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Abstract. We provide a unified treatment of pathwise Large and Moderate deviations principles
for a general class of multidimensional stochastic Volterra equations with singular kernels, not
necessarily of convolution form. Our methodology is based on the weak convergence approach
by Budhijara, Dupuis and Ellis [14, 36]. We show in particular how this framework encompasses
most rough volatility models used in mathematical finance, and generalises many recent results in
the literature.

1. Introduction

This paper sheds new light on the asymptotic behaviour of the class of stochastic Volterra equa-
tions (SVEs)

(1.1) Xt = X0 +

∫ t

0

K(t, s)b(s,Xs)ds+

∫ t

0

K(t, s)σ(s,Xs)dWs, t ∈ [0, T ],

where X0 ∈ Rd, d ≥ 1, W is a multidimensional Brownian motion, K is a kernel that may be
singular, and the coefficients are such that a unique pathwise solution exists. This class of models has
been investigated in many fields, including nonlinear filtering [29] using fractional Brownian motion
kernels, pharmacokinetic models [63] (Langevin equation driven by fractional Brownian motion),
fluid turbulence [21], and turbulence modelling in atmospheric winds or energy prices [3, 28] using
Brownian Semistationary processes.

Mathematical finance has however been the most dynamic area by far in terms of applications
of SVEs, and an in-depth study of (1.1) with convolution kernels was recently carried out by Abi
Jaber, Larsson and Pulido [1]. Following previous analyses supporting non-Markovian systems
[2, 26, 25, 23, 24, 47], the investigation of high-frequency data in [51] revealed the roughness, in the
sense of low Hölder regularity, of the observed time series of the instantaneous volatility of stock
price processes. This suggested that fractional Brownian motion (fBm) with small Hurst parameter
(H ≈ 0.1) is an accurate driver for its dynamics. Since this seminal observation, more advanced
results [39] have proposed that that the drift and the diffusion coefficients should be state dependent,
giving rise to the widespread development of (1.1) in quantitative finance.

For option pricing purposes, the asymptotic results in [2, 7, 48] showed that the short-maturity
behaviour of option prices is captured much more accurately by these rough volatility models rather
than by Markovian diffusions. Reconciling the stylised facts of the markets from both the statistical
and the option pricing viewpoints is the tour de force that make these models so important today.
However, the loss in tractability compared to classical Itô diffusions is not negligible. The solution
to (1.1) is in general not a semimartingale nor a Markov process, preventing the use of Itô calculus
or Feynman-Kac type formulas. Path-dependent versions of the latter are available in some cases, in
particular for affine rough volatility models [1, 31, 41, 52], but general results are scarce. Rough path
theory is a natural route but is not available for H ≤ 1/4, although a regularity structure approach
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was recently developed [5]. In this context, one could turn to numerical methods to understand the
dynamics or to price options but, despite new advances based on Monte-Carlo methods [6, 8, 64],
rough Donsker theorem [57] or Fourier methods [41], the roughness and memory of the process
seriously complicate the task.

Asymptotic methods have been used, both to provide clearer understanding of models in extreme
parameter configurations and to act as proxies to numerical schemes. Large Deviations Principles
(LDP), in particular, have been widely explored in mathematical finance, and we refer the interested
reader to [69] for an overview. Let {Xε}ε>0 be a sequence in some Polish space X , converging in
probability to a deterministic limit X as ε goes to zero. This sequence is said to satisfy an LDP
with speed ε−1 and rate function I : X → [0,+∞] if for all Borel subsets B ⊂ X , the inequalities

− inf
x∈B◦

I(x) ≤ lim inf
ε↓0

ε logP
(
Xε ∈ B

)
≤ lim sup

ε↓0
ε logP

(
Xε ∈ B

)
≤ − inf

x∈B
I(x)

hold, and the level sets {x ∈ X : I(x) ≤ N} of I are compact for all N > 0. This rate function
encompasses in a (relatively) concise formula first-order information about the asymptotic behaviour
of complex dynamical systems. If X satisfies (1.1) and X = Rd, one can consider finite-dimensional
LDP for {Xt}t≥0 (also called small-time LDP if the limit takes place as t goes to zero), or pathwise
LDP for some rescaling of X with X = C([0, T ] : Rd). The former is easily recovered from the
latter by a projection argument. Moderate deviations however are concerned with deviations of a
lower order than large deviations, and thus apply to ‘less rare events’. We indeed say that {Xε}ε>0

satisfies a moderate deviations principle (MDP) if {ηε}ε>0 satisfies an LDP with speed hε, where

ηε :=
Xε −X

εhε
, for all ε > 0,

with limε↓0 hε = +∞ and limε↓0 εhε = 0. Since the speed of convergence of hε is not fixed, an MDP
essentially bridges the gap between the central limit regime where hε = 1 and the LDP regime
where hε = ε−1. An edifying example of the relevance of moderate deviations appeared in [46]
where, interested in option pricing asymptotics, the authors judiciously rescale the strikes with
respect to time to expiry. Indeed, as time to expiry becomes smaller, the range of pertinent strikes
naturally shrinks, and this ‘moderately-out-of-the-money’ regime becomes more realistic.

Large deviations for SVEs were originally studied in [68, 71] with regular kernels. In the context
of rough volatility, Forde and Zhang [43] introduced the first finite-dimensional LDP where the log-
volatility is modelled by a fractional Brownian motion, and refined versions followed in [5, 7, 45],
while pathwise LDP for similar models were studied in [20, 55]. Departing from regular conditions on
the behaviour of the coefficients led to specific requirements, and finite-dimensional large deviations
for the fractional Heston model were carried out in [42, 54], while more elaborate pathwise LDPs
were derived for the rough Stein-Stein model with random starting point [56], for the rough Bergomi
model [58], and small-time LDPs for the multifactor rough Bergomi appeared in [61].

