (4.12)

where |τ|β denotes the absolute value of the coefficient of τ with |τ| = β.

Remark 4.9. It turns out that the two notions of distance introduced in the previous defi-
nition are equivalent, provided that the models considered satisfy appropriate admissibility
conditions. In the context of singular stochastic PDEs, this observation has been proved
in [9, Remark 3.5]. A similar observation holds for the case of the Itô models considered
for the rough volatility regularity structure [5, Lemma 3.19].

Remark 4.10. In order to avoid technical difficulties related to the well-posedness of the
Kantorovich dual problem (see for instance the proof of Proposition 2.4), it is of interest
to define white noise as a random element taking values in a Polish space. As pointed out
in [32, Remark 2.6], this space is not separable. However, this can be fixed by defining
C−

1
2−κ as the completion of smooth functions with respect to the seminorms ∥ · ∥− 1

2−κ,K
.

Another alternative would be to define Ẇ as a random element with values in the (much
larger) space S′ of tempered distributions, which is separable. The same issue is present in
the case of the metric space (MT (T ), ∥ · ∥). Once again, the remedy is to defineMT (T ) as
the completion of the set of smooth, admissible models (i.e. Π such that [0,T ] ∋ s 7→ Πs ∈

L (T ; (C∞c (R)∗) is smooth) under the metric ∥ · ∥.

The estimates in the following two lemmata are used in the proof of Theorem 4.14 .
Their proofs are deferred to Appendix A.1 and A.2 respectively.

Lemma 4.11. (Model shifts) Let T > 0. The map H ∋ h 7→ ThΠ
ξ ∈ MT (T ) is locally

Lipschitz continuous. In particular, for H ∈ (0, 1),M ∈ N as in (4.3), there exists CH,M,T > 0
and a random variable K ∈ ∩p≥1Lp(Ω) such that we have the almost sure estimate∥∥∥Th2Π

ξ − Th1Π
ξ
∥∥∥ ≤ CH,M,T Kh1∥h2 − h1∥H ∨ ∥h2 − h1∥

M+1
H
, for all h1, h2 ∈ H .

Before we proceed to the analysis of the driftless log-price we introduce the following
asumption on the volatility function f .
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Assumption 4.12. The volatility function f : R × R+ → R in (4.1) satisfies

f (x, t) − f (y, t) = f1(x − y, t) f2(y, t), (4.13)

for all t > 0, x, y ∈ R, where
(i) f1 : R × R+ → R is differentiable and |∇ f1| ≤ G for some nondecreasing G : R →

[0,∞];
(ii) for all T > 0, there exist C1,C2 > 0 such that supt∈[0,T ] | f2(t, x)| ≤ C1(1 + eC2 |x|).

Lemma 4.13. (Itô integral shifts) Let (Ω,H ,P) be the abstract Wiener space of Ẇ (Re-
mark 4.5) and f : R × R+ → R satisfy Assumption 4.12. Then for all γ < 1

2 there exists
c > 0 and a random variable K ∈ ∩p≥1Lp(Ω) such that for all h ∈ H , we have P-a.s.,∥∥∥∥∥( ∫ ·

0
f (ŴH

r , r)dWr

)
(ω + h) −

( ∫ ·

0
f (ŴH

r , r)dWr

)
(ω)

∥∥∥∥∥
Cγ[0,T ]

≤ K
∣∣∣G(c∥h∥H )

∣∣∣(∥h∥H + 1
)
.

The following is the main result of this section:

Theorem 4.14. Let H ∈ (0, 1
2 ], κ ∈ (0,H),M = M(H, κ) (as in (4.3)) and g+ = g ∨ 0. Then

(1) Let cH :MT (T ) ×MT (T )→ R denote the Cameron-Martin pseudo-metric:

cH (Π1,Π2) =

∥Π1
0Ξ − Π

2
0Ξ∥H , if Π1

0Ξ − Π
2
0Ξ ∈ H ,

∞, otherwise.

The law µ ∈P(MT (T )) of the Itô model (Πξ,Γξ) satisfies T2(2) with respect to cH .
(2) The law µ ∈ P(MT (T )) of the Itô model (Πξ,Γξ) satisfies Tα(c) with α(t) = t2 ∧

t2(M+1) and c(Π1,Π2) := ∥Π1 − Π2∥
1

M+1 .
(3) Let γ ∈ (0, 1

2 ) and f satisfy Assumption 4.12 with G(x) = |x| ∨ |x|r for some r ≥ 1.
The law µ ∈ P(Cγ[0,T ]) of the driftless log-price

∫ ·
0 f (ŴH

r , r)dWr satisfies Tα(c)

with α(t) = t2 ∧ t2(r+1) and c(x, y) = ∥x − y∥
1

r+1
Cγ

.
(4) Let f (t, x) = g(t)ex for some g ∈ C1[0,T ]. Then, for C > 0, the law µ ∈P(C[0,T ])

of (log |
∫ ·

0 f (ŴH
r , r)dWr |)+ satisfies T1(C).

Proof. Throughout the proof, (E,H ,P) is the abstract Wiener space of ξ (Remark 4.10),
where P ∈P(E) is the law of ξ.

(1) By definition of cH we have

inf
π∈Π(ν,µ)

"
MT (T )×MT (T )

c2
H

(y1, y2)dπ(y1, y2) = inf
π∈Π(ν,P)

"
E×E
∥x1 − x2∥

2
H

dπ(x1, x2).

Since P ∈ T2(2) with respect to the Cameron-Martin distance ∥ · ∥H [14, Section
5.1], the conclusion follows.

(2) Let X = E, Y = MT (T ), cX = cH , cY = c and Ψ : X → Y be the model lift
ξ 7→ Πξ. Moreover, set x1 = ξ, x2 = ξ + h for some h ∈ H . In view of Lemma 4.11
with h1 = 0, h2 = h, we have

cY
(
Ψ(x1),Ψ(x2)

)
=

∥∥∥Πx1 − Πx2
∥∥∥ 1

M+1 ≤ CK(x1)
(
∥x2 − x1∥

1
M+1
H
∨ ∥x2 − x1∥H

)
= CK(x1)

(
cX(x1, x2) ∨ cX(x1, x2)

) 1
M+1

)
,
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where K ∈
⋂

p≥1 Lp(X,P). Lemma 2.11 with r = M + 1 concludes the proof (note
that Assumption 2.10 is satisfied since P ∈ T2(2) with respect to cH ).

(3) Let X = Cγ[0,T ] = Y, cX = cH , cY = ∥ · ∥Cγ and Ψ : X → Y be the map
ω 7→

∫
f (ŴH

r , r)dWr. Moreover, set x1 = ω, x2 = ω + h for some h ∈ H . From
Lemma 4.13 with h1 = 0, h2 = h we obtain

cY
(
Ψ(x1),Ψ(x2)

)
≤ CK(x1)

(
cX(x1, x2) ∨ cX(x1, x2)

) 1
r+1

)
.

The conclusion follows once again by appealing to Lemma 2.11.
(4) Let X = C0[0,T ] = Y, cX = ∥ · ∥C0 , cY,Ψ as in the proof above and fix h ∈ H .

Using a similar argument as in the proof of Lemma 4.13 it follows that

∥Ψ(ω + h)∥X ≤ C1KeC2∥h∥H ,

where C1 > 0 and K ∈
⋂

p≥1 Lp(X,P) is a non-negative random variable. Letting
Φ = (log |Ψ|)+ the latter implies

∥Φ(ω + h)∥X ≤ log(C1K + 1) +C2∥h∥H .

Appealing to the generalised Fernique theorem ([19], Theorem 11.7) we deduce
that Φ has Gaussian tails and in particular that E exp(λ∥Φ∥2

X
) < ∞ for sufficiently

small and positive values of λ. The proof is complete by recalling that the latter is
equivalent to Talagrand’s T1(C) (using [26, Theorem 1.13] with α(t) = t2).

□

Remark 4.15. It is straightforward to replace the right-hand side of (4.13) by a finite sum of
functions f1,k(x− y, t) f2,k(x− y, t) that satisfy the same properties as f1 and f2. Lemma 4.13
then holds with G replaced by max{Gk}. Assumption 4.12 covers a wide range of volatility
functions that are of interest in rough volatility modeling. In particular it includes polyno-
mial volatility models [1], where f (t, x) = g(t)P(x) for a C1-function g and a polynomial P
of degree r, as well as exponential functions that correspond to lognormal volatility models
(as in the rough Bergomi model [4]).

Corollary 4.16. Let H ∈ (0, 1
2 ], γ < 1

2 and f ∈ C(R × R+) that satisfies Assumption 4.12.
Then there exist C, s0 > 0 such that any iid sample {Xn; n ∈ N} of the driftless log-price
X· =

∫ ·
0 f (ŴH

r , r)dWr satisfies, for n ∈ N, s > s0,

P


∥∥∥∥∥∥∥1

n

n∑
k=1

Xn

∥∥∥∥∥∥∥
Cγ[0,T ]

> s

 ≤ exp
{
−Cns

2
r+1

}
.

Proof. By the triangle inequality,

P


∥∥∥∥∥∥∥1

n

n∑
k=1

Xn

∥∥∥∥∥∥∥
Cγ[0,T ]

> s

 ≤ P
1
n

n∑
k=1

∥Xn∥Cγ[0,T ] > s

 .
The conclusion then follows from Theorem 4.14(3) and Corollary 2.8 with d being the
γ-Hölder metric, x0 = 0 and p = r + 1. □
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4.3. TCI for the log-price as a modelled distribution. Given a fixed regularity struc-
ture T , along with a model (Π,Γ) ∈ M(T ), it is possible to consider T -valued functions
(or distributions) that can be approximated, up to a given precision, by abstract "Taylor poly-
nomials" consisting of symbols in T . The regularity of such functions can be expressed in
terms of the approximation error, similar to the case of classical polynomials and smooth
functions. This concept is captured by the notion of modelled distributions.

Definition 4.17. Let γ > 0, T the rough volatility regularity structure and (Π,Γ) ∈ MT (T ).
A map f : [0,T ]→ T is said to be a modelled distibution of order γ (written f ∈ DγT ) if

∥ f ∥DγT := sup
t∈[0,T ]

sup
A∋β<γ

∣∣∣ f (t)
∣∣∣
β
+ sup

s,t∈[0,T ]
A∋β<γ

∣∣∣ f (t) − Γt,s f (s)
∣∣∣
β

|t − s|γ−β
< ∞, (4.14)

where A is the index set of T and , as above, |τ|β denotes the absolute value of the coefficient
of τ ∈ T with degree β. To emphasise the dependence of the spaceDγT on the given model,
we shall often use the notationDγT (Γ). Finally, for i = 1, 2, (Πi,Γi) ∈ MT (T ), fi ∈ D

γ
T (Γi),

the distance between f1 and f2 is defined by∥∥∥ f1; f2
∥∥∥
D
γ
T (Γ1),DγT (Γ2) := sup

t∈[0,T ]
sup

A∋β<γ

∣∣∣ f1(t)− f2(t)
∣∣∣
β
+ sup

s,t∈[0,T ]
A∋β<γ

∣∣∣ f1(t) − Γ1
t,s f1(s) − f2(t) + Γ2

t,s f2(s)
∣∣∣
β

|t − s|γ−β
.

(4.15)

Remark 4.18. For a fixed model (Π,Γ) ∈ MT (T ), the space DγT (Γi) is linear and is a Ba-
nach space with respect to the norm ∥·∥DγT (Γ) (in general, when for non-compact domain, one
obtains a Fréchet space with respect to a family of seminorms parameterised by compacta).

