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Marginal density expansions for diffusions and

stochastic volatility, part II: Applications

J.D. Deuschel, P.K. Friz, A. Jacquier, S. Violante
TU Berlin, TU and WIAS Berlin, TU Berlin, Imperial College

Abstract

In [17] we discussed density expansions for multidimensional diffusions
(

X1, . . . , Xd
)

, at
fixed time T and projected to their first l coordinates, in the small noise regime. Global
conditions were found which replace the well-known ”not-in-cutlocus” condition known from
heat-kernel asymptotics. In the present paper we discuss financial applications; these include
tail and implied volatility asymptotics in some correlated stochastic volatility models. In
particular, we solve a problem left open by A. Gulisashvili and E.M. Stein (2009).

Keywords: Density expansions in small noise and small time, sub-Riemannian geometry
with drift, focal points, stochastic volatility, implied volatility, large strike and small time
asymptotics for implied volatility

1 Introduction

Given a multi-dimensional diffusion process Xt =
(

X1
t , . . . , X

d
t : t ≥ 0

)

, started at X0 = x0, we
studied in [17] the behaviour of the probability density function f = f (y , t) of the projected (in
general non-Markovian) process

Yt := Πl ◦Xt :=
(

X1
t , . . . , X

l
t

)

with l ∈ {1, . . . , d} fixed. This situation is typical in analysis of stochastic volatility models; Y
may represent one (or several!) assets, the full process X contains additional stochastic volatility
components (and also stochastic rates, if desired). Basket models, in the spirit of [2, 3] can also
be fitted in this framework. Both short time asymptotics and tail asymptotics, in presence of
suitable scaling properties of the model, can be derived from the small noise problem

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d,

where W is a m-dimensional standard Brownian motion. The main technical result in [17] is a
density expansion for Yε

t := Πl ◦Xε
t of the form, for x0, y, T fixed,

f ε (y, T ) = e−c1/ε
2

ec2/εε−l (c0 + O (ε)) as ε ↓ 0. (1)

One of our main motivations, for [17] and the present paper, comes from the recent work on asset
price density expansions by A. Gulisashvili and E.M. Stein: in [28, Theorem 2.1] they consider
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the uncorrelated Stein–Stein stochastic volatility model. In the appropriate pricing measure the
dynamics are1

dS/S = ZdW 1, dZ = (a+ bZ)dt+ cdW 2,

with parameters, a ≥ 0, b ≤ 0, c > 0, spot-volatility Z0 = σ0 ≥ 0 and correlation ρ :=
d
〈

W 1,W 2
〉

/dt equal to zero; spot S0 can normalized to unit. Their main result is that ST ,
for fixed T > 0, admits a probability density function f = f (s) such that2

f (s) = s−B1eB2

√
log s (log s)

− 1
2

(

B0 +O (log s)
− 1

2

)

as s ↑ ∞ (2)

with explicitly computable constants; asymptotic formulae of the implied volatility in the large
strike regime are then obtained as (nowadays mechanical; cf. Lee [23] and the references therein)
corollaries. Indeed, one has3

σBS (k, T )
2
T =

(

β1

√
k + β2 + o (1)

)2

as log-strike k →∞; (3)

β1 = β1 (B1) =
√
2
(

√

B1 − 1−
√

B1 − 2
)

,

β2 = β2 (B1, B2) =
B2√
2

(

1√
B1 − 2

− 1√
B1 − 1

)

.

The proof of [28, Theorem 2.1] relies on the so-called Hull-White formula which states that
- under the crucial assumption of zero correlation - an option price in a stochastic volatility
models is effectively a weighted average of Black–Scholes option prices (at different volatiliy
levels). The correlated case was left as open problem in [28, Theorem 2.1] and indeed the
importance of allowing for correlation in stochastic volatility models is well-documented, e.g.
[24, 39]. Evidence from estimation of parametric stochastic volatility models suggests correlation
parameter ρ ≈ −0.7 or ρ ≈ −0.8 for S&P 500, for instance; a finding fairly robust across models
and time periods [1].

When writing the expansion (2) in terms of log-price Y = logS, it indeed has the form (1)
with y = log s = 1/ε2 and c1 = B1−1, c2 = B2. More generally, we can show from rather general
and robust principles that the tail behaviour of YT ∈ R1 for fixed T > 0, subject to a certain
scaling with parameter θ ∈ {1, 2} in the full Markovian specification of the model, has the form

f (y, T ) = e−c1y
2/θ

ec2y
1/θ

y
1
θ−1

(

c0 +O
(

1/y1/θ
))

as y ↑ ∞. (4)

Again, such an expansion leads immediately to call price and then (Black–Scholes) implied
volatility expansions in the large strike regime, cf. [28, 23]; in particular, in the case θ = 2
typical for stochastic volatility (see [21] for similar results in the Heston model) the expansion
(3) remains valid with B1 = c1 + 1 and c2 = B2. We note that the square-root growth of
implied volatility, in terms of log-strike, is actually a very general feature of models with moment
explosions, [38, 7] which includes many stochastic volatility models [24, 39, 8].

The main contribution of this paper is to establish validity of (2), equivalently (4) with θ = 2,
for the correlated Stein–Stein model. Having in mind the typical values o ρ in equity markets, our

1Sometimes the Stein–Stein model is written with |Z| dW 1 rather than ZdW 1; in the uncorrelated case this
does not make a difference to the law of the process, as is immediate from a look at the respective generators.
There is a recent tendency in the finance community to use the form ZdW 1 which we analyze here, cf. [40, 41],
this version of the model was also proposed by Schöbel–Zhu, [49].

2Strictly speaking, the O-term given in [28] is log s with power −1/4; the authors have informed us, however,
that a closer look at their argument indeed gives power −1/2.

3Small strike asymptotics are similar and will not be discussed here.
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focus is on the case −1 < ρ ≤ 0 (although our analysis could be adapted to positive correlation).
The leading order behaviour described by β1 = β1 (c1 + 1) is well understood; see [38, 7] and
also [18, p40, p265]. The second order behaviour is given by β2 = β2 (c1 + 1, c2). Further
terms in this expansion are in principle possible [23]; in particular, the next term would involve
c0. Our main observation is that the Stein–Stein model has the scaling properties necessary to
transform it into a small noise problem which can then be tackled with the methods of [17]. It
should be noted that the Stein–Stein model is hypoelliptic, with region of degeneracy given by
{(y, z) : z = 0}, and that the ε-rescaled Stein–Stein model is started (as ε→ 0) in the degenerate
region. In other words, there is no escape in dealing with the hypoellipticity of the problem.4

Density expansions of diffusions in the small noise regime, with applications to implied volatil-
ity expansions, were recently considered by Y. Osajima [44], based on joint work with S. Kusuoka
[36] and old work of Kusuoka–Strook [37]. We partially improve on these results. First, as was
already mentioned in [17], any expansion of the form (1), or (4), with c2 6= 0 is out of reach in
these works, the reason being that the Kusuoka–Stroock theory was set up as expansion in ε2

rather than ε. Secondly, in comparison with [44], we do not assume x0 near (y, ·). And finally,
in further contrast to (the general results in) [36, 37] we provide a checkable, finite-dimensional
criterion that guarantees that the crucial infinite-dimensional non-degeneracy assumption, left as
such in [36, 37], is actually satisfied. On the other hand, these authors give explicit formulae for
c0 which we (presently) do not. Let us also emphasize (cf. corollary 4 below) that the expansion
(1) can be used, as a simple consequence of Brownian scaling, towards short time expansion for
projected diffusion densities, under global conditions on (x0, y), of the form

f (y, t) ∼ e−
d2(x0,y)

2t t−l/2c0 (x0, y) as t ↓ 0. (5)