The Gärtner-Ellis theorem [33, Theorem 2.3.6] is the main ingredient of a finite-dimensional
LDP and depends on explicit computations of certain limits of the Laplace transform. This is
only available though, when the process is either Gaussian [43] or affine [42]. Pathwise LDP on
the other hand, have mainly been derived using the Freidlin-Wentzell approach [44]: starting from
known large deviations for the driving (Gaussian) process [34, Theorem 3.4.5], they follow from a
combination of approximations and continuous mapping, keeping track of the rate function. While
this methodology is clear, it requires a case-by-case tailored path for each model, and in general
leads to a cumbersome rate function. Furthermore, pathwise moderate deviations are so far out of
reach in this approach, partially explaining the small number of related results compared to LDP.

A radically different method, introduced by Dupuis and Ellis in the monograph [36] and developed
further by Budhiraja and Dupuis [14], relies on the equivalence between the LDP and the Laplace
principle. The family {Xε}ε>0 is said to satisfy the Laplace principle with speed ε−1 and rate
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function I : X → [0,+∞] if for all continuous bounded maps F : X → R,

(1.2) lim
ε↓0

−ε logE
[
exp

{
−F (X

ε)

ε

}]
= inf
x∈X

{
I(x) + F (x)

}
.

This alternative, called the weak convergence approach, consists in proving a Laplace principle where
the left-hand side pre-limit of (1.2) can be represented as a variational principle for expectations of
functionals of Brownian motion [11, Theorem 3.1]:

Lemma 1.1 (Boué-Dupuis). Let W be an Rm-Brownian motion and F be a bounded Borel-
measurable function mapping C([0, T ] : Rm) into R. Then

(1.3) − logE
[
e−F (W )

]
= inf
v∈A

E

[
1

2

∫ T

0

|vs|2 ds+ F

(
W +

∫ ·

0

vsds

)]
,

where

(1.4) A :=

{
v : [0, T ] → Rm progressively measurable, E

[∫ T

0

|vt|2dt

]
< +∞

}
.

The representation (1.3) contains in a single formula the usual tools used in the proof of an LDP.
The first term on the right-hand side comes from the relative entropy between the Wiener measure
and the measure shifted by

∫ ·
0
vsds via Girsanov’s theorem, under which W +

∫ ·
0
vsds is a Brownian

motion. It can be interpreted as the cost of deviating from the original path and clearly indicates
where the form of the rate function comes from. In essence, this representation replaces the non-
linear analysis of the Freidlin-Wentzell approach with the linear theory of weak convergence. Instead
of exponential estimates, only qualitative properties of the shifted process need to be established,
such as strong existence and uniqueness and tightness.

The extensive literature on the topic, summarised in [14] and the references therein, demon-
strates the strength of this generic approach which can be applied to a variety of models without
appealing to their particular features. It has been used to derive LDPs, in the continuous-time case,
for diffusions [22], multiscale systems [16, 37, 72], SDEs driven by infinite-dimensional Brownian
motions [17], by Poisson random measures [18] or both [12], including stochastic PDEs. Contrary
to the Freidlin-Wentzell approach, this method has also proved efficient to obtain MDPs. SVEs
with Lipschitz continuous kernels [62], SDEs with jumps [15] and slow-fast systems [65] are a few
relevant examples. The latter were then tailored to the setting of stochastic volatility models in [59],
developing the first application of the weak convergence approach in mathematical finance, and ex-
tending the MDP results in [46] to a pathwise setting. A further appealing feature of moderate
deviations is the simple form, often quadratic, of the rate function, as opposed to that provided by
large deviations, thereby opening the gates to the use of importance sampling and variance reduction
techniques [70, 38, 66].

Building on this powerful approach, we provide a unified treatment of (finite-dimensional and
pathwise) large and moderate deviations in the general framework (1.1) by showing the weak con-
vergence of a perturbed system. We relax the uniqueness requirement for the limiting Volterra
equation, as in [27, 35] for the diffusion case, allowing us to consider coefficients that are not Lips-
chitz continuous and do not necessarily have sublinear growth.

The paper is organised in the following way: Section 2 introduces the framework and useful defi-
nitions. In section 3, we present abstract criteria for the validity of an LDP, extending the results by
Budhiraja and Dupuis [13, Theorem 4.1]. Our main results, Theorem 3.8 for LDP and Theorem 3.16
for MDP, are then stated in the case of convolution kernels and extended to non-convolution kernels
in Theorem 3.25. In Section 4, we show how these results apply to rough volatility models, and give
precise formulae for the rough Stein-Stein, the (multifactor) rough Bergomi and the rough Heston
models. We finally gather technical proofs in the appendix.
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2. General framework

2.1. Notations. We consider a fixed time horizon T > 0, and denote T := [0, T ], and R+ :=
[0,+∞]. For d1 ≥ 1, d2 ≥ 1, |·| denotes the Euclidean norm in Rd1 and the Frobenius norm
in Rd1×d2 . For p ≥ 1, Lp stands short for Lp(T), and ‖·‖2 is the usual L2 norm. Furthermore,
for d ≥ 1, Wd := C(T : Rd) represents the space of continuous functions from T to Rd, equipped
with the supremum norm ‖φ‖T := supt∈T |φt| for any φ ∈ Wd. Finally, for any d1 ≥ 1, d2 ≥ 1,
M > 0, f : Rd1 → Rd2 , we write ‖f‖M := sup{|f(x)| : |x| ≤M}. Unless stated otherwise, constants
will be denoted by C (with possible subscript) and may be different from one proof to another.
Every statement involving ε stands for all ε > 0 small enough. A family of random variables will
be called tight if the corresponding measures are tight [36, Appendix A]. We also use the classical
convention that the infimum over an empty set is equal to infinity. Finally, we recall the following
definitions for clarity and notations:

Definition 2.1. Let g be a function from Rd to Rn.
• It has linear growth if there exists CL > 0 such that |g(x)| ≤ CL(1 + |x|), for all x ∈ Rd;
• if it is uniformly continuous, it admits a continuous and increasing modulus of continuity
ρg : R+ → R+, with ρg(0) = 0 and |g(x)− g(y)| ≤ ρg(|x− y|), for all x, y ∈ Rd;

• it is locally δ-Hölder continuous with δ ∈ (0, 1) if, for all M > 0, there exists CM > 0 such
that |g(x)− g(y)| ≤ CM |x− y|δ, for all |x| ∨ |y| ≤M .