At this point, we have defined the rough volatility regularity structure T (Section 4.1)
and studied properties of the Itô model and driftless log-price (Sections 4.2). One crucial
feature of the theory is roughly stated as follows: Once lifted to a (random) modelled dis-
tribution, the price process can be expressed as a locally-Lipschitz continuous map of the
underlying noise with probability 1. The latter is done with the aid of Hairer’s reconstruc-
tion operator R which maps modelled distributions to Schwartz distributions or functions.
These operations can be summarised by the diagramme

MT (T ) ∋ Πξ fΠ
ξ
∈ D

γ
T (Γξ)

E ∋ ξ X ∈ C([0,T ];R)

D f

RL

where X, the dashed arrow and L denote the driftless log-price process
∫

f dW, (as in (4.1)),
the (Itô) solution map and the model lift (Definition 4.6). The rest of this section is devoted
to the study of the map D f , which takes as input a (random) Itô model and returns an ex-
pansion of the volatility function as a linear combination of elements of T . This (random)
modelled distribution has the property that (at least in a local sense) [5, Lemma 3.23]

RD f (Πξ) = X, (4.16)
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and both maps R and D f are continuous with respect to the underlying model in the topol-
ogy ofMT (T ). The main result of this section is Theorem 4.23.

Definition 4.19. Let T > 0,H ∈ (0, 1
2 ], κ ∈ (0,H), M = M(H, κ) as in (4.3) and T be the

rough volatility regularity structure. For f ∈ CM+1(R × R+) and Π ∈ MT (T ), let fΠ be the
modelled distribution (with ∗ denoting convolution)

fΠ(t) :=
M∑

k=0

1
k!
∂k

1 f
(
(KH ∗ ΠtΞ)(t), t

)
I(Ξ)k, for t ∈ [0,T ].

The map D f is then defined by (⋆ denotes the formal product of symbols in T )

MT (T ) ∋ Π 7−→ D f (Π) := fΠ ⋆ Ξ ∈
⋃
γ>0

D
γ
T (Γ).

The following lemma is used to obtain Theorem 4.23 below and its proof can be found in
Appendix A.3. Regarding notation, we use ∂m,n

1,2 f to denote the m-th (resp. n-th) order partial
derivatives with respect to the first (resp. second) variable of a function f ∈ CM+1,1(R×R+).

Lemma 4.20. Let f ∈ CM+1,1(R × R+), and 0 < γ < ((M + 1)(H − κ) − 1
2 − κ) ∧ ( 1

2 − κ).

(1) If G : R→ R is a non-decreasing continuous function such that for some C f ,T > 0,

sup
s∈[0,T ]

∣∣∣∂m
1 f (x, s)

∣∣∣ + sup
s∈[0,T ]

∣∣∣∂M+1
1 f (x, s)

∣∣∣ + sup
s∈[0,T ]

∣∣∣∣∂m,1
1,2 f

(
x, s

)∣∣∣∣ ≤ C f ,T (1 +G(|x|)) (4.17)

holds for all x ∈ R, m = 0, . . . ,M, then there exists C f ,T,M > 0 such that

∥D f (Π)
∥∥∥
D
γ
T
≤ 2C f ,T,M

[
1 +G

(
4
∥∥∥KH ∗ ΠΞ

∥∥∥
C[0,T ]

)](
1 ∨

∥∥∥KH ∗ ΠΞ
∥∥∥M+1
CH−κ[0,T ]

)
.

(2) Let N > 0, P : R2 → R a polynomial of degree N in two variables with P(0, 0) = 0
and assume that there exists c f ,T > 0 such that for all m = 0, . . . ,M + 1, x, y ∈ R,

sup
s∈[0,T ]

∣∣∣∂m
1 f (x, s) − ∂m

1 f (y, s)
∣∣∣ + sup

s∈[0,T ]

∣∣∣∣∂m,1
1,2 f (x, s) − ∂m,1

1,2 f (y, s)
∣∣∣∣ ≤ c f ,T P(|y|, |x − y|). (4.18)

Then for (Π1,Γ1), (Π2,Γ2) ∈ MT (T ), there exists CM, f ,T > 0 such that

∥D f (Π1); D f (Π2)
∥∥∥
D
γ
T (Γ1),DγT (Γ2) ≤ C f ,M,T

(
{1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N+M+1
CH−κ[0,T ]

)
×

(∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥
CH−κ[0,T ] ∨

∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥N+M+1
CH−κ[0,T ]

)
.

The topology ofDγT (Γ) (and the space itself) depends crucially on the choice of the (ran-
dom) model. This implies in particular that the concept of a TCI for aDγT (Γ)-valued random
element is not meaningful since both the latter and the space are random. Nevertheless, it
is possible to obtain TCIs for random elements that take values on the total space

M ⋉Dγ :=
∐

(Π,Γ)∈MT (T )

D
γ
T (Γ) =

⋃
(Π,Γ)∈MT (T )

{
(Π,Γ)

}
×D

γ
T (Γ) (4.19)
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A metric on this space can be defined with the help of the distance (4.15). In particular, we
define d♭γ : (M ⋉Dγ) × (M ⋉Dγ)→ [0,∞] by

d♭γ( f1, f2) :=
��p( f1) − p( f2)

�� + ∥ f1; f2∥DγT (p( f1)),DγT (p( f2)), (4.20)

where p :M ⋉Dγ →MT (T ) denotes the base space-projection of a modelled distribution
to its corresponding model and �·� is the model metric (4.12).

Lemma 4.21. Let γ > 0. The map d♭γ defines a metric on the total spaceM ⋉Dγ.

Proof. The fact that d♭γ is symmetric is immediate from its definition. Moreover, d♭γ = 0 if
and only if

��p( f1) − p( f2)
�� = 0 and ∥ f1; f2∥DγT (p( f1)),DγT (p( f2)) = 0. Since �·� is a metric, the

first equality is true if and only if p( f1) = p( f2). The latter implies that the second equality
holds if and only if f1 = f2 (in this case ∥·; ·∥ is in fact a norm from Remark 4.18). It remains
to show that d♭γ satisfies the triangle inequality. Since �·� is a metric, we shall only show it
for the second term in 4.20. Indeed for f1, f2, f3 ∈ M ⋉Dγ, β < γ, s , t ∈ [0,T ],∣∣∣ f1(t) − f2(t)

∣∣∣
β
≤

∣∣∣ f1(t) − f3(t)
∣∣∣
β
+

∣∣∣ f2(t) − f3(t)
∣∣∣
β

and ∣∣∣ f1(t) − Γ1
t,s f1(s) − f2(t) + Γ2

t,s f2(s)
∣∣∣
β
≤

2∑
j=1

∣∣∣ f j(t) − Γ
j
t,s f j(s) − f3(t) + Γ3

t,s f3(s)
∣∣∣
β
,

and the conclusion follows after taking supremum in s, t, β. □

Remark 4.22. Our notation for d♭γ is taken from [42, Definition 4.13]. There, an analogous
metric has been introduced for the total space of controlled rough paths and called the "flat"
metric. In that setting, the base space is given by a space of (geometric) rough paths and
the fibres are spaces of controlled rough paths.

Theorem 4.23. LetT be the rough volatility regularity structure, (Π,Γ) be the Itô model (4.7)-
(4.9), T > 0, κ,H,M, f ,D f as in Definition 4.19, γ ∈ (0, (M+1)(H−κ)− 1

2−κ)∧( 1
2−κ)) and d♭γ

as in (4.20). If f satisfies the assumptions of Lemma 4.20(2) then the law µ ∈P(M ⋉Dγ)
of the random element (Π,Γ,D f (Π)) satisfies Tα(c) with c(x, y) = d♭γ(x, y)

1
N+M+1 and, for

some constant C > 0, α(t) = C(t2(N+M+1) ∧ t2).

Proof. Let h ∈ H , (Π1,Γ1) = (Π,Γ) (Definition 4.6), (Π2,Γ2) = (ThΠ,ThΓ) ∈ MT (T ).
From Lemma 4.20(2) along with the continuous embedding CH−κ ↪→ H we have

∥D f (Π1); D f (Π2)
∥∥∥
D
γ
T (Γ1),DγT (Γ2) ≤ C f ,M,T

(
{1 ∨

∥∥∥ŴH
∥∥∥N+M+1
CH−κ[0,T ]

)(
∥h∥H ∨ ∥h∥N+M+1

H

)
.

Combining this estimate with the one obtained from Lemma 4.11 (with h1 = 0, h2 = h) and
the equivalence of model norms (Remark 4.18) it follows that

d♭γ(D f (Π1),D f (Π2)) ≲ ∥Π2−Π1∥+ ∥D f (Π2); D f (Π1)∥DγT (Γ1),DγT (Γ2) ≤ K∥h∥H ∨∥h∥N+M+1
H

,

with K a random variable with finite moments of all orders. Writing Π1 = L (ξ), Π2 =

L (ξ + h), letting x1 = ξ, x2 = ξ + h, X = E, Y = M ⋉ Dγ, Ψ = D f (L ), cY = d♭γ and
cY = cH , the last bound translates to

c
(
Ψ(x1),Ψ(x2)

)
≤ L(x1)

[
cX(x1, x2) ∨ cX(x1, x2)

1
M+N+1

]
.
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The conclusion then follows by virtue of Lemma 2.11. □

Remark 4.24. To the best of our knowledge, the question of whether the metric space
(M ⋉Dγ, d♭γ), with respect to a given regularity structure, is Polish remains open (see how-
ever [42, Theorem 4.18] for a positive answer in the setting of rough paths controlled by
geometric rough paths). Nevertheless, we prove Theorem 4.23 using a generalised contrac-
tion principle, Lemma 2.11, which does not require Y to be Polish.

We conclude this section with a remark on the reconstruction operator R.

Remark 4.25. In view of (4.16), an alternative route to prove Lemma 4.13 is to use the lo-
cal Lipschitz continuity estimates of the reconstruction operator [31, Theorem 3.10, Equa-
tion (3.4)]. In summary, for two models (Πi,Γi) ∈ MT (T ), i = 1, 2 and corresponding
reconstruction operators R i : DγT (Γi) → C([0,T ];R), the following estimate holds for all
ϕ ∈ C∞c (R), λ ∈ (0, 1], s ∈ [0,T ]:∣∣∣∣∣ 〈R2D f (Π2) − Π2

sD f (Π2)(s) −R1D f (Π1) + Π1
sD f (Π1)(s), ϕλs

〉 ∣∣∣∣∣
≤ C

(∥∥∥D f (Π1)
∥∥∥
D
γ
T (Γ1)

∥∥∥(Π1,Γ1); (Π2,Γ2)
∥∥∥ + ∥∥∥Π2

∥∥∥ ∥∥∥D f (Π1); D f (Π2)
∥∥∥
D
γ
T (Γ1),DγT (Γ2)

)
.

This estimate, however, takes into account both the growth of f and the order of Wiener
chaos of the random models. The latter may lead to sub-optimal H-continuity estimates
for X as follows: Letting Π2 = ThΠ,Π

1 = Π and invoking Lemma 4.11, 4.20(2), one sees
that ∥Π2∥ ≲ 1+ ∥h∥H ∨ ∥h∥M+1

H
and

∥∥∥D f (Π1); D f (Π2)
∥∥∥
D
γ
T (Γ1),DγT (Γ2) ≲ ∥h∥H ∨ ∥h∥

N+1
H

, where
N is the polynomial growth exponent of f . This leads to an estimate of the form∥∥∥∥∥( ∫ ·

0
f (ŴH

r , r)dWr

)
(ω + h) −

( ∫ ·

0
f (ŴH

r , r)dWr

)
(ω)

∥∥∥∥∥
Cγ[0,T ]

≲ ∥h∥H ∨ ∥h∥N+M+1
H

,

which implies that the tail probabilities P[∥ f dW∥Cγ > r] decay at most like exp{−r
2

N+M+2 }.
It is then strsaightforward to check that, if f is a polynomial of degree N, one can obtain a
better decay rate of order exp{−r

2
N+1 } via the arguments of Theorem 4.14(3).

5. TCIs for regularity structures: 2D PAM

In the previous section we introduced some elements of regularity structures for rough
volatility and proved TCIs for the Itô model, the driftless log-price and for the joint law of
the Itô model and the modelled distribution lift. This section is devoted to the proof of TCIs
in the setting of another regularity structure, which arises in the study of singular SPDEs.
In the sequel, given γ ∈ R, Cγ will denote the space of distributions on R2, endowed with a
seminorm topology similar to that defined in (4.10) (in fact it coincides with a local version
of the Besov space Bα∞,∞).