When l = d, and then y = x, such expansions go back to classical works starting with Molchanov
[42] (itself the main reference for the famous SABR paper, [31]). The leading order behaviour
2t log f (x, t) ∼ −d2 (x0, x) is due to Varadhan [53]. The case l < d, in particular our global
condition on (x0, y), appears to be new. That said, expansions of this form have appeared in
[52, 31, 44]; the last two references aimed at implied volatility expansions. In the context of a
time-homogenuous local volatility models (l = d = 1), the expansion (5) holds trivially without
any conditions on (x0, y); the resulting expansion was derived (with explicit constant c0) in [26].
Subject to mild technical conditions on the diffusion coefficient, they show how to deduce first a
call price and then an implied volatility expansion in the short time (to maturity) regime:

σBS (k, t) = |k| /d (x0, k) + c (x0, k) t+O
(

t2
)

as t ↓ 0;

where d (x0, k) is a point-point distance and c (x0, k) is explicitly given. The celebrated Berestycki–
Busca–Florent (BBF) formula [14] asserts that σBS (k, t) ∼ |k| /d (x0, k) as t ↓ 0, is in fact valid
in generic stochastic volatilty models, d (x0, k) is then understood as point-hyperplane distance.
In fact, |k| /d (x0, k) arose as initial condition of a non-linear evolution equation for the entire
implied volatility surface. As briefly indicated in [14, Sec 6.3] this can be used for a Taylor
expansion of σBS (k, t) in t. Such expansions have also been discussed, based on heat kernel ex-
pansions on Riemannian manifolds by [16, 32, 45], not always in full mathematical rigor. Some
mathematical results are given in [44], assuming ellipticity and close-to-the-moneyness |k| << 1;
see also forthcoming work by Ben Arous–Laurence [11]. We suspect that our formula (5), po-
tentially applicable far-from-the-money, will prove useful in this context and shall return to this
in future work.

4In contrast, short time asymptotics in ”locally elliptic” stochastic volatility models usually can be localized
to a non-degenerate region.
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It should be noted, that the BBF formula alone can be obtained from soft large deviation
arguments, cf. [46, Sec. 3.2.1] and the references therein. In a similar spirit, cf. [54, Sec 5,
Rmk 2.9], the Varadhan-type formula 2t log f (y, t) ∼ −d2 (x0, y), when l < d, could be shown,
without any conditions on (x0, y) by large deviation methods, only relying on the existence of a
reasonable density.

As a final note, we recall that the (in general, non-Markovian)Rl-valued Itô-process (Yt : t ≥ 0)
admits - subject to some technical assumptions [30, 47] - a Markovian (or Gyöngy) projection.
That is, a time-inhomogeneous Markov diffusion (Ỹt : t ≥ 0) with matching time-marginals i.e
Yt = Ỹt (in law) for every fixed t ≥ 0. In a financial context, when l = 1, this process is
known as (Dupire) local volatility model and various authors [14, 16, 32, 11] have used this as
an important intermediate step in computing implied volatility in stochastic volatility models.
Since all our expansions (small noise, tail, short time ) are relative to such time-marginals they
may also be viewed as expansions for the corresponding Markovian projections.

Acknowledgement: JDD and AJ acknowledge (partial resp. full) finanical support from
MATHEON. PKF acknowledges partial support from MATHEON and the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement nr. 258237. PKF would like to thank G. Ben Arous for pointing out conceptual
similarities in [21, 9] and several discussions thereafter. It is also a pleasure to thank F. Baudoin,
J.P. Gauthier, A. Gulisashvili and P. Laurence for their interest and feedback.

2 The main result of [17]

Consider a d-dimensional diffusion (Xε
t )t≥0 given by the stochastic differential equation

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d (6)

and where W = (W 1, . . . ,Wm) is an m-dimensional Brownian motion. Unless otherwise stated,
we assume b : [0, 1) × Rd → Rd, σ = (σ1, . . . , σm) : Rd → Lin

(

Rm,Rd
)

and x·0 : [0, 1) → Rd to
be smooth, bounded with bounded derivatives of all orders. Set σ0 = b (0, ·) and assume that,
for every multiindex α, the drift vector fields b (ε, ·) converges to σ0 in the sense5

∂α
x b (ε, ·)→ ∂α

x b (0, ·) = ∂α
x σ0 (·) uniformly on compacts as ε ↓ 0. (7)

We shall also assume that

∂εb (ε, ·)→ ∂εb (0, ·) uniformly on compacts as ε ↓ 0 (8)

and
xε0 = x0 + εx̂0 + o (ε) as ε ↓ 0. (9)

Theorem 1 (Small noise) Let (Xε) be the solution process to

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d.

Assume b (ε, ·)→ σ0 (·) in the sense of (7), (8), and Xε
0 ≡ xε0 → x0 as ε→ 0 in the sense of (9).

Assume the weak Hörmander condition (H) at x0 ∈ Rd;

span [σi : 1 ≤ i ≤ m; [σj , σk] : 0 ≤ j, k ≤ m; ...]x0
= R

d; (H)

5If (6) is understood in Stratonovich sense, so that dW is replaced by ◦dW , the drift vector field b (ε, ·) is
changed to b̃ (ε, ·) = b (ε, ·)−

(

ε2/2
)
∑m

i=1
σi · ∂σi. In particular, σ0 is also the limit of b̃ (ε, ·) in the sense of (7) .
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Fix y ∈ Rl, Ny := (y, ·) and let Ky be the the space of all h ∈ H s.t. the solution to

dφh
t = σ0

(

φh
t

)

dt+
m
∑

i=1

σi

(

φh
t

)

dhit, φh
0 = x0 ∈ R

d

satisfies φh
T ∈ Ny. We assume Ky to be non-empty6 and the energy

Λ (y) = inf

{

1

2
‖h‖2H : h ∈ Ky

}

.

to be a smooth function in a neighbourhood of y. Asssume furthermore
(i) there are only finitely many minimizers, i.e. Kmin

y <∞ where

Kmin
y :=

{

h0 ∈ Ky :
1

2
‖h0‖2H = Λ (y)

}

;

(ii) non-degeneracy of the so-called deterministic Malliavin covariance matrix at each minimizer
- a sufficient condition met in most (”locally elliptic”) financial models reads

∀h0 ∈ Kmin
y : ∃t ∈ [0, T ] : span [σ1, . . . , σm] |

φ
h0
t

= R
d;

(iii) x0 is non-focal for Ny in the sense of [17]. (We shall review below how to check this.)

Then, keeping x0,y and T > 0 fixed, there exists c0 = c0 (x0, y, T ) > 0 such that

Yε
T = ΠlX

ε
T =

(

Xε,1
T , . . . , Xε,l

T

)

, 1 ≤ l ≤ d

admits a density with expansion

f ε (y, T ) = e−
Λ(y)

ε2 e
max{Λ′(y)· ŶT (h0):h0∈K

min
y }

ε ε−l (c0 +O (ε)) as ε ↓ 0.

Here Ŷ = Ŷ (h0) =
(

Ŷ 1, . . . , Ŷ l
)

is the projection, Ŷ =ΠlX̂, of the solution to the following

(ordinary) differential equation

dX̂t =
(

∂xb
(

0, φh0
t (x0)

)

+ ∂xσ(φ
h0
t (x0))ḣ0 (t)

)

X̂tdt+ ∂εb
(

0, φh0
t (x0)

)

dt, (10)

X̂0 = x̂0.

Remark 2 (Smoothness of energy) If #Kmin
y = 1 smoothness of the energy is actually a

(non-trivial) consequence of the present assumptions and hence need not be assumed; [17]. Note
also that in our application to tail asymptotics, with θ-scaling, θ ∈ {1, 2} and scalar variable y, it
follows from scaling that the energy will be a linear resp. quadratic (and hence smooth) function
of y.

Remark 3 (Localization) The assumptions on the coefficients b, σ in theorem 1 (smooth,
bounded with bounded derivatives of all orders) are typical in this context (cf. Ben Arous [9, 10]
for instance) but rarely met in practical examples from finance. This difficulty can be resolved by
a suitable localization. For instance, as detailed in [17], an estimate of the form

lim
R→∞

lim sup
ε→0

ε2 logP [τR ≤ T ] = −∞. (11)

with τR := inf
{

t ∈ [0, T ] : sups∈[0,t] |Xε
s| ≥ R

}

will allow to bypass the boundedness assumptions.