2.2. Framework. We consider small-noise convolution stochastic Volterra equations (SVE)

(2.1) Xε
t = Xε

0 +

∫ t

0

K(t− s)bε(s,X
ε
s )ds+ ϑε

∫ t

0

K(t− s)σε(s,X
ε
s )dWs,

taking values in Rd with d ≥ 1, where ε > 0, and ϑε > 0 tends to zero as ε goes to zero. For each
ε > 0, Xε

0 ∈ Rd, bε : T×Rd → Rd and σε : T×Rd → Rd×m are Borel-measurable functions, and W
is an m-dimensional Brownian motion on the filtered probability space (Ω,F , {Ft}t∈T,P) satisfying
the natural conditions. The kernel function K : T → Rd × Rd, of convolution type, is allowed
to be singular, thus encompassing fractional processes, in particular the recent literature on rough
volatility [2, 6, 39, 51]. Components of the system are in general correlated, the correlation matrix
being implicitly encoded in the diffusion coefficient σε. General existence and uniqueness results for
such stochastic Volterra equations are so far out of reach, and our conditions below are sufficient
and general enough for most applications. In order to state them precisely, we first introduce several
definitions and concepts:

Definition 2.2. For any ε > 0, a solution to (2.1) is an Rd-valued progressively measurable sto-
chastic process Xε satisfying (2.1) almost surely and such that

P
(∫ t

0

{
|K(t− s)bε(s,X

ε
s )|+ |K(t− s)σε(s,X

ε
s )|

2
}
ds <∞, for all t ∈ T

)
= 1.

We call it exact if it is pathwise unique.

We shall always assume that the (singular) convolution kernel satisfies the following condition,
which is essentially a multivariate version of the one given in [1, Condition (2.5)]:

Assumption 2.3. The kernel K : T → Rd×d is an upper triangular matrix satisfying the following
conditions: K ∈ L2

loc(T;Rd×d) and there exists γ ∈ (0, 2] such that, for h small enough,∫ h

0

|K(t)|2 dt+
∫ T

0

|K(t+ h)−K(t)|2 dt = O(hγ).

We refer to [1, Example 2.3] for a broad range of kernels that satisfy this assumption. Of particular
interest in mathematical finance is the Riemann-Liouville kernel K(t) = tH− 1

2 , for H ∈ (0, 12 )

implying γ = 2H. Moreover if K̃ is locally Lipschitz and K satisfies Assumption 2.3 then so does
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the product KK̃; this includes the Gamma and Power-law kernels which are related to the class of
Brownian Semistationary processes [4].

Remark 2.4. This setup covers in particular the following two useful forms for the kernel:
• K = Diag(k1, · · · , kd) is a diagonal matrix, where each ki : T → R satisfies Assumption 2.3.
• The drift and diffusion coefficients of any sub-system of (2.1) can be convoluted with different

kernels. As an example, the one-dimensional SVE

Y εt = Y ε0 +

∫ t

0

K1(t− s)bYε (s, Y εs ) ds+

∫ t

0

K2(t− s)σYε (s, Y εs ) dW
(1)
s

is the first component of (2.1) with d = 2 and

K =

[
K1 K2

0 0

]
, bε =

[
bYε
0

]
, σε =

[
0 0
σYε 0

]
.

Volterra systems appearing in the literature, and in particular in the mathematical finance one,
have a specific structure in the sense that only one component satisfies an SVE with (singular)
kernel, and can be dealt with independently of the other component. This particular structure
allows us to relax some conditions on the coefficients, and we shall leverage on it whenever needed.
We make this more specific through the following two definitions:

Definition 2.5. Let Υ ⊂ J1, dK and Γ : R|Υ| → R+. We define SΓ
Υ as the set of functions f : Rd → R

for which there exists a strictly positive constant CΥ such that, for all x ∈ Rd,

(2.2) |f(x)| ≤ CΥ

(
1 + |x|Υc + Γ

(
x(Υ)

))
,

where |x|Υc :=
∑
i∈Υc

∣∣x(i)∣∣ and x(Υ) := {x(i), i ∈ Υ}.

Definition 2.6. The processXε admits an autonomous SΓ
Υ-subsystem {Xε,(l)}l∈Υ if for ξ ∈ {bε, σε},

• if l ∈ Υ, ξ(l)(t, ·) has linear growth and does not depend on Xε,(j) for j ∈ Υc;
• if l ∈ Υc, ξ(l)(t, ·) belongs to SΓ

Υ,
for small enough ε and uniformly in t ∈ T.

Example 2.7. The motivation for Definition 2.6 is to be able to handle (rough) stochastic volatility
models, ubiquitous in mathematical finance, where linear growth of all the coefficients may not hold.
Consider for example the rough Bergomi model [6]

X
(1)
t = −1

2

∫ t

0

exp
(
X(2)
s

)
ds+

∫ t

0

exp

(
1

2
X(2)
s

)
dBs,

X
(2)
t = y0 − at2H +

∫ t

0

(t− s)H− 1
2 dWs.

with y0, a ∈ R, H ∈ (0, 12 ), B and W are correlated Brownian motions, and we dropped the
dependence in ε. Here X admits X(2) as autonomous subsystem with Υ = {2}, Γ(x2) = 1 + ex2/2.

The following set of assumptions, inspired from [22], completes our framework:
H1. Xε

0 converges to x0 ∈ Rd as ε tends to zero.
H2. For all ε > 0 small enough, the coefficients bε and σε are measurable maps on T × Rd and

converge pointwise to b and σ as ε goes to zero. Moreover, b(t, ·) and σ(t, ·) are continuous
on Rd, uniformly in t ∈ T.