To be precise, we are concerned with the two-dimensional Parabolic Anderson Model
(2d-PAM) with periodic boundary conditions, solution to the parabolic SPDE

∂tu = ∆u + uξ, u(0, ·) = u0(·), (5.1)

where ξ is spatial white noise on the 2-torus T2 and u0 ∈ C
γ(T2) for some γ ≥ 0. In general,

d-dimensional white noise is −(d/2)− regular in the sense that, almost surely, ξ ∈ Cβ for
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any β < −d/2. On the other hand, since the heat kernel is 2-regularising, the solution u is
expected to live in Cγ, for any γ < −d/2 + 2. Thus, for d = 2, γ + β < 0 and as a result
the product uξ (and a fortiori the concept of solutions) is not classically defined (products
of distributions on this scale are well defined when γ + β > 0, as in [2, Theorem 2.85]. The
theory of regularity structures provides a notion of solutions that are defined as limits of
properly re-normalised equations in which the noise ξ is substituted by a smooth approxi-
mation ξϵ := ξ ∗ ρϵ and ρϵ is a mollifying sequence. In particular, letting

Cϵ := −
1
π

log(ϵ) (5.2)

be a divergent renormalisation constant, the solutions of

∂tũϵ = ∆ũϵ + ũϵ
(
ξϵ −Cϵ

)
, ũϵ(0, ·) = u0(·), (5.3)

converge uniformly on compacts ofR+×T2 as ϵ → 0 to a well-defined limit u ∈ C0(R+×T2),
then defined to be the solution of (5.1). While a detailed overview of the solution theory
of (5.1) is beyond the scope of this work, we shall provide a few facts that are relevant for
the proof of our result, Theorem 5.1, along with pointers to the literature where necessary.

The 2d-PAM regularity structure space T (detailed in [31, Remark 8.8 and Section 9.1]
and in [9, Section 3.1]) is generated by the symbols

S :=W∪U =
{
Ξ, I(Ξ)Ξ, XiΞ : i = 1, 2

}
∪

{
1, I(Ξ), Xi : i = 1, 2

}
, (5.4)

where Xi stands for first degree monomials in each of the spatial variables, Ξ for white noise
and I for convolution with the heat kernel. The symbols’ degrees are postulated as follows:

Symbol 1 Xi Ξ XiΞ I(Ξ) I(Ξ)Ξ
Degree 0 1 −1 − κ −κ 1 − κ −2κ

for κ > 0 small enough. The structure group G is then defined with the help of an additional
set of symbols, that encode derivatives of the heat kernel, and its action on the basis vectors
of T has an explicit matrix representation [9, Equation (3.3)]. The mollified noise ξϵ has
a canonical model lift (Πϵ ,Γϵ) ∈ M(T ) and the topology on the space of modelsM(T ) is
given by the metric∥∥∥Π1,Π2

∥∥∥ ≡ ∥∥∥Π1 − Π2
∥∥∥ := sup

ϕ∈C2
c (R+×T2),∥ϕ∥

C2≤1
supp(ϕ)⊂Bs(0,1),λ∈(0,1]

τ∈S,z∈R+×T2

λ−|τ|
∣∣∣∣〈(Π1

z − Π
2
z

)
τ, ϕλz

〉∣∣∣∣ ,

where for z = (t, x),w = (s, y) ∈ R+ × T2, ϕλz (w) = λ−2ϕ(λ−2(t − s), λ−1(x − y)) and Bs(0, 1)
is the centered unit ball on R+ × T2 endowed with the parabolic distance |(t, x) − (s, y)|s =√
|t − s| + |x − y| (this scaling is due to the fact that time and space play different roles in

parabolic PDEs such as (5.1)).
The need for renormalisation of (5.1) is linked to convergence properties of the sequence

{(Πϵ ,Γϵ) : ϵ > 0} of canonical models. In fact, while the latter diverges as ϵ → 0, it is
possible to construct a one-parameter group of transformations {Mϵ : ϵ > 0}, on M(T ),
known as the renormalisation group, such that (Π̂ϵ , Γ̂ϵ) := Mϵ[(Πϵ ,Γϵ)] converges in prob-
ability to a Gaussian model (Π̂, Γ̂) ∈ M(T ) (see [31, Sections 8.3 and 10.4] for the relevant



TRANSPORTATION-COST INEQUALITIES FOR NON-LINEAR GAUSSIAN FUNCTIONALS 25

renormalisation theory). The solutions of (5.3), (5.1) can then be expressed respectively as

ũϵ = R̂ϵS (u0, Π̂ϵ), u = RS (u0, Π̂), (5.5)

where S (an abstract solution map between spaces of modelled distributions) and R̂ϵ ,R
(the reconstruction operators associated to Π̂ϵ , Π̂ respectively) are continuous with respect
to the underlying models (see e.g. [9], Section 3.7 and references therein for a more detailed
exposition of the solution theory. Moreover note that for (5.1) one has global existence, i.e.
its explosion time is infinite with probability 1).

An inspection of the basis elements S (5.4) shows that canonical models for PAM do
not enjoy Gaussian concentration. Indeed, the symbol I(Ξ)Ξ is on the second Wiener chaos
with respect to ξ. Moreover, since (5.1) exhibits (unbounded) multiplicative noise, a similar
observation is true for the solution u. In the following theorem we prove appropriate TCIs
that reflect this heavier tail behaviour for both of these functionals.

Theorem 5.1. Let T be the 2d-PAM regularity structure andM(T ) be the space of canon-
ical models on T and f + = f ∨ 0. The following hold:

(1) The law µ ∈ M(T ) of the limiting model (Π̂, Γ̂) satisfies Tα(c) with c(Π1,Π2) =
∥Π1 − Π2∥1/2 and, for a constant C > 0, α(t) = C(t ∧ t2).

(2) Let u, v ∈ C(R+ × T2) solve (5.1) and

∂tv = ∆v + 2vξ, v(0, ·) = 1

respectively. For all (t, x) ∈ R+ × T2 such that |v(t, x)|
1
2 ∈ L1(Ω), the law µ ∈P(R)

of (log |u(t, x)|)+ satisfies Talagrand’s T1(C).

Proof. Throughout the proof we setH = L2(T2), the Cameron-Martin space of ξ.
(1) Let ϕ ∈ C2

c (R+×T2) be a test function with support on the unit ball Bs(0, 1). In view
of [31, Theorem 10.7, Equation (10.7), Proposition 10.11], we have the following
Wiener chaos decomposition: for all τ ∈ S, z = (t, x) ∈ R+ × T2, λ ∈ (0, 1),〈

Π̂zτ, ϕ
λ
z

〉
=

∑
k≤#(τ)

Ik

( ∫
R+×T2

ϕλz (y)S ⊗k
z (Ŵkτ)(y)dy

)
,

where for each k, y, (Ŵkτ)(y) ∈ H⊗k is a function (or distribution) on k copies of T2

denoted by (Ŵkτ)(y; x1, . . . xk), S zϕ(y) = ϕ(y − x), ϕ ∈ H and #(τ) is the number
of occurrences of the symbol Ξ in τ. The map Ik : H⊗k → L2(Ω) can be thought
as a multiple Wiener integral with respect to the white noise ξ. In particular, for
f ∈ H⊗k one can write [39, Section 1.1.2]

Ik( f ) = ⟨ f , ξ⊗k⟩ :=
∫

(T2)k
f (x1, . . . , xk)dξ(x1) . . . dξ(xk).

For the sequel, we shall focus on the symbol τ = I(Ξ)Ξ since this is the one which
determines the tail behaviour of Π̂. Similar but simpler arguments then hold for the
symbols that correspond to a Wiener chaos of lower order and thus will be omitted.
In this case we have #(τ) = 2 and, in light of [31, Theorem 10.19],

⟨Π̂zτ, ϕ
λ
z ⟩ = I0

( ∫
R+×T2

ϕλz (y)(Ŵ0τ)(y)dy
)
+ I2

( ∫
R+×T2

ϕλz (y)S ⊗2
z (Ŵ2τ)(y)dy

)
,
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where the first term is a non-random constant, say c, and Ŵ0 can be explicitly
specified in terms of the heat kernel [31, Theorem 10.19]. Letting h ∈ H and
denoting the argument of I2 by fλ,τ,z, then

⟨ThΠ̂zτ, ϕ
λ
z ⟩ − c = ⟨ fλ,τ,z, (ξ + h)⊗2⟩

= ⟨ fλ,τ,z, ξ⊗2⟩ + ⟨ fλ,τ,z, h⊗2⟩ + ⟨ fλ,τ,z, h ⊗ ξ⟩ + ⟨ fλ,τ,z, ξ ⊗ h⟩.

Thus

⟨(ThΠ̂z − Π̂z)I(Ξ)Ξ, ϕλz ⟩ = ⟨ fλ,τ,z, h
⊗2⟩ + ⟨ fλ,τ,z, h ⊗ ξ⟩ + ⟨ fλ,τ,z, ξ ⊗ h⟩.

The first term on the right-hand side is deterministic and can be bounded by ∥ fλ,τ,z∥H∥h∥2H
by Cauchy-Schwarz. For the other two terms, stochastic Fubini and Cauchy-Schwarz
imply ∫

fλ,τ,z(x1, x2)h(x1)dx1dξ(x2) =
∫

I1

(
fλ,τ,z(x1, ·)

)
h(x1)dx1

≤ ∥h∥H∥I1
(
fλ,τ,z(•, ·)∥H

and the symmetric bound∫
fλ,τ,z(x1, x2)dξ(x1)h(x2)dx2 ≤ ∥h∥H∥I1

(
fλ,τ,z(·, •)∥H ,

where • indicates the variable that is integrated with respect to Lebesgue measure.
Putting these estimates together it follows that

|⟨(ThΠ̂z − Π̂z)I(Ξ)Ξ, ϕλz ⟩|

≤

(
∥I1

(
fλ,τ,z(·, •)∥H + ∥I1

(
fλ,τ,z(•, ·)∥H + ∥ fλ,τ,z∥H

)
∥h∥H ∨ ∥h∥2H .

By Itô-Wiener isometry and the estimates of [31, Proposition 10.11], the L2(Ω)-
norms of the random prefactors on the right-hand side are bounded (up to a con-
stant) by ∥ fλ,τ,z∥H which in turn is bounded by λκ+2|τ|. Finally, from [31, Theo-
rem 10.7, (10.4), Proposition 3.32], we conclude that, for a random constant L with
finite moments of all orders,

∥(ThΠ̂z − Π̂z)∥ ≤ L∥h∥H ∨ ∥h∥2H .