6A well-known sufficient condition (cf. [17] and the references therein) is the strong Hörmander condition

(H1), as stated in corollary 4 below.
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3 Short time and tail asymptotics

The reduction of short time expansions to small noise expansions by Brownian scaling is classical.
In the present context, we have the following statement, taken from [17, Sec. 2.1].

Corollary 4 (Short time) Consider dXt = b (Xt) dt + σ (Xt) dW , started at X0 = x0 ∈ Rd,
with C∞-bounded vector fields such that the strong Hörmander condition holds,

∀x ∈ R
d : Lie [σ1, . . . , σm] |x = R

d. (H1)

Fix y ∈ Rl, Ny := (y, ·) and assume (i),(ii),(iii) as in theorem 1. Let f (t, ·) = f (t, y) be the
density of Yt =

(

X1
t , . . . ,X

l
t

)

. Then, for some constant c0 = c0 (x0, y) > 0,

f (y, t) ∼ e−
d2(x0,y)

2t t−l/2c0 as t ↓ 0. (12)

where d (x0, y) is the sub-Riemannian distance, based on (σ1, . . . , σm), from the point x0 to the
affine subspace Ny.

We also have the following application to the tail behaviour of, say, the first component (i.e.
l = 1 here) of a diffusion processes at a fixed time T . As we shall see, the scaling assumption
below is met in a number of stochastic volatility models.

Corollary 5 (Tail behaviour) Assume xε0 → 0 ∈ Rd as ε→ 0 and some diffusion process Xε,
started at xε0, satisfies the assumptions of theorem 1 with x0 = 0 and N = (1, ·) ⊂ R × Rd−1;
in particular, {0} × (1, ·) is assumed to satisfy condition (i),(ii),(iii). Assume also θ-scaling by
which we mean the scaling relation

Y ε
T

(law)
= εθYT where Y ≡ Π1X

for some θ ≥ 1. Then the probability density function of YT has the expansion

f (y) = e−c1y
2
θ ec2y

1
θ y

1
θ−1

(

c0 +O
(

1/y1/θ
))

as y →∞ (13)

where

c1 =Λ (1)

c2 = ŶTΛ
′ (1) =

2ŶT

θ
Λ (1)

and c0 > 0. In particular, when θ = 1 we have a Gaussian tail behaviour of the precise form

f (y) = e−Λ(1)y2

e2ŶT Λ(1)y (c0 +O (1/y)) ;

while θ = 2 leads to the exponential tail of the precise form

f (y) = e−Λ(1)yeŶT Λ′(1)
√
yy−1/2 (c0 +O (1/

√
y)) .

Proof. Let f ε denote the density of Y ε
T . Since f

(

·/εθ
)

= εθf ε (·) we can take · = 1 ∈ Rl, with
l = 1, and apply theorem 1. This yields the claimed expansion in the ”large space” variable
y = 1/εθ; it suffices to rephrase the ε-expansion of theorem 1 in terms of y. Another observation
is that the assumed scaling implies

Λ (y) = y2/θΛ (1)

and hence Λ′ (1) = 2
θΛ (1). The rest is obvious.
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4 Computational aspects

We present briefly the mechanics of the actual computations, in the spirit of the Pontryagin
maximum principle (e.g. [50]), the aim being to find optimal paths which arrive at Na = (a, ·),
i.e. a given ”target” manifold. 7 This formalism is justified by assuming non-degeneracy of the
so-called deterministic Malliavin covariance matrix C (h0), at each h0 ∈ Kmin

a ; cf. [52, 17]. As
pointed out earlier, a sufficient condition met in most (”locally elliptic”) financial models reads

∀h ∈ Ka : ∃t ∈ [0, T ] : span [σ1, . . . , σm] |φh
t
= R

d.

(This is proved in [17]; for more information on C (h0) see [17] and the references therein; in
particular [15, 52]).

• The Hamiltonian. Based on the SDE (6), with diffusion vector fields σ1, . . . , σm and
drift vector field σ0 (in the ε→ 0 limit) we define the Hamiltonian

H (x, p) : = 〈p, σ0 (x)〉+
1

2

m
∑

i=1

〈p, σi (x)〉2

= 〈p, σ0 (x)〉+
1

2

〈

p,
(

σσT
)

(x) p
〉

.

Remark the driving Brownian motions W 1, . . . ,Wm were assumed to be independent.
Many stochastic models, notably in finance, are written in terms of correlated Brownians,
i.e. with a non-trivial correlation matrix Ω =

(

ωi,j : 1 ≤ i, j ≤ m
)

, where d
〈

W i,W j
〉

t
=

ωi,jdt. The Hamiltonian then becomes

H (x, p) = 〈p, σ0 (x)〉+
1

2

〈

p,
(

σΩσT
)

(x) p
〉

. (14)

• The Hamiltonian ODEs. The following system of ordinary differential equations,

(

ẋ
ṗ

)

=

(

∂pH (x (t) , p (t))
−∂xH (x (t) , p (t))

)

, (15)

gives rise to a solution flow, denoted by Ht←0, so that

Ht←0 (x0, p0)

is the unique solution to the above ODE with initial data (x0, p0). Our standing (regularity)
assumption are more than enough to guarantee uniqueness and local ODE existence. As in
[15, p.37], the vector field (∂pH,−∂xH) is complete, i.e.one has global existence. It can be
usefult to start the flow backwards with time-T terminal data, say (xT , pT ); we then write

Ht←T (xT , pT )

for the unique solution to (15) with given time-T terminal data. Of course,

Ht←T (HT←0 (x0, p0)) = Ht←0 (x0, p0) .

7We have a = y ∈ Rl, in context of small noise and short time expansions, and a = 1 ∈ Rl, with l = 1, in the
context of tail expansions, corollary 5.

7



• Solving the Hamiltonian ODEs as boundary value problem. As before, Na = (a, ·)
is the given ”target” manifold; the analysis laid out in [17] requires in a first step to solve
the Hamiltonian ODEs (15) with mixed initial -, terminal - and transversality conditions,

x (0) = x0 ∈ R
d,

x (T ) = (a, ·) ∈ R
l⊕Rd−l,

p (T ) = (·, 0) ∈ R
l⊕Rd−l. (16)

Note that this is a 2d-dimensional system of ordinary differential equations, subject to
d + l + (d− l) = 2d conditions. In general, boundary problems for such ODEs may have
more than one, exactly one or no solution. In the present setting, there will always be one
or more than one solution. After all, we know [17] that there exists at least one minimizing
control h0 and can be reconstructed via the solution of the Hamiltonian ODEs, as explained
in the following step.

• Finding the minimizing controls. The Hamiltonian ODEs, as boundary value problem,
are effectively first order conditions (for minimality) and thus yield candidates for the
minimizing control h0 = h0 (·), given by

ḣ0 =





〈σ1 (x (·)) , p (·)〉
. . .

〈σm (x (·)) , p (·)〉



 . (17)

Each such candidate is indeed admissible in the sense h0 ∈ Ka but may fail to be a
minimizer. We thus compute the energy ‖h0‖2H for each candidate and identify those (”
h0 ∈ Kmin

a ”) with minimal energy. The procedure via Hamiltonian flows also yields a
unique p0 = p0 (h0).

• Checking non-focality. By definition [17], x0 is non-focal for N = (a, ·) along h0 ∈ Kmin
a

in the sense that, with ((a, ·), (·, 0)) ∋ (xT , pT ) := HT←0 (x0, p0 (h0)) ∈ T ∗Rd,

∂(z,q)|(z,q)=(0,0)πH0←T

(

xT +

(

0
z

)

, pT + (q, 0)

)

is non-degenerate (as d×d matrix; here we think of (z, q) ∈ Rd−l×Rl ∼= Rd and recall that
π denotes the projection from T ∗Rd onto Rd; in coordinates π (x, p) = x). Note that in
the point-point setting, xT = x for fixed x, only perturbations of the arrival ”velocity” pT
- without any restrictions of transversality type - are considered. Non-degeneracy of the
resulting map should then be called non-conjugacy (between two points; here: xT and
x0). In the Riemannian setting this is consistent with the usual meaning of non-conjugacy;
after identifying tangent- and cotangent-space ∂q|q=0πH0←T is precisely the differential of
the exponential map.