H3. Either a) or b) holds:
a) For all ε > 0 small enough, bε and σε have linear growth uniformly in ε and in t ∈ T.
b) The process Xε admits an autonomous SΓ

Υ-subsystem.
H4. The SVE (2.1) is exact for small enough ε > 0.
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H2 ensures that, on compact subsets of T × Rd, the convergence of bε and σε is uniform and
that b and σ are uniformly continuous. H1, H2, H3a are standard and easily verifiable. H3b is
unusual but includes a large number of functions; Assumption 3.6 will complete it to indicate the
role of Γ such as to include Example 2.7. The main restrictions arise from H4, although the latter is
satisfied if, for instance, the coefficients bε and σε are locally Lipschitz continuous for small enough
ε > 0. This requirement was also relaxed in [67] to the one-dimensional case where K(t) = t−α, for
α ∈ (0, 12 ) and σ(x) = xγ , for γ ∈ ( 1

2(1−α) , 1], which is clearly not Lispchitz continuous. Although
H4 can seem constraining, to the best of our knowledge there currently exists no pathwise LDP for
SDEs where pathwise uniqueness fails.

3. Large and moderate deviations

As discussed in the introduction, our goal is to provide pathwise large and moderate deviations for
the general convolution stochastic Volterra system (2.1). The classical Freidlin-Wentzell approach,
used in [44], has limitations regarding the behaviour of the coefficients, and the rate function is often
rather cumbersome to write. We follow here instead the weak convergence approach developed by
Dupuis and Ellis [36]. We first introduce the reader to their abstract setting, and refine the large
deviations result by Budhiraja and Dupuis [13] to our general setup. We then show how this abstract
framework applies to the small-noise stochastic Volterra system (2.1), first proving pathwise large
deviations, and then the moderate deviations counterpart.

3.1. Weak convergence approach: the abstract setting. Given a family of Borel-measurable
functions {Gε}ε>0 from Wm to Wd, we enquire about the large deviations behaviour of the family of
random variables {Gε(W )}ε>0, where W is a standard Brownian motion on the filtered probability
space above. For each N > 0, the spaces of bounded stochastic and deterministic controls

SN :=
{
v ∈ L2 :

∫ T

0

|vs|2ds ≤ N
}

and AN :=
{
v ∈ A : v ∈ SN almost surely

}
,(3.1)

with A introduced in (1.4), are equipped with the weak topology on L2(T × Ω) such that they
are closed and even compact (by Banach-Alaoglu-Bourbaki theorem). Budhiraja and Dupuis [13]
assume, for any sequence {vε}ε>0 in AN converging weakly to v ∈ AN , the existence of a limit in
distribution of Gε

(
W + 1

ε

∫ ·
0
vεsds

)
which is uniquely characterised by v. However, such uniqueness

may fail when the coefficients of the system (1.1) (in particular the diffusion coefficient σ) are not
locally Lipschitz, as is the case for the Feller diffusion for example (in this case without singular
kernel, a dedicated analysis was carried out in [27, 35] using the Freidlin-Wentzell approach). We
relax here this uniqueness assumption by replacing the limiting trajectory by a perturbed version.

Let ϕ ∈ Wd. For a sequence of controls {vn}n∈N ⊂ L2, we consider the abstract sets G0
vn ⊂ Wd

for all n ∈ N, together with the conditions

(3.2) ϕ ∈
⋂
n∈N

G0
vn and 1

2

∫ T

0

|vns |
2
ds ≤ I(ϕ) +

1

n
, for all n ∈ N,

where the functional I : Wd → R+ is given by

(3.3) I(ϕ) := inf

{
1

2

∫ T

0

|vs|2 ds : ϕ ∈ G0
v , v ∈ L2

}
.

The sequence of controls satisfying condition (3.2) exists if I(ϕ) < ∞ and approaches the infimum
in (3.3). We will say that ϕ is uniquely characterised if there exists a sequence {vn}n∈N ⊂ L2

satisfying (3.2) and such that for any n ≥ 0, there exists m ≥ n such that G0
vm is a singleton; in

that case G0
vm = {ϕ}. In particular, if there exists ṽ ∈ L2 which attains the infimum in (3.3) and

G0
ṽ = {ϕ} then ϕ is uniquely characterised.

Assumption 3.1. For any δ > 0 and any ϕ ∈ Wd such that I(ϕ) < ∞, there exists ϕδ uniquely
characterised such that

∥∥ϕ− ϕδ
∥∥
T ≤ δ and

∣∣I(ϕ)− I(ϕδ)
∣∣ ≤ δ.
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Remark 3.2. This assumption is reminiscent of [35, Proposition 3.3], where the authors resolve
the non-uniqueness issue in the diffusion case. A similar problem is also at the core of [19, Lemma
5.1] in an infinite-dimensional setting.

Our abstract large deviations result is the following, extending [13, Theorem 4.4], at least when
the underlying Hilbert space is Rm, to the non-uniqueness case:

Theorem 3.3. Consider N > 0 and a family {vε}ε>0 in AN converging in distribution to v ∈ AN .
Assume that there exists a random set G0

v ⊂ Wd such that:
(i) Gε

(
W· + ε−1

∫ ·
0
vεsds

)
converges in distribution to an element of G0

v .
(ii) The functional I defined by (3.3) has compact level sets.

(iii) Assumption 3.1 holds.
Then the family {Gε(W )}ε>0 satisfies the Laplace principle and, by equivalence, the Large Deviations
Principle with rate function I and speed ε−1.

Remark 3.4. In the large deviations literature, a rate function is sometimes called ‘good’ if it has
compact level sets. All the rate functions in the present paper satisfy this requirement (item (ii)
above takes care of that), therefore we drop the adjective ‘good’.