In view of Lemma 2.11 the proof is complete.
(2) A solution theory for a shifted version of (5.1) in the direction of a Cameron-Martin

space element h ∈ H was developed in [9, Theorem 3.26]. Thus, solutions of

∂tuh = ∆uh + u(ξ + h), u(0, ·) = u0(·)

can be understood as limits, as ϵ → 0, of the renormalised equations

∂tũ
hϵ
ϵ = ∆ũhϵ

ϵ + ũhϵ
ϵ
(
ξϵ + hϵ −Cϵ

)
, ũhϵ

ϵ (0, ·) = u0(·), (5.6)

where hϵ = h∗ρϵ and Cϵ as in (5.2). Moreover, one can write ũhϵ := RMϵS (u0,MϵThΠϵ)
similar to (5.5).
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Proceding to the main body of the proof, let T > 0, ϵ < 1 and (t, x) ∈ (0,T ]×T2.
Due to the linearity of (5.6), we obtain via the Feynman-Kac formula

ũhϵ
ϵ (τ, y) = Ey

B

[ ∫ T

τ
u0(Br) exp

(
−

∫ r

τ

{
hϵ(Bs) + ξϵ(Bs) −Cϵ

}
ds

)
dr,

]
,

where τ = T − t, y ∈ T2 and B is a Brownian motion independent of ξ. From
Cauchy-Schwarz inequality and the fact that Cϵ > 0, we obtain∣∣∣ũhϵ

ϵ (τ, y)
∣∣∣ ≤ Ey

B

[ ∫ T

τ
u2

0(Br) exp
(
− 2

∫ r

τ
hϵ(Bs)ds

)
dr

] 1
2

× E
y
B

[ ∫ T

τ
exp

(
− 2

∫ r

τ

{
ξϵ(Bs) − 2Cϵ

}
ds

)
dr

] 1
2

≤ |vhϵ
1 (τ, y)|

1
2 |vϵ2(τ, y)|

1
2 ,

(5.7)

where, from another application of Feynman-Kac, vhϵ
1 solves

∂tv
hϵ
1 = ∆vhϵ

1 + 2vhϵ
1 hϵ , vhϵ

1 (0, ·) = u2
0(·),

and
∂tvϵ2 = ∆vϵ2 + 2vϵ2

(
ξϵ − 2Cϵ

)
, vϵ2(0, ·) = 1.

As ϵ → 0, ∂tv
hϵ
1 converges uniformly in (τ, y) to the smooth solution of the well-

posed parabolic PDE

∂tvh
1 = ∆vh

1 + 2vh
1h, vh

1(0, ·) = u2
0(·).

Writing the solution in mild formulation and applying Grönwall’s inequality,

∥vh
1(t, ·)∥C(T2) ≤ C∥u0∥

2
C(T2)

(T
τ

)
e2∥h∥L2 t.

Moreover, from the renormalisation theory of (5.1) [9, Theorem 3.24], vϵ2 converges
to a well-defined limit v2(t, x) as ϵ → 0. Thus, taking ϵ → 0 in (5.7), we obtain∣∣∣uh(τ, y)

∣∣∣ ≤ C|v2(τ, y)|
1
2 ∥u0∥C(T2)

(T
τ

)
e∥h∥L2 T ,

which implies that(
log

∣∣∣uh(τ, y)
∣∣∣)+ ≤ log

(
1 +C|v2(τ, y)|

1
2 ∥u0∥C(T2)

(T
τ

))
+ T∥h∥L2 . (5.8)

Since
(

log |uh(τ, y)|
)+
=

(
log |RS (u0,ThΠ̂)(τ, y)|

)+
=: Gτ,y(ξ + h) where

Gτ,y : (C−1−κ,H , γ)→ R
is a measurable map from the Wiener space of the noise, we can rewrite (5.8) as

Gτ,y(ξ + h) ≤ log
(
1 +C|v2(τ, y)|

1
2 ∥u0∥C(T2)

(T
τ

))
+ T∥h∥L2 .

By assumption, the non-negative random variable

Xτ,y := log
(
1 +C|v2(τ, y)|

1
2 ∥u0∥C(T2)

(T
τ

))
∈ L1(Ω), (5.9)
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and appealing to the generalised Fernique theorem [19, Theorem 11.7], we deduce
that Gτ,y has Gaussian tails. In particular, letting Φ denote the cumulative distribu-
tion function of a standard Normal distribution, then for all a > 0 and r > a,

P
[
Gτ,y > r

]
≤ exp

{
−

1
2

(
â +

r − a
T

)2 }
,

with â = Φ−1(Pa) = Φ−1(P[Xτ,y ≤ a]
)
, and hence for some λ > 0 sufficiently small,

E
[
exp

(
λG 2
τ,y

)]
< ∞.

The proof follows by noting that the latter is equivalent to Talagrand’s T1(C) (see [26,
Theorem 1.13] with X = R equipped with the standard metric and α(t) = t2).

□

Remark 5.2. Theorem 5.1(2) implies that, with enough integrability, the solution to (5.1)
has pointwise log-normal tails: with the notation from the proof, for all a > 0, r > ea,

P
[
|u(τ, y)| > r

]
≤ exp

−1
2

[
â +

log(r) − a
T

]2
 .

Remark 5.3. Assumption (5.9) is satisfied for example when τ is sufficiently small for all
y ∈ T2. Indeed, as shown in [30], the solution of the 2d PAM has finite moments of all
orders for small t. Moreover, from [38], E|u(t, 0)| explodes when t is sufficiently large.

6. Weighted logarithmic Sobolev inequalities

This section can be read independently from the rest of this work and is devoted to
weighted logarithmic Sobolev inequalities (WLSIs) for Gaussian functionals. In particular,
we consider functionals Ψ, defined on an abstract Wiener space (Ω,H , γ), that take values
in a finite-dimensional vector space. We include this analysis here for the following reasons:
1) As explained in the introduction, the tools for obtaining such inequalities are similar in
flavour to the ones we used to obtain TCIs: instead of studyingH-continuity properties for
the functionals of interest, WLSIs rely on H-differentiability properties. 2) WLSIs imply
Talagrand’s 2-TCI with respect to a weighted metric on Rm (Theorem 6.3(2)).

First we extend a contraction principle for WLSIs proved in [3] and present some im-
plications of WLSIs. Then, we leverage tools from Malliavin calculus to show that a wide
class of Gaussian functionals satisfy WLSIs with appropriate weights.

Definition 6.1. A probability measure µ ∈P(Rm) satisfies WLSI(G) with G : Rm → [0,∞]
if there exists a constant C > 0 such that

Entµ( f 2) :=
∫
Rm

f 2 log
( f 2∫

f 2

)
dµ ≤ 2C

∫
Rm
|∇ f |2Gdµ

holds for all differentiable f : Rm → R for which the right-hand side is finite.

Proposition 6.2 (WLSI contraction principle). Let (Ω,H , γ) be an abstract Wiener space.
Let Ψ : Ω→ Rm be Malliavin differentiable and G : Rm → [0,∞] such that

|DΨ|2
H
≤ cG(Ψ)

holds γ-a.s. for a constant c > 0. Then
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(i) µ = γ ◦ Ψ−1 satisfies WLSI(2cG);
(ii) For i = 1, . . . ,m, let µi denote the i-th marginal of µ. If G ∈ L1(µ), then there exists

a measurable function Gi : Rm−1 → [0,∞] such that µi satisfies WLSI(Gi).

Proof. (i) Let f : Rm → R differentiable. Since Ψ is Malliavin differentiable, so is f (Ψ)
and moreover D f (Ψ) = ∇ f (Ψ)DΨ. Recalling [29] that γ satisfies LSI(2), we have

Entµ( f 2) = Entγ(( f ◦ Ψ)2) ≤ 2
∫
Ω

∥∥∥D f (Ψ)
∥∥∥2
H

dγ

≤ 2
∫
Ω

|∇ f (Ψ)|2
∥∥∥DΨ

∥∥∥2
H

dγ ≤ 2c
∫
Ω

|∇ f (Ψ)|2G(Ψ)dγ.

(ii) Without loss of generality, we shall prove the inequality for i = 1. Since µ is a Borel
probability measure on a Polish space, we can apply the disintegration theorem [15, Theo-
rem A.5.4] to write

µ(dx) = π(dx1|x2, . . . , xm)µ1(dx2, . . . , dxm),

where Π is a stochastic kernel on the first coordinate, conditional on (x2, . . . , xm). Now,
for any f = f (x2, . . . , xm), the log-Sobolev inequality from (i), applied to the function
f̃ (x1, . . . , xm) := f (x2, . . . , xm), yields

Entµ1( f 2) =
∫
Rm−1

f 2 log
( f 2∫

f 2

)( ∫
R
π(dx1|x2, . . . , xm)

)
dµ1

= Entµ( f̃ 2)

≤ 2c
∫
Rm

∣∣∣∇ f̃ |2Gdµ

= 2c
∫
Rm

∣∣∣∇ f (x2, . . . , xm)
∣∣∣2G(x1, . . . , xm)dµ(x1, . . . , xm)

= 2c
∫
Rm−1

∣∣∣∇ f (x2, . . . , xm)
∣∣∣2G1(x2, . . . , xm)dµ1(x2, . . . , xm),

where G1 := 2c
∫
R

G(x1, x2 . . . , xm)π(dx1|x2, . . . , xm) is finite µ1-a.e. since G̃ ∈ L1(µ1). □

SettingΨ ≡ 1 we recover the contraction principle from [3, Lemma 6.1] for Lipschitz trans-
formations of the Wiener measure. Our generalisation covers non-linear transformations
with polynomial growth, and in particular, allows us to prove weighted LSIs for functionals
of elements in the m-th Wiener chaos over Ω. The following theorem summarises some
useful consequences of WLSIs:

Theorem 6.3. Let µ ∈ P(Rm) satisfy WLS I(G) and dG denote the weighted Riemannian
distance associated to G, i.e. for all x, y ∈ Rm and Cxy the set of all absolutely continuous
paths γ : [0, 1]→ Rm with γ(0) = x, γ(1) = y,

dG(x, y) := inf
γ∈Cxy

∫ 1

0

√
G−1(γ(t))|γ′(t)|2dt.

Then the following hold:
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(1) (Bobkov-Ledoux [6]) If G ∈ Lp(µ), for some p ≥ 2, then for all f : Rm → R,
µ-centered and 1-Lipschitz one has ∥ f ∥Lp(µ) ≤

√
p − 1∥G∥Lp(µ).

(2) (Cattiaux-Guillin-Wu [12]) µ ∈ T2(1) with respect to dG/2.

Remark 6.4. i) Without loss of generality, it suffices to assume that the weight G is strictly
positive, so that the metric dG above is well-defined. ii) In view of Theorem 6.3(1), WL-
SIs are weaker functional inequalities compared to TCIs. In particular, WLSIs only imply
finiteness of moments, while TCIs (Proposition 2.4) imply finiteness of exponential mo-
ments for a measure of interest.

A wide class of Gaussian functionals whose law satisfies a WLSI is given below.

Example 6.5. (Polynomial functionals of Gaussian processes) Let T > 0 and γ be the law
of a one-dimensional continuous, non-degenerate Gaussian process X on C0[0,T ], H its
Cameron-Martin space and H ′ the Hilbert space of deterministic integrands with respect
to X. For {hk}

m
k=1 ⊂ H

′, let X(hk) denote the Wiener integral
∫

hkdX and consider the
random vector

Ψ :=
(
Xp1(h1), . . . , Xpm(hm)

)
,

for some p1, . . . , pm ≥ 1. The functional Ψ is Malliavin differentiable with

DΨ =
(
p1Xp1−1(h1)i(h1), . . . , pmX(hm)pm−1i(hm)

)
,

where i : H ′ → H is a Hilbert-space isometry and

∥DΨ∥H ≤
(

max
k=1,...,m

pk∥i(hk)∥H

) m∑
k=1

∣∣∣X(hk)pk−1
∣∣∣ ≤ C

1 + m∑
k=1

∣∣∣X(hk)pk
∣∣∣ .