• The explicit marginal density expansion. We then have

f ε (a, T ) = e−c1/ε
2

ec2/εε−l (c0 +O (ε)) as ε ↓ 0.

with c1 = Λ (a). The second-order exponential constant c2 then requires the solution of a
finitely many (#Kmin

a < ∞) auxilary ODEs, cf. theorem 1. At last we set a = y ∈ Rl,
in context of small noise and short time expansions, and a = 1 ∈ R

l, with l = 1 for tail
expansions (in this case, the y-dependence here is hidden in ε).
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5 Application to asset price models

5.1 Black-Scholes

The Black-Scholes (BS) model, written in terms of log-price is an example where the above
theorem is applicable with θ = 1. Indeed, Y := logS satisfies, with fixed Black-Scholes volatility
σ > 0

dYt = −
σ2

2
dt+ σdWt, Y0 = y0 = logS0.

Of course, Yt ∼ N
(

y0 − σ2t/2, σ2t
)

and the explicit Gaussian density

fBS (t, y) =
1√

2πσ2t
exp

{

−
(

y −
(

y0 − σ2t/2
))2

2σ2t

}

immediately yields short time resp. tail expansions,

fBS (t, y)∼ (const) t−1/2 exp

(

−
(

y−y0

σ

)2

2t

)

as t ↓ 0; any y ∈ R (18)

fBS (T, y)∼ (const) exp

(

− 1

2σ2T
y2
)

exp

(

y0 − σ2T/2

2σ2T
y

)

as y →∞; any T > 0. (19)

We derive now both expansions from general theory, i.e. with aid of corollary 4 resp 5. The
short time limit corresponds to a flat Riemannian situation, in particular the cutlocus is empty,
which is enough to guarantee (ND); the remaining computations to derive (18) from corollary 4
are left to the reader and we focus on the (more interesting) case of tail asymptotics. Corollary 5
applies with θ = 1, and (rescaled) starting point εy0 → 0. Condition (ND) needs to be checked;
the relevant Hamiltonian is

H (y, p) =
σ2p2

2
, for all (y, p) ∈ R

2

and the Hamiltonian ODEs are
ẏt = σ2pt, ṗt = 0,

with boundary conditions y0 = 0 and yT = 1 =: a. Since pt is constant, we obtain pt ≡ p0 = a
σ2T ,

and yt = a t
T . In particular, ∂pyT |p0

= σ2T > 0, and hence invertible, for T, σ > 0. En passant,

we also deduce the optimal control h0(t) = σp0, and get the correct leading order factor

c1 :=
1

2
‖h0‖2 =

1

2

∫ T

0

h0(t)
2dt =

1

2σ2T
.

With the hint Ŷt = y0+
(

−σ2

2

)

t we leave it to the reader to verify that c2 =
(

y0 − σ2T/2
)

/
(

2σ2T
)

.

Frequently, one chooses y0 = 0 in this context (which amounts to normalize spot price to unit).

5.2 The Stein-Stein model

For given parameters, a ≥ 0, b < 0, c > 0, σ0 ≥ 0, ρ = d
〈

W 1,W 2
〉

/dt, the Stein–Stein model
expresses log-price Y , under the forward measure, via

dY =−1

2
Z2dt+ ZdW 1, Y (0) = y0 = 0 (20)

dZ = (a+ bZ) dt+ cdW 2, Z (0) = σ0 > 0.

9



We will be interested in the behaviour, and in particular the tail-behaviour, of the probability
density function of YT . In fact, there is no loss of generality to consider T = 1. Applying

Brownian scaling, it is a straight-forward computation to see that the pair
(

Ỹ , Z̃
)

given by

Ỹ (t) := Y (tT ) , Z̃ (t) := Z (tT )T 1/2

satisfies the same parametric SDE form as Stein-Stein, but with the following parameter substi-
tutions

a← ã ≡ aT 3/2, b← b̃ ≡ bT, c← c̃ ≡ cT, σ0 ← σ̃0 ≡ σ0T
1/2.

In particular then, YT = YT (a, b, c, σ0, ρ) has the same law as Y1

(

ã, b̃, c̃, σ̃0, ρ
)

.

5.2.1 The case of zero-correlation

For the moment, we shall follow [28] in assuming the Brownians to be uncorrelated,

d
〈

W 1,W 2
〉

t
= ρdt with ρ = 0.

Recall their main result, a density expansion for YT of the form

(∗) : f (y) = e−c1yec2y
1/2

y−1/2
(

c3 +O
(

y−1/2
))

as y →∞. (21)

Scaling: Setting
Yε := ε2Y, Zε := εZ

yields the small noise problem

dYε =−
1

2
Z2
εdt+ ZεεdW

1, Yε (0) = 0 =: y0 ∀ε > 0 (22)

dZε = (aε+ bZε) dt+ cεdW 2, Zε (0) = εσ0 → 0 =: z0 as ε ↓ 0.

Our corollary 5, assuming its application to be justified, then gives the correct expansion (21),
namely

f (y) = e−c1 yec2 y1/2

y−1/2
(

c3 +O
(

y−1/2
))

,

and also identifies the constants c1 = Λ (1), c2 = ŶTΛ
′ (1). (The leading order constant c1is in

agreement with both [28] and [18, p40].)

Remark 6 Corollary 5 relies on an application of theorem 1 to (22); let us note straight away
that the coefficients here are smooth but unbounded. With a view towards the earlier remark on
localization, and in particular (11), we note here that, due to the particular structure of the SDE,
it suffices to localize such as to make σ bounded; e.g. by stopping it upon leaving a big ball of
radius R. This amounts to, cf. (11), to shows that

lim
R→∞

lim sup
ε→0

ε2 logP
[

|σε|∞;[0,T ] ≥ R
]

= −∞.

But since P

[

|σε|∞;[0,T ] ≥ R
]

= P

[

|σ|∞;[0,T ] ≥ R/ε
]

and σ is a Gaussian process, this is an

immediate consequence of Fernique’s estimate.
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We postpone the justification that we may indeed apply corollary 5 (which involves an analysis
of the Hamiltonian ODEs) and proceed in showing how further qualitative information about
the expansion can be obtained without much computations.
Some information on c1: According to theorem 1,

c1 := Λ (1) = inf

{

1

2
‖h‖2H : φh

0 = (0, 0) , φh
T ∈ (1, ·)

}

where dφh,1
t = − 1

2

∣

∣

∣φ
h,2
t

∣

∣

∣

2

dt+ φh,2
t dh1, dφh,2

t = bφh,2
t dt+ cdh2. If then follows a priori that

c1 = c1 (b, c;T ) but not on a, σ0.

The same is true for h0 =: h∗ =:
(

h∗,1, h∗,2
)

and φ∗ := φh0 of course.
Some information on c2: First, Λ′ (1) = c1 also only depends on the parameters b, c, T (but

not on a, σ0). It remains to analyze the factor ŶT where
(

Ŷt, Ẑt : t ≥ 0
)

solves the ODE

dŶt =
(

−φ∗,2t + h∗,1t

)

Ẑtdt, Ŷ0 = 0

dẐt = bẐtdt+ adt, Ẑ0 = σ0.

Since Ẑt = σ0e
bt + a

∫ t

0 e
b(t−s)ds it follows that ẐT is linear in σ0, a with coefficients depending

on b and T . Furthermore, noting that

ŶT =

∫ T

0

(

−φ∗,2t + h∗,1t

)

Ẑtdt

a similar statement is true for ŶT and then c2 = Λ′ (1) × Ŷ 1
T . Namely, for constants Ci =

Ci (b, c;T )
c2 = C1 (b, c;T )σ0 + C2 (b, c;T )a.

It is interesting to compare this with the Heston result [21] where the constant c2 also depends
linearly on spot-vol σ0 =

√
v0.