We defer the proof to Appendix A.1; the lower bound can be tackled as in [13], and we therefore
concentrate on the upper bound. The idea is that the Laplace principle (1.2) upper bound involves
an infimum so deriving it only requires a δ-optimal path. Hence a perturbation will also do the
trick, provided one knows how to handle the control associated to it. In [13, Theorem 4.4], unique
characterisation of the limiting element in (i) is granted, and the set G0

v is a singleton that takes
the form G0(

∫ ·
0
vsds), where they view G0 as a map. In that case Assumption 3.1 is clearly satisfied

since ϕδ can be taken as ϕ itself.

3.2. Application to stochastic Volterra systems. We now show how the abstract setting de-
veloped above in Section 3.1 applies to the small-noise stochastic Volterra system (2.1) and why
pathwise uniqueness is so fundamental. If H4 holds, define the functional Gε as the Borel-measurable
map associating the multidimensional Brownian motion W to the solution of the stochastic Volterra
equation (2.1), that is: Gε(W ) = Xε. For any control v ∈ AN , N > 0 (introduced in (3.1)) and
any ε > 0, the process W̃ :=W +ϑ−1

ε

∫ ·
0
vsds is a P̃-Brownian motion by Girsanov’s theorem, where

dP̃
dP

:= exp

{
− 1

ϑε

m∑
i=1

∫ T

0

v(i)s dW (i)
s − 1

2ϑ2ε

∫ T

0

|vs|2 ds

}
.

Hence the shifted version Xε,v := Gε(W̃ ) appearing in Theorem 3.3(i) is the strong unique solution
of (2.1) under P̃, with Xε and W replaced by Xε,v and W̃ . Because P and P̃ are equivalent, Xε,v

is also the unique strong solution of the controlled equation

(3.4) Xε,v
t = Xε

0 +

∫ t

0

K(t− s)
[
bε(s,X

ε,v
s ) + σε(s,X

ε,v
s )vs

]
ds+ ϑε

∫ t

0

K(t− s)σε(s,X
ε,v
s )dWs.

Under appropriate conditions, and using the notations set in H1, H2, we heuristically observe that
taking ε to zero, the system (3.4) reduces to the deterministic Volterra equation

(3.5) ϕt = x0 +

∫ t

0

K(t− s)
[
b(s, ϕs) + σ(s, ϕs)vs

]
ds,

solutions of which precisely corresponds to the set Gv0 in Theorem 3.3.

Example 3.5. To illustrate the need for a set G0
v rather than a singleton, consider the Feller

diffusion

Xt = x0 + κ

∫ t

0

(θ −Xs)ds+

∫ t

0

√
XsdWs,
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for t ∈ T, with x0, κ, θ > 0. Letting t 7→ εt and denoting Xε
t := Xεt yields, by scaling,

Xε
t = x0 + κε

∫ t

0

(θ −Xε
s ) ds+

√
ε

∫ t

0

√
Xε
sdWs,

which is exactly (2.1) with d = 1, K ≡ 1 , ϑε =
√
ε , bε(x) ≡ κε(θ − x), σε(x) ≡

√
x. For v ∈ L2,

taking limits as ε tends to zero in the corresponding controlled equation (3.4) yields (3.5), or

ϕt = x0 +

∫ t

0

√
ϕsvsds, t ∈ T.

Uniqueness does not hold in general because of the non-Lipschitz coefficient, and thus G0
v corresponds

to the set of non-negative solutions. Consider for example x0 = 1, T = [0, 4] and the control

vt :=

{
−1, if t ∈ [0, 2)

1, if t ∈ [2, 4].

The function ϕt :=
(t−2)2

4 is clearly a solution, but so is φ equal to ϕ on [0, 2] and null on [2, 4].
The square root function is indeed locally Lipschitz away from zero, and uniqueness can thus be
guaranteed as long as the solution remains positive. The perturbation ϕδ := ϕ+ δt is now the unique
solution to

ϕδt = 1 +

∫ t

0

√
ϕδsv

δ
sds,

for all t ∈ [0, 4], where vδ := ϕ̇δ/
√
ϕδ. The infimum in (3.3) is attained by vδ and G0

vδ = {ϕδ}, thus ϕδ
is uniquely characterised. Furthermore, [35, Proposition 3.3] shows that ϕδ satisfies Assumption 3.1.

In [9], the authors were also confronted to a limiting equation with multiple solutions. Instead of
perturbing the path ϕ, they perturb the control in a way that the resulting equation has a unique
solution which is precisely ϕ, i.e. G0

vδ = {ϕ}. This approach may seem more natural; however, it is not
always obvious how to perturb the control ensuring uniqueness of the ODE, while our formulation
makes it more straightforward. Before stating the main large and moderate deviations results for
small-noise stochastic Volterra equations, we introduce the following assumption, monitoring the
moments of the controlled equation:

Assumption 3.6. Let Xε,v be the exact solution to (3.4). If H3a holds then the present assumption
is satisfied. If instead H3b holds, then there exists ε0 > 0 such that, for any p ≥ 1 and N > 0,

(3.6) sup
{
E
[∣∣Γ((Xε,v

t )(Υ)
)∣∣p] , t ∈ T, v ∈ AN , ε ∈ (0, ε0)

}
<∞,

(3.7) sup
{∣∣Γ((ϕt)(Υ)

)∣∣, t ∈ T, v ∈ SN , ϕ ∈ G0
v

}
<∞.

Remark 3.7. In the following, H3b will always be complemented by Assumption 3.6.

3.3. Large Deviations. Armed with the abstract setting in Section 3.1, and its application to the
stochastic Volterra system (2.1) in Section 3.2, we can at last show large deviations for the latter:

Theorem 3.8 (Large Deviations). Under H1 - H4, Assumptions 2.3, 3.1 and 3.6, the fam-
ily {Xε}ε>0, unique solution of (2.1), satisfies a Large Deviations Principle with rate function (3.3)
and speed ϑ−1

ε , where G0
v is the set of solutions of the limiting equation (3.5).