Thus, in view of Proposition 6.2 the law µ of Ψ satisfies WLSI(G) with G(x) = (1 + |x|ℓ1)2.
Applying the same proposition, along with the product rule for Malliavin derivatives, it is
straightforward to deduce that any polynomial in m variables of Ψ satisfies a WLSI with an
appropriate weight function.

Remark 6.6. For a standard Wiener process X, then H = H1
0[0,T ], i.e. the space of

absolutely continuous functions f with a square-integrable weak derivative and f (0) = 0,
H ′ = L2[0,T ] and i(h) =

∫ ·
0 hsds.

Example 6.7. (Gaussian rough paths) Let T > 0 and X be a d-dimensional continuous
Gaussian process on [0,T ] that lifts to an α-Hölder geometric rough path X = (X,X) (Def-
inition 3.1). Here, for each 0 ≤ s ≤ t ≤ T , Xs,t =

∫ t
s (Xr − Xs) ⊗ dXr. For fixed s, t consider

the R × Rd × Rd⊗d- valued functional

Ψ = (Ψ1,Ψ2,Ψ3) =
(
∥X∥Cα ,Xs,t) =

(
∥X∥Cα , Xs,t,Xs,t),

defined on the abstract Wiener space (Cα([0,T ];Rd),H , γ), where, as in the previous ex-
ample, γ,H denote the law of X on Cα([0,T ] and its Cameron-Martin space respectively.

Regarding the Malliavin differentiability of the first component, note that ∥ · ∥Cα is H-
Lipschitz continuous in the sense of [16] (see also [39, Exercise 1.2.]). Hence, it is indeed
differentiable and the triangle inequality gives the estimate

∥DΨ1∥H = ∥D∥X∥Cα∥H ≤ 1.
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Turning to Ψ3, we show that it is H-continuously Fréchet differentiable. To this end let
ϵ > 0, h ∈ H , ω ∈ Ω and note that

Xs,t(ω + ϵh) − Xs,t(ω)
ϵ

=

∫ t

s
Xs,r ⊗ dhr +

∫ t

s
hs,r ⊗ Xr + ϵ

∫ t

s
hs,r ⊗ dhr,

where all the terms on the right-hand side are well-defined Young integrals. Hence the
directional derivative

DhXs,t :=
d
dϵ
Xs,t(ω + ϵh)

∣∣∣∣∣
ϵ=0

exists and is linear in H by linearity of the integrals. Moreover, standard Young estimates
along with complementary Cameron-Martin regularity furnish∣∣∣DhXs,t

∣∣∣ ≤ C∥X∥Cα∥h∥H ,

where C > 0 is a constant that depends on the embedding H ↪→ Cq−var, for all q such that
1/q+ 1/(2ρ) > 1 and α < 1/(2ρ) (for more details on such estimates we refer the interested
reader to [21, Section 2.2]). As a result, the linear operator H ∋ h 7→ DhXs,t ∈ R

d⊗d is
bounded γ-a.e. which in particular means thatXs,t isH-continuously Fréchet differentiable.
Combining the latter with the square-integrability ofXs,t, we deduce from [39, Lemma 4.1.2
and Proposition 4.1.3] that Ψ3 is Malliavin differentiable with

∥DΨ3∥H = sup
∥h∥H≤1

|DhΨ3| ≤ C∥X∥Cα .

The same property holds trivially for Ψ2 since h 7→ Xs,t + hs,t is Lipschitz continuous and
hence ∥DΨ2∥H ≤ C for a constant C that depends on the embeddingH ↪→ Ω. Putting these
estimates together we conclude that

∥DΨ∥H ≤
3∑

k=1

∥DΨk∥H ≤ C
(
1 + ∥X∥Cα

)
= C(1 + Ψ1),

hence, in view of Proposition 6.2(i), the law µ of Ψ satisfies WLSI(G) with weight function
G : R × Rd × Rd⊗d → [0,∞], G(x1, x2) = (1 + x1)2.

Finally, it is possible to obtain a WLSI for the law µ1 of the Gaussian rough path
Xs,t = (Ψ2,Ψ3), for fixed times s, t ∈ [0,T ], by noting that ∥G∥L1(µ) = E[1 + ∥X∥2

Cα
] < ∞.

Proposition 6.2(ii) then implies that µ1 satisfies WLSI(G̃) with G̃(x2) =
∫
R

(1+x1)2π(dx1|x2).

At this point we recall a slight generalisation of [39, Proposition 4.1.3], that we need for
our last example.

Lemma 6.8. Let Ψ : Ω→ Rm be anH-locally Lipschitz continuous functional in the sense
that there exists a real-valued random variable Φ that is γ-a.e. finite and such that

|Ψ(ω + h) − Ψ(ω)| ≤ |Φ(ω)|∥h∥H (6.1)

holds for all H in bounded sets of H γ-a.e. Then Ψ is locally Malliavin differentiable
a.e. in the sense that there exist sequences An ⊂ Ω of measurable sets with An ↑ A ⊂ Ω,
γ(A) = 1, and Malliavin differentiable functionals Ψn : Ω → Rm such that Ψ = Ψn
on Ωn (the derivative is then defined by DΨ := DΨn on Ωn). Moreover, if Φ ∈ L2(Ω) then
DΨ ∈ L2(Ω).
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Proof. The proof is essentially the same as that of [39], Proposition 4.1.3. In particular,
the same arguments work by replacing the condition of H-differentiability with H-local
Lipschitz continuity, theH-Fréchet derivative DΨ by the random variable Φ and work with
the localising sequence

An =

{
ω ∈ Ω : sup

∥h∥H≤1/n
|Ψ(ω + i(h))| ≤ n, |Φ(ω)| ≤ n

}
, n ∈ N.

Note that the finiteness of Φ guarantees that A =
⋃

n∈N An is a set of probability 1. These
arguments imply existence of the Malliavin derivative of Ψn. Moreover, we obtain the
almost sure estimate ∥DΨn∥H ≤ Cn (where Cn → ∞ as n → ∞), hence DΨn ∈ L2(Ω). To
conclude that DΨ ∈ L2(Ω), we take advantage of the a.s. existence and linearity of the map

h 7−→ DhΨn =
d
dϵ
Ψn(ω + ϵh)

∣∣∣∣∣
ϵ=0
.

In view of (6.1) it follows that this linear map is bounded and thus we obtain

∥DΨn∥H = sup
∥h∥H≤1

|DhΨn| ≤ |Φ|, γ-a.e.

Since this bound is uniform in n and DΨ = DΨn on Ωn, the conclusion follows. □

Example 6.9. (Gaussian RDEs) Let p ∈ (1, 3), T > 0 and Y solve the RDE

dY = V(Y)dX, Y0 ∈ R
m, (6.2)

on the interval [0,T ]. Here, for simplicity, we assume that V = (V1, . . . ,Vd) is a collection
of C∞b vector fields on Rm and, as in the previous example, X is a continuous Gaussian
process that lifts to a geometric p-(or 1/p-)Hölder rough path X. With the same abstract
Wiener space as in the previous example, consider the Rm+1-valued functional

Ψ = (Ψ1,Ψ2) = (∥X∥p-var,YT ),

where ∥X∥p-var is the (inhomogeneous) p-variation "norm" (Definition 3.1). Regarding the
differentiability of Ψ1, the triangle inequality along with the estimates on the shifted rough
path from the previous example furnish

|Ψ1(ω + h) − Ψ1(ω)| ≤
[

sup
(ti)∈P[0,T ]

∑
i

(
|hti,ti+1 | +

∣∣∣Xti,ti+1(ω + h) − Xti,ti+1(ω)
∣∣∣)p] 1

p

≤ C(∥h∥H + 2∥X∥p-var∥h∥H + ∥h∥2),

for a constant that depends on the various embeddings of the underlying p-variation spaces.
Since ∥X∥p-var is square-integrable, we deduce that, for all H in bounded sets ofH , satisfies
the assumptions of Lemma 6.8. Thus we have

∥DΨ1∥H ≤ ∥X∥p-var ≤ ∥X∥p-var, γ − a.e.

Turning to Ψ2, the functional YT is γ-a.s. continuouslyH-differentiable and

DhYt =

∫ t

0
JX

t←sV j(Ys)dhs,
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where JX
t←s is the Jacobian of the solution flow of (6.2) with respect to the initial condition.

The latter satisfies itself a linear RDE and satisfies the estimate

∥JX
·←0∥p-var ≤ C exp

(
c∥X∥pp-var

)
for some constants c,C > 0 (see e.g. [23, Equation (20.17)]; notice that the estimate there is
formulated in terms of the homogeneous p-variation norm which is bounded above by the
homogeneous one considered here). In view of the latter, along with the shift invariance of
the Jacobian flow and the boundedness of the vector fields V , one has

∥DΨ2∥H = ∥DYT ∥H ≤ CT exp
(
c∥X∥pp-var

)
.

Thus
∥DΨ∥H ≤ C

(
∥X∥ + exp

(
c∥X∥pp-var

))
,

which in view of Proposition (6.2)(i) implies that the law of Ψ satisfies a WLSI with weight
function G(x) = (x1 + exp

1 ).

Appendix A. Technical proofs

This section is devoted to the proofs of some technical lemmas used throughout this
work. As is customary, we remark that values of unimportant constants may change from
line to line without a change in notation.

A.1. Proof of Lemma 4.11. From the definition of the distance (4.11) it suffices to obtain
estimates for the basis elements S ⊂ T . Let λ ∈ (0, 1], T > 0, s ∈ [0,T ], h1, h2 ∈ H and
ϕ ∈ C1

c (R) such that ∥ϕ∥C1 ≤ 1 and supp(ϕ) ⊂ (−1, 1). Starting with the symbol Ξ,∣∣∣ 〈(Th2Π
ξ
s − Th1Π

ξ
s
)
Ξ, ϕλs

〉 ∣∣∣ = ∣∣∣∣〈Ẇ + h2, ϕ
λ
s

〉
−

〈
Ẇ + h1, ϕ

λ
s

〉∣∣∣∣
=

1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

(
h2(t) − h1(t)

)
ϕ(λ−1(t − s))dt

∣∣∣∣∣
≤ λ−1∥h2 − h1∥H

(
λ

∫
(−1,1)

ϕ(z)2dz
) 1

2

≤
√

2λ−
1
2 ∥ϕ∥C1∥h2 − h1∥H ≤

√
2λ−

1
2 ∥h2 − h1∥H ,

(A.1)

where we used Cauchy-Schwarz and z = λ−1(t − s). Next let m ∈ {1, . . . ,M} and consider∣∣∣〈(Th2Π
ξ
s − Th1Π

ξ
s
)
I(Ξ)m, ϕλs

〉∣∣∣
=

1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

[(
ŴH(t) − ŴH(s) + ĥ2(t) − ĥ2(s)

)m
−

(
ŴH(t) − ŴH(s) + ĥ1(t) − ĥ1(s)

)m]
× ϕ(λ−1(t − s))dt

∣∣∣∣∣.
Letting xi = ŴH(s, t) + ĥi(s, t) := ŴH(t) − ŴH(s) + ĥi(t) − ĥi(s), i = 1, 2 and using the
binomial identity

xm
2 = xm

1 +

m∑
k=1

(
m
k

)
xm−k

1 (x2 − x1)k, (A.2)
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we obtain

1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

[(
ŴH(s, t) + ĥ2(s, t)

)m
−

(
ŴH(s, t) + ĥ1(s, t)

)m]
ϕ(λ−1(t − s))dt

∣∣∣∣∣
=

1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

m∑
k=1

(
m
k

)[
ŴH(s, t) + ĥ1(s, t)