Solving the Hamiltonian ODEs and computing c1 After replacing εdW by a control
dh, and taking ε ↓ 0 elsewhere in (22), we have to consider the controlled ordinary differential
equation

dy =−1

2
z2dt+ zdh1, y0 = 0 (23)

dz = bzdt+ cdh2, z0 = 0,

minimizing the energy, 1
2

∫ T

0

∣

∣

∣ḣt

∣

∣

∣

2

dt subject to yT = a ≡ 1 > 0.

According to general theory, we now write out the Hamiltonian associated to (23),

H
((

y
z

)

; (p, q)

)

(24)

=

(

− 1
2z

2

bz

)

·
(

p
q

)

+
1

2

∣

∣

∣

∣

(

z
0

)

·
(

p
q

)∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

(

0
c

)

·
(

p
q

)∣

∣

∣

∣

2

=−1

2
z2p+ bzq +

1

2

(

z2p2 + c2q2
)

.
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The Hamiltonian ODEs then become
(

ẏt
żt

)

=

(

z2t
(

pt − 1
2

)

bzt + c2qt

)

(25)

(

ṗt
q̇t

)

=

(

0
ptzt (1− pt)− bqt

)

.

Trivially, pt ≡ p0 which we shall denote by p from here on. As it turns out there is a simple
expression for the energy. Although we shall ultimately take a ≡ 1 it is convenient to carry out
the following analysis for general a > 0.

Lemma 7 For any h0 ∈ Kmin
a , and in fact any h0 given by (17), i.e.

ḣ0 (t) =

(

pzt
qtc

)

(26)

where (y, z; p, q) satisfies (25), subject to boundary conditions (y0, z0) = (0, 0) and yT = a, qT = 0,
we have

Λ (a) =
1

2

∫ T

0

∣

∣

∣ḣ0 (t)
∣

∣

∣

2

dt = pa.

In particular, we see that
p ≥ 0.

Remark 8 In fact, linearity in a of (34) also follows immediately from the fact that the Stein-
Stein model satisfies θ-scaling with θ = 2 in the sense of corollary 5. Indeed, it was seen in the
proof of that corollary that the rate function Λ (a) scales like a2/θ = a. This already implies that
p does not depend on a. This is also consistent with the principle ∂aΛ (a) = pT pointed out in
[17].

Proof. We give an elegant argument based on the Hamiltonian ODEs. The idea is to express
∣

∣

∣ḣ0 (t)
∣

∣

∣

2

as a time-derivative which then allows for immediate integration over t ∈ [0, T ]. Indeed,

∣

∣

∣ḣ0 (t)
∣

∣

∣

2

= p2z2t + c2q2t

= p2z2t + ∂t (ztqt)− z2t
(

p2 − p
)

= 2pz2t (p− 1/2) + ∂t (ztqt)

= 2pẏt + ∂t (ztqt)

where we used the ODEs for z, q as given in (25). It follows that

∫ T

0

∣

∣

∣
ḣ0 (t)

∣

∣

∣

2

dt = 2p (yT − y0) + (zT qT − z0q0)

and we conclude with the initial/terminal/transversality conditions y0 = z0 = 0, yT = a and
qT = 0.

Lemma 9 (Partial Hamiltonian Flow) Consider (25) as initial value problem, with initial
data (y0, z0) = (0, 0) and (p, q0). Assume8

χ2
p := c2p (p− 1)− b2 ≥ 0. (27)

8All explicit solutions given in (28) are even functions of χp0
and have a removable singularity for χp0

= 0.
By convention we shall always assume χp0

≥ 0 although the sign of χp0
does not matter.
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Then the explicit solution is given by

yt =
q20c

4 (2p0 − 1)

8χ3
p

(

2χpt− sin
(

2χpt
))

, (28)

zt =
q0c

2

χp

sin
(

χpt
)

,

pt ≡ p,

qt = q0

(

cos
(

χpt
)

− b

χp

sin
(

χpt
)

)

.

Remark 10 The given solutions remain valid when χ2
p < 0; it suffices to consider χp as purely

imaginary; then, if desired, rewrite as cos
(

χpt
)

= cosh
(∣

∣χp

∣

∣ t
)

etc. Below, we shall solve (25)
as boundary value problem, subject to (y0, z0) = (0, 0), yT = a > 0 and qT = 0; we shall see then
that (27) is always satisfied and in fact χ2

p > 0.

Proof. Let us first remark that the path (pt)t≥0 is constant, pt = p for all t ∈ [0, T ]. From the

Hamiltonian ODEs, the couple (zt, qt)t≥0 solves a linear ODE in R2, so that the solution must
be a linear function of (z0, q0) = (0, q0). Indeed, a simple computation gives

qt = q0

(

cos
(

χpt
)

− b

χp

sin
(

χpt
)

)

and zt =
q0c

2

χp

sin
(

χpt
)

,

Elementary integration (”2
∫ t

0 sin
2 = t−cos sin t”) then gives (yt)t≥0 by direct integration; indeed

yt =

(

p− 1

2

)∫ t

0

z2sds =
q20c

4 (2p− 1)

8χ3
p

(

2χpt− sin
(

2χpt
))

.

This proves the lemma.
For the next proposition we recall the standing assumptions T > 0, b ≤ 0 (which models

mean-reversion) and a > 0.

Proposition 11 The ensemble of solutions to the Hamilton ODEs as boundary value problem

(y0, z0) = (0, 0) and yT = a, qT = 0

with a = 1 > 0 are characterized by inserting, for any k ∈ {1, 2, ...} and any choice of sign in
(30) below,

p= pk =
1

2

(

1 +

√

1 +
4b2

c2
+

4r2k
c2T 2

)

, (29)

q±0,k =±
2

c2

√

√

√

√

2r3k a
(

2p+0,k − 1
)

T 3 (2rk − sin (2rk))
(30)

in (28). Here {rk : k = 1, 2, . . . } denotes the set of (increasing) strictly positive roots to

r cos(r) − bT sin(r) = 0.
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Remark 12 As the proof will show, p as given in (29) is the unique positive root to

c2p (p− 1)− b2 =
(r0,k

T

)2

;

in particular, assumption (27) in the previous lemma is met.

Proof. By assumption and (28),

0 = qT = q0

(

cos
(

χpT
)

− b

χp

sin
(

χpT
)

)

. (31)

At this stage, χp could be a complex number (when χ2
p < 0). Let us note straight away that

we must have q0 6= 0 for otherwise (yt)t≥0 - which depends linearly on q0 as is seen explicitly in
(28) - would be identically equal to zero in contradiction with yT = a > 0. Let us also note that
χp 6= 0 for otherwise (31), which has a removable singularity at χp = 0, leads to the contradiction
0 = 1− bT.(Recall b ≤ 0, T > 0.) But then r := χpT is a root, i.e. maps to zero, under the map

r ∈ C 7→ r cos r − bT sin r = r

(

cos r − bT

r
sin r

)

. (32)

A complex analysis lemma [28, Lemma 4] asserts that this map, provided

− bT ≥ 0, (33)

has only real roots; it follows that χp is real and so χ2
p ≥ 0; actually χ2

p > 0, since we already
noted that χp 6= 0. Note that (31), and in fact all further expressions involving χp, are unchanged
upon changing sign of χp, we shall agree to take χp > 0 as the positive square-root of χ2

p. In
particular, (31) is equivalent to the existence of χp > 0 such that

χpT cos
(

χpT
)

− bT sin
(

χpT
)

= 0.

It follows that χpT ∈ {rk : k = 0, 1, 2, . . .}, the set of zeros of (32) written in increasing order.
We deduce that, for each k = 0, 1, 2, . . . there is a choice of p arising from

χ2
p = c2p (p− 1)− b2 =

(rk
T

)2

.

For each k, there is a negative solution, say p = p−k < 0 which we may ignore thanks to lemma
7, and a positive solution, namely

p = p+k =
1

2

(

1 +

√

1 +
4b2

c2
+

4r2k
c2T 2

)

> 1.