Remark 3.9. We recall that Assumption 3.1 is immediately satisfied if the limiting equation (3.5)
has a unique solution. Also, it is only necessary to check Assumption 3.6 if H3a does not hold.
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3.3.1. Technical preliminary results. The proof will rely on the following results: Lemma 3.10
(proved in Section A.2) shows the moment bound of the controlled process, Lemma 3.12 (proved
in Section A.3) demonstrates the tightness and Lemma 3.14 (proved in Section A.4) deals with the
compactness of the level sets of the rate function. They will then allow the use of Theorem 3.3.

Lemma 3.10 (LDP Moment bound). Under H1 - H4, Assumptions 2.3 and 3.6, for all p ≥
2, N > 0 and v ∈ AN , there exists a constant c > 0 independent of ε, v, t such that for all ε > 0
small enough
(3.8) sup

t∈T
E
[
|Xε,v

t |p
]
≤ c.

Remark 3.11. This bound also holds for any solution ϕ of (3.5) using the bound (3.7). Therefore
we also obtain sup{‖ϕ‖T , v ∈ SN , ϕ ∈ G0

v} ≤ c′.

Lemma 3.12 (LDP Tightness). Consider H1 - H4, Assumptions 2.3 and 3.6. Let p > 2∨2/γ, N >
0 and a family {vε}ε>0 in AN . Then Xε,vε admits a version which is Hölder continuous on T of
any order α < γ/2 − 1/p, uniformly for all ε > 0. Denoting again this version by Xε,vε , one has
for all ε > 0 small enough

(3.9) E

 sup
0≤s<t≤T

∣∣∣Xε,vε

t −Xε,vε

s

∣∣∣
|t− s|α

p ≤ C,

for all α ∈ [0, γ/2 − 1/p), where C is a constant independent of ε, vε, t. Moreover, the family of
random variables {Xε,vε}ε>0 is tight in Wd.

Remark 3.13. This lemma entails that for all N > 0, v ∈ SN any solution to (3.5) also has Hölder
continuous paths of the same order.

The following lemma proves Theorem 3.3(ii) and its proof can be found in Appendix A.4.

Lemma 3.14 (LDP Compactness). Under H2, H3, Assumptions 2.3 and 3.6, the functional I
in (3.3) has compact level sets.

We now have all the ingredients to prove the Large Deviations Principle.

3.3.2. Proof of Theorem 3.8. Fix N > 0. Consider a family {vε}ε>0 in AN converging in distribution
to v ∈ AN . We take an arbitrary subsequence {vεn}n∈N and prove convergence along a subsequence
thereof. If every subsequence has a converging subsequence then the sequence converges.

For ε > 0 small enough, the SVE (2.1) is exact by H4 and we showed that its controlled counter-
part (3.4) also has a unique strong solution Xε,vε . Lemma 3.12 shows that the family {Xεn,v

εn }n≥0

is tight in Wd. Moreover, the trajectories of vεn belong to a compact space with respect to the
weak topology so the family of controls is tight as a sequence of SN -valued random variables. Since
these are both Polish spaces, the family

{
Xεn,v

εn
, vεn

}
n≥0

is tight in Wd ×SN . Hence there exists
a subsequence, denoted hereafter

{
Xn, vn

}
, that converges weakly to a Wd × SN -valued random

variable (X0, v) defined on a possibly different probability space (Ω0,F0,P0) as n tends to +∞. We
also denote εn, Xn

0 , bn, σn along this subsequence. We follow the technique in [22] to identify the
limit. For t ∈ T, define Φt : SN ×Wd → R as

Φt(f, ω) :=

∣∣∣∣ωt − x0 −
∫ t

0

K(t− s)
[
b(s, ωs) + σ(s, ωs)fs

]
ds

∣∣∣∣ ∧ 1.

Clearly, Φt is bounded and we show that it is also continuous. Indeed, let ωn → ω in Wd and fn → f
in SN with respect to the weak topology. H2 implies the existence of continuous moduli of continu-
ity ρb and ρσ for both coefficients on compact subsets (see Definition 2.1). Since the paths ωn, n ≥ 1
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and ω are continuous, these moduli are available. Then, using Cauchy-Schwarz inequality and the
fact that |x ∧ 1− y ∧ 1| ≤ |x− y| for all x, y > 0,

|Φt(f, ω)− Φt(f
n, ωn)| ≤ |ωt − ωnt |+

∫ t

0

|K(t− s)| |b(s, ωs)− b(s, ωns )|ds

+

∫ t

0

|K(t− s)|
∣∣(σ(s, ωs)− σ(s, ωns )

)
fns + σ(s, ωs)

(
fs − fns

)∣∣ds
≤ ‖ω − ωn‖T + ‖ρb(|ω − ωn|)‖T ‖K‖1 + ‖ρσ(|ω − ωn|)‖T ‖K‖2 ‖f

n‖2

+ ‖σ(·, ω)‖T
∫ t

0

|K(t− s)| |fs − fns |ds.

Since K(t−·) ∈ L2 and fn tends to f weakly in L2 then the last integral converges to zero as n goes
to infinity. Moreover limn↑∞ ‖ω − ωn‖T = 0, ‖fn‖2 ≤

√
N for all n ≥ 0 and ‖K‖2+‖σ(·, ω)‖T <∞,

this proves that Φt is continuous, and therefore

lim
n↑∞

E [Φt(v
n, Xn)] = E0

[
Φt(v,X

0)
]
.