]m−k [̂h2(s, t) − ĥ1(s, t)
]kϕ(λ−1(t − s))dt

∣∣∣∣∣
≤ λ−1+m(H−κ)

m∑
k=1

(
m
k

)∥∥∥ŴH + ĥ1
∥∥∥m−k
CH−κ

∥∥∥̂h2 − ĥ1
∥∥∥k
CH−κ

∫
(s−λ,s+λ)

|ϕ(λ−1(t − s))|dt

≤ m!λ−1+m(H−κ)
m∑

k=1

Ck
H

∥∥∥ŴH + ĥ1
∥∥∥m−k
CH−κ

∥∥∥h2 − h1
∥∥∥k
H

(
λ

∫
(−1,1)

|ϕ(z)|ds
)

≤ Cm
(
1 ∨Cm

H

)
λm(H−κ)∥ϕ∥C1

(
1 ∨

∥∥∥∥ŴH + ĥ1

∥∥∥∥m−1

CH−κ

) (
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
,

(A.3)

where we used the change of variables z = λ−1(t−s) and the continuity of the linear operator
KH : H → CH and CH is an upper bound for the operator norm. Turning to ΞI(Ξ)m,

〈(
Th2Π

ξ
s − Th1Π

ξ
s
)
ΞI(Ξ)m, ϕλs

〉
=

〈
(Ẇ + h2)(ŴH − ŴH(s) + ĥ2 − ĥ2(s))m − (Ẇ + h1)(ŴH − ŴH(s) + ĥ1 − ĥ1(s))m, ϕλs

〉
=

〈
(h2 − h1)(ŴH − ŴH(s) + ĥ1 − ĥ1(s))m, ϕλs

〉
+

〈
(h2 − h1)

[
(ŴH − ŴH(s) + ĥ2 − ĥ2(s))m − (ŴH − ŴH(s) + ĥ1 − ĥ1(s))m]

, ϕλs
〉

+
〈
(Ẇ + h1)

[
(ŴH − ŴH(s) + ĥ2 − ĥ2(s))m − (ŴH − ŴH(s) + ĥ1 − ĥ1(s))m]

, ϕλs
〉

=: I1 + I2 + I3.

An application of the Cauchy-Schwarz inequality then yields

|I1| =

∣∣∣∣∣〈(h2 − h1)(ŴH − ŴH(s) + ĥ1 − ĥ1(s))m, ϕλs
〉∣∣∣∣∣

=
1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

(
h2(t) − h1(t)

)(
ŴH(s, t) + ĥ1(s, t)

)mϕ(λ−1(t − s))dt
∣∣∣∣∣

≤ λ−1+m(H−κ)
∥∥∥ŴH + ĥ1

∥∥∥m
CH−κ∥h2 − h1∥H

(
λ

∫
(−1,1)

ϕ(z)2dt
) 1

2

≤
√

2λ−
1
2+m(H−κ)∥ϕ∥C1

∥∥∥ŴH + ĥ1
∥∥∥m
CH−κ∥h1 − h2∥H .

(A.4)

For I2 we have the estimate

|I2| ≤ Cλ−
1
2+m(H−κ)

(
1 ∨

∥∥∥ŴH + ĥ1
∥∥∥m−1
CH−κ

) (∥∥∥h2 − h1
∥∥∥
H
∨

∥∥∥h2 − h1
∥∥∥m+1
H

)
. (A.5)
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This can be proved using very similar arguments as the ones used to obtain (A.3). To avoid
repetition, its proof will be omitted. Turning to I3 we have

I3 =
〈
h1

[
(ŴH − ŴH(s) + ĥ2 − ĥ2(s))m − (ŴH − ŴH(s) + ĥ1 − ĥ1(s))m]

, ϕλs
〉

+
〈
Ẇ

[
(ŴH − ŴH(s) + ĥ2 − ĥ2(s))m − (ŴH − ŴH(s) + ĥ1 − ĥ1(s))m]

, ϕλs
〉

=
1
λ

∫
(s−λ,s+λ)

[
(ŴH(s, t) + ĥ2(s, t) − (ŴH(s, t) + ĥ1(s, t))m

]
h1(t)ϕ(λ−1(t − s))dt

−
1
λ2

∫
(s−λ,s+λ)

ϕ′(λ−1(t − s))
∫ t

s

[
(ŴH(s, r) + ĥ2(s, r))m − (ŴH(s, r) + ĥ1(s, r))m

]
dWrdt

=: J1 + J2.

In view of (A.2) we have

|J1| =
1
λ

∣∣∣∣∣ ∫
(s−λ,s+λ)

m∑
k=1

(
m
k

) [
ŴH(s, t) + ĥ1(s, t)

]m−k [̂h2(s, t) − ĥ1(s, t)
]k

h1(t)ϕ(λ−1(t − s))dt
∣∣∣∣∣

≤ m!λ−1+m(H−κ)
m∑

k=1

∥∥∥ŴH + ĥ1
∥∥∥m−k
CH−κ ∥̂h2 − ĥ1∥

k
CH−κ

∫
(s−λ,s+λ)

|h1(t)|
∣∣∣ϕ(λ−1(t − s))

∣∣∣dt

≤ m!λ−
1
2+m(H−κ)

(
1 ∨

∥∥∥ŴH + ĥ1
∥∥∥m−1
CH−κ

) (
1 ∨Cm

H)
(
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
∥h1∥H∥ϕ∥L2(−1,1),

(A.6)
where we used Cauchy-Schwarz and the continuity of the embeddingH ↪→ CH once again.
Finally, let

Mst :=
∫ t

0

[
(ŴH(s, r) + ĥ2(s, r))m − (ŴH(s, r) + ĥ1(s, r))m

]
dWr, s ≤ t.

By the BDG inequality and (A.2) we have

E
[∣∣∣Mst − Mss

∣∣∣p] ≤ (∫ t

s
E

[∣∣∣∣(ŴH(s, r) + ĥ2(s, r)
)m
−

(
ŴH(s, r) + ĥ1(s, r)

)m∣∣∣∣2] dr
) p

2

≤ Cp
m


∫ t

s

 m∑
k=1

E
[∣∣∣∣ŴH(s, r) + ĥ1(s, r)

∣∣∣∣m−k] ∣∣∣∣̂h2(s, r) − ĥ1(s, r)
∣∣∣∣k2

dr


p
2

≤ Cp
m

 m∑
k=1

[
E
∥∥∥ŴH + ĥ1

∥∥∥(m−k)
CH−κ ∥̂h2 − ĥ1∥

k
CH−κ

]p[ ∫ t

s
(r − s)2m(H−κ)dr

]
p
2

≤ Cp
H,m

(
1 ∨ E

[∥∥∥∥ŴH + ĥ1

∥∥∥∥p(m−1)

CH−κ

]) (
∥h2 − h1∥

p
H
∨ ∥h2 − h1∥

mp
H

)
(t − s)pm(H−κ)+p/2.

An application of the Kolmogorov continuity criterion for two-parameter processes [19,
Theorem 3.13] furnishes∣∣∣Mst − Mss

∣∣∣ ≤ Kh1

(
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
(t − s)m(H−κ)+ 1

2−κ

almost surely, where Kh1 is a random variable with finite moments of all orders (this es-
timate can also be obtained by the Young bounds used for the proof of Lemma 4.13 in
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Section A.2 below). Plugging this estimate into the expression for J2 then yields

|J2| ≤ λ
−2

∫
(s−λ,s+λ)

|ϕ′(λ−1(t − s))|
∣∣∣Mst − Mss

∣∣∣dt

≤ K
(
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
λ−2

∫
(s−λ,s+λ)

|ϕ′(λ−1(t − s))|(t − s)m(H−κ)+ 1
2−κdt

≤ K
(
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
λ−2+1+m(H−κ)+ 1

2−κ

∫
(−1,1)

|ϕ′(t)|tm(H−κ)+ 1
2−κdt

≤ CK
(
∥h2 − h1∥H ∨ ∥h2 − h1∥

m
H

)
λm(H−κ)− 1

2−κ∥ϕ∥C1 .

(A.7)

A combination of (A.4), (A.6), (A.7) implies the almost sure bound∣∣∣〈(Th2Π
ξ
s − Th1Π

ξ
s
)
ΞI(Ξ)m, ϕλs

〉∣∣∣ ≤ Cm,Hλ
m(H−κ)− 1

2−κKh1∥h2 − h1∥H ∨ ∥h2 − h1∥
m+1
H
,

where Kh1 is a random variable with finite moments of all orders. The proof follows from
this with (A.1)-(A.3)-(A.5) and recalling the definition of model distance (4.11).

A.2. Proof of Lemma 4.13. Let p ≥ ( 1
2 − κ)

−1. For t ∈ [0,T ], h ∈ L2[0,T ] we have∫ t

s
f (ŴH

r + ĥr, r)d
(
Wr +

∫ r

0
hzdz

)
−

∫ t

s
f (ŴH

r , r)dWr

=

∫ t

s
f1(̂hr, r) f2(ŴH

r , r)hrdr +
∫ t

s
f1(̂hr, r) f2

(
ŴH

r , r
)
dWr

(A.8)

From the Besov variation embedding, there exists q with 1/p+1/q > 1 such that ∥̂h∥q−var;[s,t] ≤

C|t − s|H−κ∥h∥H . Moreover, for each u, v ∈ [s, t], we have by the mean value inequality

| f1(̂hu, u) − f1(̂hv, v)|q ≤ C
∣∣∣G(∥̂h∥∞)

∣∣∣q(|̂hu − ĥv|
q + |u − v|q

)
.

Hence, by monotonicity of G it follows that∥∥∥ f1(̂h·, ·)
∥∥∥

q−var;[s,t] ≤ C
∣∣∣G(c∥h∥H )

∣∣∣(∥̂h∥q−var;[s,t] + |t − s|
)
≤ CT

∣∣∣G(c∥h∥H )
∣∣∣(∥h∥H + 1

)
|t − s|H−κ.

Finally, the growth assumptions on f2 guarantee that
∫ ·

s f2(̂hr, r)dWr is 1/p-Hölder contin-
uous on [s, t] which in turn implies that∥∥∥∥∥ ∫ ·

s
f2(ŴH

r , r)dWr

∥∥∥∥∥
p-var;[s,t]

≤

∥∥∥∥∥ ∫ ·

s
f2(ŴH

r , r)dWr

∥∥∥∥∥
C1/p[s,t]

|t − s|1/p.

Combining the last two estimates with Young’s inequality we obtain the almost sure bound∥∥∥∥∥ ∫ ·

0
f2(ŴH

r , r) f1(̂hr, r)dWr

∥∥∥∥∥
CH−κ+1/p[0,T ]

≤ C
∣∣∣G(c∥h∥H )

∣∣∣(∥h∥H + 1
)
K,

where K is a random variable with finite moments of all orders. As for the Riemann integral
in (A.8), Cauchy-Schwarz yields a similar estimate for its C1/2[0,T ] norm.
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A.3. Proof of Lemma 4.20(1). Let t , s ∈ [0,T ]. By linearity of Γt,s and (4.6) we have

Γt,s fΠ(s) =
M∑

k=0

1
k!
∂k

1 f
(
(KH ∗ ΠsΞ)(s), s

)
Γt,sI(Ξ)k =

M∑
k=0

1
k!
∂k

1 f
(
(KH ∗ ΠsΞ)(s), s

)(
Γt,sI(Ξ)

)k

=

M∑
k=0

M−k∑
m=0

1
k!m!
∂k+m

1 f
(
(KH ∗ ΠtΞ)(t), s

)[
(KH ∗ ΠsΞ)(s) − (KH ∗ ΠtΞ)(t)

]m(
Γt,sI(Ξ)

)k

+

M∑
k=0

1
k!(M − k)!