We now exploit yT = a. From the explicit expression of yt given in (28) we get

a = yT =
q20c

4 (2p− 1)

8χ3
p

(

2χpT − sin
(

2χpT
))

=
q20c

4 (2p− 1)T 3

8r3k
(2rk − sin (2rk))

and thus

q20 =
8r3k

c4 (2p− 1)T 3 (2rk − sin (2rk))
a.
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It follows that, for each k ∈ {1, 2, . . . }, we can take

p= p+k =
1

2

(

1 +

√

1 +
4b2

c2
+

4

c2

(rk
T

)2
)

q0 = q±0,k = ± 2

c2

√

2r3k a
(

2p+k − 1
)

T 3 (2rk − sin (2rk))

and any such choice in (28) leads to a solution of the boundary value problem.

So far, we have for each k ∈ {1, 2, . . .} two choices of (p, q0), depending on the sign in (30) so
that the resulting Hamiltonian ODE solutions, started from (y0, z0) = (0, 0) and (p , q0), describe
all possible solutions of the boundary value problem given by the Hamiltonian ODEs with mixed
initial/terminal data

(y0, z0) = (0, 0) and yT = a, qT = 0.

It remains to see which choice (or choices) lead to minimizing controls; i.e. h0 ∈ Kmin
a . But this

is easy since we know from lemma 7 that, for any p ∈
{

p+k : k = 1, 2, . . .
}

,

1

2

∫ T

0

∣

∣

∣ḣ0 (t)
∣

∣

∣

2

dt = pa.

Since p+k is plainly (strictly) increasing in k ∈ {1, 2, . . .} , we see that the energy is minimal if
and only if p = p+1 . On the other hand, we are left with two choices for q0, namely q+0,1 and q−0,1.
Using (26) we then see that there are two minimizing controls,

Kmin
a =

{

h+0 , h
−
0

}

,

given by

ḣ±0 (t) =





p q0c
2

χp
sin
(

χpt
)

cq0

(

cos
(

χpt
)

− b
χp

sin
(

χpt
)

)



 with (p, q0)←
(

p+1 , q
+
0,1

)

resp.
(

p+1 , q
−
0,1

)

.

Of course, h±0 stands for h+0 resp. h−0 depending on the chosen substitution above. In (y, z)-
coordinates, note that both h+0 and h−0 have identical y-components; their z-components only
differ by a flipped sign due to q−0,1 = −q+0,1. (This reflects a fundamental symmetry in our problem
which is in fact invariant under (y, z) 7→ (y,−z)). We summarize our finds in stating that

Λ (a) =
1

2
‖h+0 ‖2H =

1

2
‖h−0 ‖2H = p+1 a (34)

and upon taking a = 1 we have computed the leading order constant

c1 = Λ (1) = p+1 =
1

2

(

1 +

√

1 +
4b2

c2
+

4

c2

(r1
T

)2
)

where we recall that r1 is the first strictly positive root of the equation r cos(r) − bT sin(r) = 0.
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Computing c2 According to general theory, cf. equation (10), we need to compute certain
ODEs for each minimizer, h+0 = (h+,1

0,· , h
+,2
0,· ) resp. h−0 = (h−,10,· , h

−,2
0,· ), exhibited in the previous

section. For ease of notation we shall write
(

p, q±0
)

instead of
(

p+1 , q
+
0,1

)

resp.
(

p+1 , q
−
0,1

)

in this

section. Related to equation (22) we then have to consider the following ODE along h+0 (and
then along h−0 )

d

dt

(

Ŷt

Ẑ2
t

)

=

{(

0−z+t
0 b

)

+

(

0 1
0 0

)

ḣ+,1
0,t

}(

Ŷt

Ẑ2
t

)

+

(

0
a

)

=

(

0 (p− 1) z+t
0 0

)(

Ŷt

Ẑ2
t

)

+

(

0
a

)

with

(

Ŷ0

Ẑ2
0

)

=

(

0
σ0

)

.

Here, we used the fact that ḣ+,1
0 = pz+t , z

+
t indicates the chosen sign of q0,1 upon which

it depends, cf. (30). The ODE along h−0 for Ŷ = Ŷ − is similar, with z+t , ḣ
+,1
0,t replaced by

z−t = −z+t , ḣ−,10,t = −ḣ+,1
0,t respectively. We can solve these ODEs explicitly. In a first step

(regardless of the chosen sign for z, h0)

Ẑt =

{

σ0e
bT + a

b

(

ebt − 1
)

for b < 0
σ0 + at for b = 0

and since

Ŷ ±T = (p− 1)

∫ T

0

z±t Ẑtdt

we see that Ŷ −T = −Ŷ +
T .In fact, under the (usual) model parameter assumptions a > 0, σ0 > 0

we see that Ẑt > 0. We then note that

z±t /q
±
0 =

c2

χp

sin
(

χpt
)

≥ 0 for t ∈ [0, T ] ;

indeed we saw that χpT ∈ [π/2, π) which implies χpt ∈ [0, π) and hence sin
(

χpt
)

≥ 0. In

particular, given that q+0 > 0 and p > 1we see that Ŷ +
T > 0 (and then Ŷ −T < 0). It follows that

c2 : = c+2 = Λ′ (1)× Ŷ +,1
T

= p (p− 1)

∫ T

0

z+t Ŷ
2
t dt (35)

whereas the contribution from c−2 = Λ′ (1)× Ŷ −,1T is exponentially smaller and will not figure in

the expansion. In fact, given the explicit form of t 7→ z+t resp. Ŷ 2
t in terms of sin (.) and exp (.),

it is clear that the integration in (35) can be carried out in closed form. In doing so, one exploits
a cancellation due to

−χp cos
(

χpT
)

+ b sin
(

χpT
)

= 0

and also the equality χ2
p + b2 = c2p (p− 1), one is led to

c2 = q+0

{

σ0 + a
tan

(

χpT/2
)

χp

}

.

It is possible, of course, to substitute the explicitly known quantities q+0 , χp but this does not
yield additional insight.
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5.2.2 The case of non-zero correlation

We consider again the SDE (20) with diffusion matrix

σ = (σ1, σ2) =

(

z 0
0 c

)

but now allow for correlation ρ between W 1,W 2; we thus have the non-trivial correlation matrix

Ω =

(

1 ρ
ρ 1

)

=⇒ σΩσT =

(

z2 ρcz
ρcz c2

)

.

In view of financial applications [24] it makes sense to focus on the case ρ ∈ (−1, 0]. This will
also prove convenient in our analysis below, although there is no doubt that the case ρ > 0, less
interesting in practice, could also be handled within the present framework.

The Hamiltonian becomes, cf. (14),

H
((

y
z

)

; (p, q)

)

=−1

2
z2p+ bzq +

1

2

(

z2p2 + c2q2
)

+ ρczpq

=−1

2
z2p+ b̃zq +

1

2

(

z2p2 + c2q2
)

with
b̃ := b̃p := b+ ρcp

Noting ∂(y,z)b̃ = (0, 0)
′
, ∂(p,q)b̃ = (ρc, 0)

′
. The Hamiltonian equations for ż, ṗ, q̇, are thus identical

as in the uncorrelated case, one just has to replace b by b̃. (In particular, pt is again seen to be
constant and we denote its value by p.) The Hamiltonian equation for ẏ = ∂pH has, in comparison

to the uncorrelated case, an additional term, namely
(

∂pb̃
)

ztqt = ρcztqt. In summary, the

Hamiltonian ODEs are
(

ẏt
żt

)

=

(

z2t
(

pt − 1
2

)

+ ρcztqt
b̃zt + c2qt

)

(

ṗt
q̇t

)

=

(

0

ptzt (1− pt)− b̃qt

)

.

The following lemma is then obvious (only y requires a computation, due to the additional term
in the Hamiltonian ODEs).