We now prove that the left-hand side is actually equal to zero. We start with the observation that,
using BDG inequality,

E [Φt(v
n, Xn)] ≤ |Xn

0 − x0|+
∫ t

0

|K(t− s)|E
[
|bn(s,Xn

s )− b(s,Xn
s )|
]
ds

+

∫ t

0

|K(t− s)|E [|σn(s,Xn
s )− σ(s,Xn

s )| |vns |] ds

+ ϑεnE
[∫ t

0

|K(t− s)σn(s,X
n
s )|

2
ds

] 1
2

.(3.10)

The bounds (A.3) and (A.5) show how to control the last term under H3a and H3b respectively,

hence there exists C1 > 0 independent of t and n such that E
[∫ t

0
|K(t− s)σn(s,X

n
s )|

2
ds
] 1

2 ≤ C1.
However the convergence of bn, σn only occurs on compact subsets so we use a localisation argu-

ment. For all n ≥ 0, M > 0 we introduce

AMn :=
{
ω ∈ Ω, ‖Xn(ω)‖T > M

}
.

The uniform (in n ∈ N) Hölder regularity of Xn, encompassed by (3.9), entails the existence, for
all p > 2 ∨ 2/γ, of C2(p), C3(p) > 0 independent of n such that

E
[
sup
t∈T

|Xn
t |
p

]
≤ C2(p)

(
|Xn

0 |
p
+ T pα

)
≤ C3(p),

for some 0 < α < γ/2 − 1/p and where Xn
0 is uniformly bounded by 2 |x0| for n large enough.

Markov’s inequality then implies that

(3.11) lim
M↑∞

sup
n∈N

P
(
AMn

)
≤ lim
M↑∞

sup
n∈N

C3(p)

Mp
= 0.

Moreover, for all n ∈ N, ω ∈ Ω \AMn , and t ∈ T, |Xn
t (ω)| is bounded by M , which means

|bn(t,Xn
t (ω))− b(t,Xn

t (ω))| ≤ ‖bn(t, ·)− b(t, ·)‖M ,

which tends to zero uniformly on T as n goes to infinity (and likewise for σn) from H2. Define then

In :=

∫ t

0

|K(t− s)|
(
|bn(s,Xn

s )− b(s,Xn
s )|+ |σn(s,Xn

s )− σ(s,Xn
s )| |vns |

)
ds
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and observe that, using Jensen’s and Cauchy-Schwarz inequalities, the growth condition on the
coefficients from H3 and the moment bounds on Xn from (3.8), there exists C4 > 0 independent
of n such that

E
[
|In|2

]
≤ 2t

∫ t

0

|K(t− s)|2 E
[
|bn(s,Xn

s )− b(s,Xn
s )|

2 ]
ds

+ 2N

∫ t

0

|K(t− s)|2 E
[
|σn(s,Xn

s )− σ(s,Xn
s )|

2
]
ds

≤ 2 ‖K‖22 sup
s≤t

{
tE
[
|bn(s,Xn

s )− b(s,Xn
s )|

2 ]
+NE

[
|σn(s,Xn

s )− σ(s,Xn
s )|

2
]}

≤ C4.(3.12)

Let us fix ϵ > 0 and choose Mϵ > 0 large enough such that supn∈N P
(
AMϵ
n

)
≤ ϵ2/C4; this choice

is possible because of (3.11). Therefore, using the bound (3.12) and Cauchy-Schwarz inequality to
separate In and 1AMε

n
, one obtains

lim
n↑∞

E[In] = lim
n↑∞

E
[
In
(
1AMε

n
+ 1Ω\AMε

n

)]
≤ lim
n↑∞

{√
C4P

(
AMε
n

)
+ ‖K‖1 ‖‖bn − b‖M‖T +

√
N ‖K‖2 ‖‖σn − σ‖M‖T

}
≤ ϵ.

It follows from (3.10) that

lim
n↑∞

E
[
Φt(v

n, Xn)
]
≤ lim
n↑∞

{
|Xn

0 − x0|+ E[In] + ϑεnC1

}
≤ ϵ,

hence limn↑∞ E [Φt(v
n, Xn)] = 0 since ϵ > 0 was chosen arbitrarily. The equality E0

[
Φt(v,X

0)
]
= 0

implies that X0 satisfies (3.5) P0-almost surely, for all t ∈ T. Since X0 has continuous paths, it
satisfies (3.5) for all t ∈ T, P0-almost surely. We have proved weak convergence and compactness
of level sets of the rate function from Proposition 3.14, therefore Theorem 3.3 yields the claim and
concludes the proof.

3.4. Moderate Deviations. Let hε tend to infinite such that ϑεhε tends to zero as ε goes to zero
and define X to be the limit in law of Xε, which we identified in the previous subsection as a solution
of the Volterra equation

(3.13) Xt = x0 +

∫ t

0

K(t− s)b(s,Xs)ds.

Then the MDP for {Xε}ε>0 is equivalent to the LDP for the family {ηε}ε>0 defined as

ηε :=
Xε −X

ϑεhε
=

Gε(W )−X

ϑεhε
=: T ε(W ),

where T ε : Wm → Wd are Borel-measurable maps for each ε > 0. Therefore ηε satisfies the
following SVE for all ε > 0, and is its unique solution if H4 holds.

ηεt =
Xε

0 − x0
ϑεhε

+

∫ t

0

K(t−s)
bε
(
s,Xs + ϑεhεη

ε
s

)
− b(s,Xs)

ϑεhε
ds+

∫ t

0

K(t−s)
σε
(
s,Xs + ϑεhεη

ε
s

)
hε

dWs.

Similarly to the LDP case we are interested in a certain shift of the driving Brownian motion,
controlled by v ∈ A. For all ε > 0, let

(3.14) ηε,v := T ε

(
W + hε

∫ ·

0

vsds

)
=

Gε
(
W + hε

∫ ·
0
vsds

)
−X

ϑεhε
.
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For convenience we introduce the family {Θε,v}ε>0 defined, for all ε > 0, v ∈ A, t ∈ T, by

Θε,vt :=Gε
(
W + hε

∫ ·

0

vsds

)
(t)

=Xε
0 +

∫ t

0

K(t− s)
[
bε(s,Θ

ε,v
s ) + ϑεhεσε(s,Θ

ε,v
s )vs

]
ds+ ϑε

∫ t

0

K(t− s)σε(s,Θ
ε,v
s )dWs.