( ∫ (KH∗ΠsΞ)(s)

(KH∗ΠtΞ)(t)
∂M+1

1 f
(
x, s

)[
(KH ∗ ΠsΞ)(s) − x

]M−kdx
)(
Γt,sI(Ξ)

)k,

where we Taylor-expanded ∂k
1 f around (KH ∗ ΠtΞ)(t) up to the (M − k)th degree. Writing

∂k+m
1 f (·, s) = ∂k+m

1 f (·, t) +
∫ s

t ∂
k+m,1
1,2 f (·, x)dx, we obtain

Γt,s fΠ(s) =
M∑

k=0

M−k∑
m=0

1
k!m!
∂k+m

1 f
(
(KH ∗ ΠtΞ)(t), t

)[
(KH ∗ ΠsΞ)(s) − (KH ∗ ΠtΞ)(t)

]m(
Γt,sI(Ξ)

)k

+ R(t, s),

where the remainder is given by

R(t, s) :=
M∑

k=0

1
k!(M − k)!

( ∫ (KH∗ΠsΞ)(s)

(KH∗ΠtΞ)(t)
∂M+1

1 f
(
x, s

)[
(KH ∗ ΠsΞ)(s) − x

]M−kdx
)(
Γt,sI(Ξ)

)k

+

M∑
k=0

M−k∑
m=0

1
k!m!

( ∫ s

t
∂k+m,1

1,2 f
(
(KH ∗ ΠtΞ)(t), x

)
dx

)[
(KH ∗ ΠsΞ)(s) − (KH ∗ ΠtΞ)(t)

]m(
Γt,sI(Ξ)

)k

=

M∑
k=0

R̃k(t, s)
(
Γt,sI(Ξ)

)k.

(A.9)
In view of the relations Γt,sI(Ξ) = I(Ξ) −

(
ΠtI(Ξ)

)
(s)1 and

(KH ∗ ΠsΞ)(s) − (KH ∗ ΠtΞ)(t) = ΠtI(Ξ)(s) ≡ ΠtI(Ξ)(s)1,

which are directly inferred from (4.8)-(4.6)-(4.9) and the binomial identity (A.2), we obtain

Γt,s fΠ(s) − R(t, s) =
M∑

k=0

M−k∑
m=0

1
k!m!
∂k+m

1 f
(
(KH ∗ ΠtΞ)(t), t

)[
ΠtI(Ξ)(s)

]m[
I(Ξ) −

(
ΠtI(Ξ)

)
(s)1

]k

=

M∑
k=0

M∑
m′=k

1
k!(m′ − k)!

∂m′
1 f

(
(KH ∗ ΠtΞ)(t), t

)[
ΠtI(Ξ)(s)

]m′−k[I(Ξ) −
(
ΠtI(Ξ)

)
(s)1

]k

=

M∑
m′=0

∂m′
1 f

(
(KH ∗ ΠtΞ)(t), t

)
m′!

m′∑
k=0

(
m′

k

)[
ΠtI(Ξ)(s)

]m′−k[I(Ξ) −
(
ΠtI(Ξ)

)
(s)1

]k

=

M∑
m′=0

1
m′!
∂m′

1 f
(
(KH ∗ ΠtΞ)(t), t

)
I(Ξ)m′ = fΠ(t),
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where we set m + k = m′ and then interchanged the order of summation to obtain the third
equality. Turning to the remainder, we have

R(t, s) =
M∑

k=0

R̃k(t, s)
(
Γt,sI(Ξ)

)k
=

M∑
k=0

R̃k(t, s)
[
I(Ξ) −

(
ΠtI(Ξ)

)
(s)1

]k

=

M∑
k=0

R̃k(t, s)
[
I(Ξ) +

(
ΠsI(Ξ)

)
(t)1

]k
=

M∑
k=0

R̃k(t, s)
k∑
ℓ=0

(
k
ℓ

)(
ΠsI(Ξ)(t)

)k−ℓI(Ξ)ℓ

=

M∑
ℓ=0

 M∑
k=ℓ

R̃k(t, s)
(
k
ℓ

)(
ΠsI(Ξ)(t)

)k−ℓ

 I(Ξ)ℓ. (A.10)

The analogous expressions for D(Π) follow by multiplying throughout by the symbol Ξ.
The latter is possible since, in view of (4.6), we have Γt,s(I(Ξ)kΞ) = (Γt,sI(Ξ))kΞ. In view
of (A.10), along with the fact that fΠ(t)−Γt,s fΠ(s) = R(t, s), we see that in order to estimate
∥ fΠ∥DγT (recall (4.14)), one has to bound the terms R̃k. To this end, let k ∈ ℓ, . . . ,M and
a = (KH ∗ ΠtΞ)(t), b = (KH ∗ ΠsΞ)(s). Assuming first a < b, a change of variable gives∫ b

a
∂M+1

1 f
(
x, s

)[
b − x

]M−kdx =
∫ b−a

0
∂M+1

1 f
(
x + a, s

)
(b − a − x)M−kdx

≤

∫ b−a

0

∣∣∣∂M+1
1 f

(
x + a, s

)∣∣∣(b − a − x)M−kdx

≤ C f ,T

∫ b−a

0

(
1 +G(|x + a|)

)
(b − a − x)M−kdx

≤
C f ,T

M + 1 − k
(b − a)M+1−k(1 +G(|b| + 2|a|)),

where we used the assumption (4.17). The case b < a is symmetric, namely

−

∫ a

b
∂M+1

1 f
(
x, s

)[
b − x

]M−kdx = −
∫ a−b

0
∂M+1

1 f
(
x + b, s

)
(−x)M−kdx

≤

∫ a−b

0

∣∣∣∂M+1
1 f

(
x + b, s

)∣∣∣xM−kdx

≤ C f ,T

∫ a−b

0
(1 +G(|x + b|))xM−kdx

≤
C f ,T

M + 1 − k
(a − b)M+1−k(1 +G(|a| + 2|b|)).

Since G is non-decreasing, we combine both cases to obtain∣∣∣∣∣ ∫ b

a
∂M+1

1 f
(
x, s

)[
b − x

]M−kdx
∣∣∣∣∣ ≤ C f ,T

M + 1 − k

[
1 +G(2|a| + 2|b|)

]∣∣∣b − a
∣∣∣M+1−k

.
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Substituting back a and b, the latter yields∫ (KH∗ΠsΞ)(s)

(KH∗ΠtΞ)(t)
∂M+1

1 f
(
x, s

)[
(KH ∗ ΠsΞ)(s) − x

]M−kdx

≤
C f ,T

M + 1 − k

[
1 +G

(
2
∣∣∣(KH ∗ ΠsΞ)(s)

∣∣∣ + 2
∣∣∣(KH ∗ ΠtΞ)(t)

∣∣∣)]∣∣∣(KH ∗ ΠtΞ)(t) − (KH ∗ ΠsΞ)(s)
∣∣∣M+1−k

≤
C f ,T

M + 1 − k

[
1 +G

(
4
∥∥∥(KH ∗ ΠΞ)

∥∥∥
C[0,T ]

)]∥∥∥KH ∗ ΠΞ
∥∥∥M+1−k
CH−κ[0,T ]|t − s|(M+1−k)(H−κ), (A.11)

with κ < H, recalling that KH∗ΠΞ is function-valued for the models we consider. It remains
to estimate the second summand in (A.9), smoother since f (x, ·) is bounded. Indeed,∣∣∣∣∣ ∫ s

t
∂k+m,1

1,2 f
(
(KH ∗ ΠtΞ)(t), x

)
dx

∣∣∣∣∣ ≤ |t − s| sup
x∈[0,T ]

∣∣∣∂k+m,1
1,2 f

(
(KH ∗ ΠtΞ)(t), x

)∣∣∣
≤ C f ,T |t − s|

[
1 +G

(∥∥∥KH ∗ ΠΞ
∥∥∥

C[0,T ]

)]
.

Thus,
M−k∑
m=0

1
k!m!

( ∫ s

t
∂k+m,1

1,2 f
(
(KH ∗ ΠtΞ)(t), x

)
dx

)[
(KH ∗ ΠsΞ)(s) − (KH ∗ ΠtΞ)(t)

]m

≤ C f ,T

[
1 +G

(∥∥∥KH ∗ ΠΞ
∥∥∥

C[0,T ]

)] M−k∑
m=0

1
k!m!

∥∥∥KH ∗ ΠΞ
∥∥∥m
CH−κ[0,T ]|t − s|1+m(H−κ)

≤
C f ,T |t − s|(M + 1 − k)

k!

[
1 +G

(∥∥∥KH ∗ ΠΞ
∥∥∥

C[0,T ]

)](
1 ∨ T (M−k)(H−κ))(1 ∨ ∥∥∥KH ∗ ΠΞ

∥∥∥M−k
CH−κ[0,T ]

)
.

(A.12)
Putting (A.11), (A.12) together we have

|R̃k(t, s)|
|t − s| + |t − s|(M+1−k)(H−κ) ≤

C f ,T (M + 1 − k)
k!

(
1 ∨ T (M−k)(H−κ)

) (
1 ∨

∥∥∥KH ∗ ΠΞ
∥∥∥M−k+1
CH−κ[0,T ]

)
×

[
1 +G

(
4
∥∥∥KH ∗ ΠΞ

∥∥∥
C[0,T ]

)]
.

Since the models we consider are admissible (in the sense of [5, Lemma 3.19]), then
ΠsI(Ξ)(t) = KH ∗ ΠsΞ(t) − KH ∗ ΠsΞ(s). In view of the latter, plugging the last estimate
into (A.10) yields, for ℓ = 0, . . . ,M and β = ℓ(H − κ)

|R(t, s)|β =
∣∣∣∣∣ M∑

k=ℓ

R̃k(t, s)
(
k
ℓ

)(
ΠsI(Ξ)(t)

)k−ℓ
∣∣∣∣∣ ≤ M∑

k=ℓ

|R̃k(t, s)|
(
k
ℓ

)
|ΠsI(Ξ)(t)|k−ℓ

≤

M∑
k=ℓ

(
k
ℓ

)
|R̃k(t, s)|

∥∥∥KH ∗ ΠΞ
∥∥∥k−ℓ
CH−κ[0,T ]|t − s|(k−ℓ)(H−κ)

≤ C f ,T
(
1 ∨ T (M−ℓ)(H−κ))(1 ∨ ∥∥∥KH ∗ ΠΞ

∥∥∥M−ℓ+1
CH−κ[0,T ]

)[
1 +G

(
4
∥∥∥KH ∗ ΠΞ

∥∥∥
C[0,T ]

)]
×

×

M∑
k=ℓ

(
k
ℓ

)
M + 1 − k

k!

(
|t − s|1+(k−ℓ)(H−κ) + |t − s|(M+1−ℓ)(H−κ)

)
.
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Therefore, modulo a constant,

|R(t, s)|β

|t − s|
1
2+κ−β

≲
M∑

k=ℓ

(
k
ℓ

)
M + 1 − k

k!

(
|t − s|

1
2−κ+k(H−κ) + |t − s|(M+1)(H−κ)− 1

2−κ
)
.

Since κ < H and M is chosen according to (4.3), the exponents on the right-hand side are
positive. Hence, for any 0 < γ < ((M + 1)(H − κ) − 1

2 − κ) ∧ ( 1
2 − κ),

|R(t, s)|β

|t − s|
1
2+κ+γ−β

≲ (M + 1 − ℓ)
M∑

k=ℓ

1
ℓ!(k − ℓ)!

(
|t − s|

1
2−κ−γ+k(H−κ) + |t − s|(M+1)(H−κ)− 1

2−κ−γ
)

≤
(M + 1 − ℓ)(M − ℓ)

ℓ!