Lemma 13 (Partial Hamiltonian Flow, correlated case) Consider the above Hamiltonian
ODEs as initial value problem, with initial data (y0, z0) = (0, 0) and (p, q0) and assume

χ2
p := c2p (p− 1)− b̃2p ≥ 0. (36)

Then the explicit solution for z, p, q are then identical to the uncorrelated case, one just has to
replace b by b̃p throughout. The explicit solution for y is modified to

yt =
q20c

2

8χ3
p

[(

c2 (2p− 1)− 2ρcb̃p

)

(

2χpt− sin
(

2χpt
))

+ 2ρcχp

(

1− cos
(

2χpt
))

]

. (37)
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In our explicit analysis of the uncorrelated case (more precisely, in solving the coupled ODEs
żt = bzt + c2qt, q̇t = ptzt (1− pt) − bqt) we made use of the (model) assumption b ≤ 0, cf. (33).
Conveniently, this remains true when ρ ∈ (−1, 0]. Indeed, the following lemma shows we must
have p ≥ 0, so that (with ρ ≤ 0, c > 0)

b̃ = b+ ρcp ≤ 0. (38)

Lemma 14 Let a > 0. Then Λ (a) = pa and therefore p ≥ 0.

Proof. We saw in the proof of lemma 7 that, in the uncorrelated case, as a direct consequence
of the Hamiltonian ODEs,

p2z2t + c2q2t = 2pẏt + ∂t (ztqt) .

The correlated case has the identical Hamiltonian ODEs provided we substitute

b← b̃ and ẏ ← ẏ − ρcztqt.

We therefore have

∣

∣

∣
ḣ0 (t)

∣

∣

∣

2

= (p qt)

(

z2 ρcz
ρcz c2

)(

p
qt

)

= p2z2t + c2q2t + 2ρcpztqt

= 2p (ẏt − ρcztqt) + ∂t (ztqt) + 2ρcpztqt = 2pẏt + ∂t (ztqt)

and then conclude with the boundary data, exactly as in lemma 7.
As already noted, b̃ ≤ 0 allows to recycle all closed form expressions for z, q obtained in the

uncorrelated case - it suffices to replace b by b̃. In particular, for some yet unknown p, q0 which
may and will depend on ρ,

zt =
q0c

2

χp

sin
(

χpt
)

,

qt = q0

(

cos
(

χpt
)

− b̃

χp

sin
(

χpt
)

)

where χ2
p := c2p (p− 1) − b̃2 is seen to be positive as in the ”uncorrelated” argument. Also,

q0 6= 0, seen as in the ”uncorrelated” case. Transversality, qT = 0, then implies

χp cos
(

χpT
)

− b̃ sin
(

χpT
)

= 0. (39)

Introducing r := χpT the gives the equation

r cot r = (b+ ρcp)T. (40)

On the other hand, from the very definition of χp, we know

(r/T )2 = c2p (p− 1)− (b+ ρcp)2 . (41)

In the uncorrelated case, these two equations were effectively decoupled; in particular, r cot r =
bT lead to r ∈

{

r+k : k = 1, 2, . . .
}

⊂ (0,∞), written in increasing order. Since p+ was seen
to be monotonically increasing in r, cf. equation (29), and we were looking for the minimal p,
corresponding to the minimal energy (cf. lemma 14), we were led to seek the first positive root
r+1 . (In fact, r+1 ∈ (π/2, π) as we will also find in the ”correlated” discussion below.)
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The correlated case is a little more complicated and we start in expressing p in equation (40)
in terms of r. Indeed, the quadratic equation (41) shows

p± (r) =
1

2 (1− ρ2)







(

1 + 2ρ
b

c

)

±

√

(

1 + 2ρ
b

c

)2

+ 4 (1− ρ2)

[

b2

c2
+

r2

c2T 2

]







, (42)

where p− (r) < 0 (and hence can be ignored in view of lemma 14) and p+ (r) > 0. We now look

for r which satisfies the equation

r cot r =
(

b+ ρcp+ (r)
)

T

It is elementary to see that r cot r is non-negative on [0, π/2] and then maps [π/2, π) strictly
monotonically to (−∞, 0]. On the other hand, the map r 7→ (b + ρcp+ (r))T is ≤ 0 for all r;

in particular, there will be a first intersection with the graph of r 7→ r cot r in [π/2, π), say at
r = r+1 . Since p+ (r) is plainly strictly increasing in r, the minimal p must equal to

p+1 := p+
(

r+1
)

.

We then proceed as in the uncorrelated case, and determine q0 from the boundary condition
yT = a > 0 where y is now given by (37). This leads to q0 ∈

{

q+0,1, q
−
0,1

}

where

q±0,1 = ±2

c

√

√

√

√

2r3 a

T 3
((

c2 (2p− 1)− 2ρcb̃
)

(2r − sin (2r)) + 2ρcr/T (1− cos (2r))
)

where r = r+1 and p = p+1 . Again, we have two minimizing controls, Kmin
a =

{

h+0 , h
−
0

}

. We now
have

ḣ0 (t) =

(

zt
√

1− ρ2 0
ρzt c

)(

p
qt

)

(43)

instead of (26) and of course lemma 13 implies that zt and qt are fully and explicitly determined
for each choice of (p, q0). In particular for (p, q0) ←

(

p+1 , q
+
0,1

)

resp.
(

p+1 , q
−
0,1

)

we so obtain h+0
resp. h−0 which can be written explicitly by simple substitution. Moreover, and again as in the
uncorrelated case,

Λ (a) =
1

2
‖h+0 ‖2H =

1

2
‖h−0 ‖2H = p+1 a (44)

and upon taking a = 1 we have computed the leading order constant

c1 = Λ (1) = p+1 ≡ p+
(

r+1
)

where we recall that r+1 is the first intersection point of r 7→ r cot r with (b + ρcp+ (r))T and

p+ (·) was given in (42).
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At last, we turn to the computation of the second-order exponential constant, c2. As in
the uncorrelated case, we ease notation by writing

(

p, q±0
)

instead of
(

p+1 , q
+
0,1

)

resp.
(

p+1 , q
−
0,1

)

for the rest of this section. Again, we have to consider ODEs for
(

Ŷt, Ẑt

)

, for each minimizer,

h+0 = (h+,1
0,· , h

+,2
0,· ) and h−0 = (h+,1

0,· ,−h+,2
0,· ). Recall from (43) that, with ρ̄ =

√

1− ρ2,

ḣ+0 (t) =

(

pρ̄z+t
ρpz+t + cq+t

)

;

where (·)± indicates the chosen sign of q0 ∈
{

q+0,1, q
−
0,1

}

which determines the choice of minimizer.

We first determine ŶT = ŶT

(

h+0
)

from the ODE

d

dt

(

Ŷt

Ẑ2
t

)

=

{(

0−z+t
0 b

)

+

(

0 ρ̄
0 0

)

ḣ+,1
0,t +

(

0 ρ
0 0

)

ḣ+,2
0,t

}(

Ŷt

Ẑt

)

+

(

0
a

)

=

(

0 (p− 1) z+t + ρcq+t
0 b

)(

Ŷt

Ẑt

)

+

(

0
a

)

with

(

Ŷ0

Ẑ2
0

)

=

(

0
σ0

)

.

This already shows that we have the identical (closed form) ODE solution for Ẑt as in the
uncorrelated case. On the other hand, the form of ŶT now exhibits an additional term as is seen
in

ŶT = (p− 1)

∫ T

0

z+t Ẑtdt+ ρc

∫ T

0

q+t Ẑtdt.

Since q+t is essentially of the same trigonometric form as z+t , it is clear that the explicit compu-
tations of the uncorrelated case extend. In the end, one finds without too much difficulties

c+2 = Λ′ (1)× ŶT

(

h+0
)

= q+0

{

σ0 + a
tan

(

χpT/2
)

χp

}

.

A similar computation along h−0 gives c+2 = Λ′ (1)× ŶT

(

h−0
)

in explicit form and c2 is identified

as max
(

c+2 , c
−
2

)

.

5.2.3 Checking non-degeneracy, zero and non-zero correlation

We now check the non-degeneracy conditions, contained in assumptions (i)-(iii) of theorem 1,
which of course is the ultimate justification that an expansion of the form (21) with the constants
computed above holds true. Again, focus is on the case of correlation parameter ρ ∈ (−1, 0]. We
saw in the previous sections (for ρ = 0, then ρ ≤ 0) that #Kmin

a = #
{

h+0 , h
−
0

}

= 2, whenever
a > 0. (In fact, we apply this with a = 1.)

Secondly, a look at (23) reveals that the degenerate region is {(y, z) : z = 0}, the complement
of which is elliptic. Clearly, no controlled path which reaches yT = a > 0 can stay in the
degenerate region for all times t ∈ [0, T ]; after all, this would entail dy = 0 and hence yT = 0.
We conclude the any ODE solution driven by h ∈ Ka must intersect the region of ellipticity; but
this already implies non-degeneracy of the corresponding (deterministic) Malliavin covariance
matrix.

At last, we check non-focality and focus on h+0 , the other case being similar. We have to
check non-degeneracy of the Jacobian of the map πH0←T (a, ·; ∗, 0), evaluated at · = zT , ∗ = pT
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after differentiation, where zT , pT are obtained form the Hamiltonian flow at time T , cf. lemma
13, with time 0 initial data

(

0, 0; p+1 , q
+
0,1

)

.

With some abuse of notation, write
(

y0
z0

)

≡
(

y0 (z, p)
z0 (z, p)

)

≡ πH0←T (a, z; p, 0) .

Our non-degeneracy condition requires us to show that

det

(

∂y0

∂p
∂y0

∂z
∂z0
∂p

∂z0
∂z

)∣

∣

∣

∣

∣

∗

6= 0 (45)

where (...) |∗ indicates evaluation (...) |(p,z)=(p+,zT ) in the sequel. This implies in particular that
all expressions which are formulated in terms of the solutions to the Hamiltonian flows, reduced
to the corresponding expressions identified in proposition 11, for ρ = 0, resp. in section 5.2.2 for
ρ ≤ 0. For instance, (y0, z0) |∗ = (0, 0) , yT |∗ = a, z|∗ = zT 6= 0, χpT |∗ ∈ [π/2, π) and so.

Since (z·, q·) solves a linear ODE, we can compute

z0 (z, p) =
(

1 0
)

e
−T





b̃p c2

p (1− p)−b̃p




(

z
0

)

=
z

χp

(

χp cos
(

χpT
)

− b̃p sin
(

χpT
)

)

.

We first note that ∂z0/∂z|∗ is zero; indeed, this follows from (39). Our next claim is ∂y0/∂z|∗ 6= 0.
Indeed, from the structure of the Hamilton ODEs,

y0 − a = −
∫ T

0

ẏtdt = z2 (...)

where (· · · ) does not depend on z. As a result ∂y0/∂z|∗ = 2z (...) |∗ = 2 y0−a
z |∗ = −2a/zT 6= 0.

It remains to check that ∂z0/∂p|∗ 6= 0. To this end, recall, as a consequence of the transver-
sality condition, see (39), that χp cos

(

χpT
)

− b̃p sin
(

χpT
)

|∗ = 0. It follows that

∂z0/∂p|∗ =
{

z

χp

∂

∂p

(

χp cos
(

χpT
)

− b̃p sin
(

χpT
)

)

}

∗

and since z/χp|∗ 6= 0, it will be enough to show (strict) negativity of ∂
∂p (...) |∗ above. By scaling,

there is no loss of generality in taking T = 1 and we shall do so from here on. Then

∂

∂p

(

χp cos
(

χp

)

− b̃p sin
(

χp

)

)

= χ′p[
(

1− b̃p

)

cos
(

χp

)

− χp sin
(

χp

)

]− ρc sin
(

χp

)

.

Since b̃p|∗ ≤ 0 and χp|∗ ∈ [π/2, π) we see that [...] |∗ < 0. Given that χ′p|∗ > 0, this already
settles the negativity claim in the zero-correlation case. In the case −1 < ρ < 0, we use (39) to
write

∂

∂p

(

χp cos
(

χp

)

− b̃p sin
(

χp

)

)

|∗

= χ′p[
(

1− b̃p

) b̃p sin
(

χp

)

χp

− χp sin
(

χp

)

]− ρc sin
(

χp

)

|∗.
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After division by sin
(

χp

)

/χp|∗ > 0, we have, using b̃p = b+ ρcp ≤ 0, b ≤ 0 and again χ′p|∗ > 0,

χ′p[
(

1− b̃p

)

b̃p − χ2
p]− ρcχp|∗

≤ χ′p[(1− ρcp) ρcp− χ2
p]− ρcχp|∗

≤−ρc
(

χp − pχ′p
)

|∗.

With −ρc > 0, it will then be sufficient to show strict negativity of χp− pχ′p|∗. To this end note

that the definition, χ2
p = c2p (p− 1)− b̃2, implies

2χpχ
′
p = c2 (2p− 1)− 2b̃ (ρc)

χppχ
′
p = c2p (p− 1/2)− b̃ (ρcp)

= χ2
p +

c2p

2
+ bb̃ > χ2

p

whenever c2p/2 + bb̃ > 0 which is surely the case upon evaluation ...|∗.
We conclude that ∂z0/∂p|∗ 6= 0, and then validity of (45), for any parameter set ρ ∈

(−1, 0], b ≤ 0, c > 0, T > 0. In other words, we have completed the check of our non-degeneracy
condition.

5.3 Comments on Heston [33] and Lions–Musiela [39]

We recall from [28, 21] that the density of log-stock price YT in the Heston model,

dY =−V/2 +
√
V dW 1, X (0) = x0 = 0

dV = (a+ bV ) dt+ c
√
V dW 2, V (0) = v0 > 0,

with a ≥ 0, b ≤ 0, c > 0 and correlation ρ ∈ (−1, 0] has the form

f (y) = e−c1yec2
√
yy−3/4+a/c2 (c3 +O (1/

√
y)) as y →∞;

with explicitly computable c1 = C1 (b, c, ρ, T ) and c2 =
√
v0 ×C2 (b, c, ρ, T ), both do not depend

on a. While scaling with θ = 2,

Yε := ε2Y, Vε := ε2V

indeed yields a small noise problem, namely

dY ε =−V ε/2 +
√
V εεdW 1, X (0) = x0 = 0

dV ε =
(

aε2 + bV ε
)

dt+ c
√
V εεdW 2, V (0) = v0ε

2 > 0.

The algebraic factor y−3/4+a/c2 in the above expansion then contradicts the expected factor; cf.
(13)

y
1
θ−1 = y−1/2.

There is no contradiction here, of course. Rather, we see an explicit example where ”formal”
application of a theorem to a model which is short of the required regularity leads to wrong
conclusion (at least at the fine level of algebraic factors). Remark that one can trace the origin

of this unexpected y−3/4+a/c2 factor to the behaviour of the one-dimensional variance process
V ; also known as Feller - or Cox-Ingersoll-Ross diffusion. Curiously then even a large deviation
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principle for V ε as given above presently lacks justification, despite the recent advances in [19], [6].
Clearly then, we are not anywhere near in obtaining the Heston tail result of [28, 21] with the
present methods.

However, in the special case when a = c2/4 it is an easy exercise to see that the Heston model
can be realized as Stein-Stein model (take V = Z2, where Z is the volatility component of the
Stein-Stein model), the resulting expressions are then seen to be consistent with those obtained

in [21] and, in particular, y−3/4+a/c2 = y−1/2.

Another class of non-smooth, non-affine stochastic vol model with ”θ = 2”-scaling, introduced
by Lions-Musiela [39]. For δ ∈ [1/2, 1] and γ = 1− δ they consider the 2-dimensional diffusion

dY =−1

2
Z2δdt+ ZδdW̃1, Y0 = 0

dZ = bZdt+ cZγdW2, Z (0) = z0 > 0.

And indeed with Yε = ε2Y and Zε = ε1/δZ this becomes a small noise problem;

dYε =−
1

2
Z2δ
ε dt+ Zδ

εεdW, Yε (0) = 0

dZε = bZεdt+ cZγ
ε εdZ, Zε (0) = ε1/δz0.

In their paper they establish exponential moments of YT . It is tempting to use corollary 5, at
least to leading large deviation order, to obtain the exponential tail of Z for models that scale
with θ = 2. Of course, as was discussed in the Heston case, such a ”formal” application can be
wrong. Further work, building on [19], [6], will be necessary to deal with such degenerate models
directly.
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