(
1 ∨ Tα

)
,

where α = 1
2 − κ − γ + M(H − κ). Combining the last estimates and applying crude bounds

for the terms that depend on ℓ, we obtain

sup
s,t∈[0,T ]

A∋β< 1
2+κ+γ

∣∣∣ fΠ(t) − Γt,s fΠ(s)
∣∣∣
β

|t − s|
1
2+κ+γ−β

≤ C f ,T,M

[
1+G

(
4
∥∥∥KH ∗ΠΞ

∥∥∥
C[0,T ]

)](
1∨

∥∥∥KH ∗ΠΞ
∥∥∥M+1
CH−κ[0,T ]

)
.

After multiplying by Ξ, the same estimate also implies that for ℓ = 0, . . . ,M and β′ =
ℓ(H − κ) − 1

2 − κ,

sup
s,t∈[0,T ]
A∋β′<γ

∣∣∣D(Π)(t) − Γt,sD(Π)(s)
∣∣∣
β′

|t − s|γ−β′
= sup

s,t∈[0,T ]
A∋β< 1

2+κ+γ

∣∣∣ fΠ(t) − Γt,s fΠ(s)
∣∣∣
β

|t − s|
1
2+κ+γ−β

≤ C f ,T,M

[
1 +G

(
4
∥∥∥KH ∗ ΠΞ

∥∥∥
C[0,T ]

)](
1 ∨

∥∥∥KH ∗ ΠΞ
∥∥∥M+1
CH−κ[0,T ]

)
.

A.4. Proof of Lemma 4.20(2). Let i = 1, 2, t ∈ [0,T ]. Since

D f (Πi)(t) = fΠ
i
⋆ Ξ(t) =

M∑
m=0

1
m!
∂m

1 f
(
(KH ∗ Πi

tΞ)(t), t
)
I(Ξ)kΞ,

our assumptions on f directly yield

sup
t∈[0,T ]

sup
A∋β<γ

∣∣∣D f (Π1)(t) −D f (Π2)(t)
∣∣∣
β
≤ c f ,T,M(1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N

C[0,T ])

×
∥∥∥KH ∗ Π1Ξ − KH ∗ Π2Ξ

∥∥∥
C[0,T ] ∨

∥∥∥KH ∗ Π1Ξ − KH ∗ Π2Ξ
∥∥∥N

C[0,T ].

Turning to the remainder terms, a computation similar to (A.10) furnishes

D f (Πi)(t) − Γi
t,sD f (Πi)(s) =

M∑
ℓ=0

{ M∑
k=ℓ

Ri
k(t, s)

(
k
ℓ

)(
Πi

sI(Ξ)(t)
)k−ℓ

}
I(Ξ)ℓΞ,
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where, using the notation (KH ∗ ΠiΞ)(t, s) := (KH ∗ Πi
sΞ)(s) − (KH ∗ Πi

tΞ)(t), i = 1, 2,

Ri
k(t, s) :=

(
KH ∗ ΠiΞ

)
(t, s)M+1−k

k!(M − k)!

[∫ 1

0
∂M+1

1 f
(
(KH ∗ Πi

tΞ)(t) + θ
[
(KH ∗ ΠiΞ)(t, s)

]
, s

)
(1 − θ)Mdθ

]
+

M−k∑
m=0

1
k!m!

[
(KH ∗ ΠiΞ)(t, s)

]m
( ∫ s

t
∂k+m,1

1,2 f
(
(KH ∗ Πi

tΞ)(t), x
)
dx

)
=: Ai

k(t, s) + Bi
k(t, s).

Thus,

D f (Π2)(t) − Γ2
t,sD f (Π2)(s) −D f (Π1)(t) + Γ1

t,sD f (Π1)(s)

=

M∑
ℓ=0

{ M∑
k=ℓ

[
R2

k(t, s) − R1
k(t, s)

](k
ℓ

)(
Π2

s I(Ξ)(t)
)k−ℓ

}
I(Ξ)ℓΞ

+

M∑
ℓ=0

{ M∑
k=ℓ

R1
k(t, s)

(
k
ℓ

)[(
Π2

s I(Ξ)(t)
)k−ℓ
−

(
Π1

s I(Ξ)(t)
)k−ℓ]}I(Ξ)ℓΞ.

(A.13)

Starting from the first term on the right-hand side we have

R2
k(t, s) − R1

k(t, s) = A2
k(t, s) − A1

k(t, s) + B2
k(t, s) − B1

k(t, s) (A.14)

and

A2
k(t, s) − A1

k(t, s) =
1

k!(M − k)!

[(
(KH ∗ Π2Ξ)(t, s)

)M+1−k
−

(
(KH ∗ Π1Ξ)(t, s)

)M+1−k]
×

( ∫ 1

0
∂M+1

1 f
(
(KH ∗ Π1

t Ξ)(t) + θ
[
(KH ∗ Π1Ξ)(t, s)

]
, s

)
(1 − θ)Mdθ

)

+

(
(KH ∗ Π1Ξ)(t, s)

)M+1−k

k!(M − k)!

∫ 1

0

{
∂M+1

1 f
(
(KH ∗ Π2

t Ξ)(t) + θ
[
(KH ∗ Π2Ξ)(t, s)

]
, s

)
− ∂M+1

1 f
(
(KH ∗ Π1

t Ξ)(t) + θ
[
(KH ∗ Π1Ξ)(t, s)

]
, s

)}
(1 − θ)Mdθ.

From the growth assumptions on f we obtain

k!(M − k)!|A2
k(t, s) − A1

k(t, s)|

≤ C f ,T,M1 ∨
∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥N

CH−κ

∣∣∣∣∣((KH ∗ Π2Ξ)(t, s)
)M+1−k

−

(
(KH ∗ Π1Ξ)(t, s)

)M+1−k∣∣∣∣∣
+C′f ,T,M

∣∣∣∣∣(KH ∗ Π1Ξ)(t, s)
∣∣∣∣∣M+1−k(

1 ∨
∥∥∥KH ∗ Π1Ξ

∥∥∥N
CH−κ[0,T ]

)
×

∣∣∣∣∣(KH ∗ Π2Ξ)(t, s) − (KH ∗ Π1Ξ)(t, s)
∣∣∣∣∣ ∨ ∣∣∣∣∣(KH ∗ Π2Ξ)(t, s) − (KH ∗ Π1Ξ)(t, s)

∣∣∣∣∣N .
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Now, letting xi = (KH ∗ Πi
sΞ)(s) − (KH ∗ Πi

tΞ)(t), and re-expanding xM+1−k
2 around x1

using (A.2) we continue the last estimate as follows:

k!(M − k)!|A2
k(t, s) − A1

k(t, s)| ≤ C f ,T,M1 ∨
∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥N

CH−κ

×

M+1−k∑
j=1

(
M + 1 − k

j

)∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥M+1−k− j

CH−κ

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥ j

CH−κ

+C′f ,T,M |t − s|(M+1−k)(H−κ)
∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥M+1−k

CH−κ

(
1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N

CH−κ[0,T ]

)
×

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥
CH−κ
∨

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥N

CH−κ

≤ C′f ,T,M |t − s|(M+1−k)(H−κ)1 ∨
∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥N+M+1−k

CH−κ

×

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥
CH−κ
∨

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥N+M+1−k

CH−κ
.

(A.15)
As for the last terms in (A.14) we write

B2
k(t, s) − B1

k(t, s)

=

M−k∑
m=0

1
k!m!

∫ s

t

(
∂k+m,1

1,2 f
(
(KH ∗ Π2

t Ξ)(t), x
)
− ∂k+m,1

1,2 f
(
(KH ∗ Π1

t Ξ)(t), x
))

dx
[
(KH ∗ Π1Ξ)(t, s)

]m

+

M−k∑
m=0

1
k!m!

( ∫ s

t

[
∂k+m,1

1,2 f
(
(KH ∗ Π2

t Ξ)(t), x
)
− ∂k+m,1

1,2 f
(
(KH ∗ Π1

t Ξ)(t), x
)]

dx
)

×

([
(KH ∗ Π2Ξ)(t, s)

]m
−

[
(KH ∗ Π1Ξ)(t, s)

]m
)

+

M−k∑
m=0

1
k!m!

( ∫ s

t
∂k+m,1

1,2 f
(
(KH ∗ Π1

t Ξ)(t), x
)
dx

)
×

([
(KH ∗ Π2Ξ)(t, s)

]m
−

[
(KH ∗ Π1Ξ)(t, s)

]m
)
.

These terms can be bounded by using the following facts: 1) From (4.18), f and its deriva-
tives are bounded on their second argument over compact time intervals. In particular, all
the terms above can be bounded, up to a constant, in time by |t − s| 2) f and its derivatives
have at most polynomial growth of degree N on their first argument. The latter, along with
another polynomial re-expansion argument yield

|B2
k(t, s) − B1

k(t, s)| ≤ C f ,M,T |t − s|1 ∨
∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥N+M−k

CH−κ

×

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥
CH−κ
∨

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥N+M−k

CH−κ
.

(A.16)

In view of (A.14), (A.15) and (A.16), it follows that
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|R2
k(t, s) − R1

k(t, s)| ≤ |A2
k(t, s) − A1

k(t, s)| + |B2
k(t, s) − B1

k(t, s)|

≤ C′f ,T,M
(
|t − s|(M+1−k)(H−κ) + |t − s|

)(
1 ∨

∥∥∥∥∥KH ∗ Π1Ξ

∥∥∥∥∥N+M+1−k

CH−κ

)
×

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥
CH−κ
∨

∥∥∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ

∥∥∥∥∥N+M+1−k

CH−κ
.

Returning to the first term in (A.13) we have, using thatΠi
sI(Ξ)(t) = KH∗Πi

tΞ−KH∗Πi
sΞ,∣∣∣∣∣ M∑

k=ℓ

[
R2

k(t, s) − R1
k(t, s)

](k
ℓ

)(
Π2

s I(Ξ)(t)
)k−ℓ

∣∣∣∣∣
≤

M∑
k=ℓ

2k−ℓ+1
(
k
ℓ

)∣∣∣R2
k(t, s) − R1

k(t, s)
∣∣∣(∣∣∣Π2

s I(Ξ)(t) − Π1
s I(Ξ)(t)

∣∣∣k−ℓ + ∣∣∣Π1
s I(Ξ)(t)

∣∣∣k−ℓ)
≤ 2M−ℓ+1C′f ,T,M

M∑
k=ℓ

(
k
ℓ

)(
|t − s|(M+1−ℓ)(H−κ) + |t − s|1+(k−ℓ)(H−κ)

)(
1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N+M+1−k
CH−κ[0,T ]

)
×

(∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥
CH−κ[0,T ] ∨

∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥N+M+1−k
CH−κ[0,T ]

)
×

(∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥k−ℓ
CH−κ[0,T ] +

∥∥∥KH ∗ Π1Ξ
∥∥∥k−ℓ
CH−κ[0,T ]

)
≤ C′f ,T,M |t − s|(M+1−ℓ)(H−κ)

(
1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N+M+1
CH−κ[0,T ]

)
×

(∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥
CH−κ[0,T ] ∨

∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥N+M+1−ℓ
CH−κ[0,T ]

)
.

Finally, for the second term in (A.13), similar estimates along with Lemma 4.20 furnish∣∣∣∣∣ M∑
k=ℓ

R1
k(t, s)

(
k
ℓ

) [(
Π2

s I(Ξ)(t)
)k−ℓ
−

(
Π1

s I(Ξ)(t)
)k−ℓ

] ∣∣∣∣∣
≤ C f ,M,T |t − s|(M+1−ℓ)(H−κ)

(
1 ∨

∥∥∥KH ∗ Π1Ξ
∥∥∥N+M+1
CH−κ[0,T ]

)
×

(∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥
CH−κ[0,T ] ∨

∥∥∥KH ∗ Π2Ξ − KH ∗ Π1Ξ
∥∥∥N+M+1−ℓ
CH−κ[0,T ]

)
.

A combination of the estimates in the last two displays concludes the proof.
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