This sequence satisfies the bound (3.8) and converges weakly towards X since ϑεhεσε tends to zero
as ε tends to zero. Finally the process defined by (3.14) satisfies

ηε,vt =
Xε

0 − x0
ϑεhε

+

∫ t

0

K(t− s)
bε
(
s,Xs + ϑεhεη

ε,v
s

)
− b(s,Xs)

ϑεhε
ds

+

∫ t

0

K(t− s)σε
(
s,Xs + ϑεhεη

ε,v
s

)
vsds+

1

hε

∫ t

0

K(t− s)σε
(
s,Xs + ϑεhεη

ε,v
s

)
dWs.(3.15)

For all v ∈ A, we define T 0
v to be the solution of the limiting equation

(3.16) ψt =

∫ t

0

K(t− s)
[
∇b(s,Xs)ψs + σ(s,Xs)vs

]
ds.

The form of the limit equation is dramatically simpler than for the LDP and much easier to com-
pute. Moreover T 0

v is well defined because the linearity of the equation and Assumption 2.3 grant
uniqueness for free, provided ∇b exists. Hence we will need the following assumptions:
H5. For each t ∈ T, the function b(t, ·) is continuously differentiable and b is Lipschitz continuous.
H6. There exists δ > 0 such that σ(t, ·) is locally δ-Hölder continuous, uniformly for all t ∈ T.
H7. limε↓0

(
ϑεhε

)−1 |Xε
0 − x0| = 0.

H8. There exist ε0 > 0, a sequence {νε}ε>0 with limε↓0 νε(ϑεhε)
−1 = 0 and a function Ξ : Rd → R

such that |bε(t, x)− b(t, x)| ≤ νεΞ(x) for all t ∈ T, ε ∈ (0, ε0), where for all p ≥ 1, N > 0,

(3.17) sup

{
E
[ ∣∣Ξ(Θε,vt )∣∣p ], ε ∈ (0, ε0), v ∈ AN , t ∈ T

}
<∞.

Remark 3.15. H5 entails that (3.13) has a unique solution and yields the bound
∥∥∇b(·, X)

∥∥
T <∞

by continuity. H7 implies H1. We have already proved the moments of all orders of Θε,v are
bounded in Lemma 3.8 hence (3.17) is satisfied if, for instance, Ξ is of polynomial growth. This is
however not sufficient for the applications we have in mind where Ξ is of exponential growth.

The main theorem of this section is the following.

Theorem 3.16 (Moderate Deviations). Under H2 - H8, Assumptions 2.3 and 3.6, the fam-
ily {ηε}ε>0 satisfies a Large Deviations Principle (equivalently {Xε}ε>0 satisfies a Moderate Devi-
ations Principle) with speed hε and rate function

(3.18) Λ(ψ) := inf

{
1

2

∫ T

0

|vt|2 dt : v ∈ L2, ψ = T 0
v

}
,

and Λ(ψ) = +∞ if this set is empty.

The proof of the moderate deviations theorem follows a similar structure to that of Theorem 3.8,
making use of Theorem 3.3. It will rely on moment bounds in Lemma 3.17 (proved in Section B.1),
tightness in Lemma 3.18 (proved in Section B.2), weak convergence in Lemma 3.19 (proved in
Section B.3), and finally compactness of the level sets in Lemma 3.20.

Lemma 3.17 (MDP Moment bound). Under H2 - H5, H7, H8, Assumptions 2.3 and 3.6, for
all p ≥ 2, N > 0 and v ∈ AN , there exists ĉ > 0 independent of ε, v, t such that for ε > 0 small
enough

sup
t∈T

E
[
|ηε,vt |p

]
≤ ĉ.
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Lemma 3.18 (MDP tightness). Let p > 2 ∨ 2/γ, N > 0 and a family {vε}ε>0 in AN . Under H2
- H5, H7, H8, Assumptions 2.3 and 3.6, ηε,vε admits a version which is Hölder continuous on T
of any order α < γ/2− 1/p, uniformly for all ε > 0. Denoting again this version by ηε,vε , one has
for all ε > 0 small enough,

(3.19) E

[(
sup

0≤s<t≤T

∣∣ηε,vεt − ηε,v
ε

s

∣∣
|t− s|α

)p]
≤ Ĉ,

for all α ∈ [0, γ/2 − 1/p), where Ĉ is a constant independent of ε, vε, s, t. Moreover, the fam-
ily {ηε,vε}ε>0 is tight in Wd.

Lemma 3.19 (MDP weak convergence). Let N > 0, a family {vε}ε>0 such that, for all ε > 0, vε ∈
AN and vε converges in distribution to v ∈ AN , and ψ the unique solution of (3.16). Under H2 -
H8, Assumptions 2.3 and 3.6, ηε,vε converges in distribution to ψ as ε goes to zero.

We recall that ηε,vε = T ε
(
W + hε

∫ ·
0
vsds

)
and ψ = T 0

v , hence the weak convergence we just
proved deals with Theorem 3.3 (i). Item (ii) is dealt with in the following lemma.

Lemma 3.20 (MDP compactness). Under H2, H3, H5, Assumptions 2.3 and 3.6, the functional Λ
defined by (3.18) has compact level sets.

Proof. Noticing that ∇b(t,Xt) and σ(t,Xt) are uniformly bounded on T by continuity, this lemma
amounts to a particular case of Lemma 3.14. �

Theorem 3.3(iii) is immediate by uniqueness of (3.16), therefore all the conditions are met and
Theorem 3.16 follows as a direct application of Theorem 3.3.

3.5. Extension to non-convolution kernels. The analysis undertaken in this paper is based,
both for notational convenience and with a view towards application, on convolution kernels. Dif-
ferent assumptions were studied in the literature, in particular Decreusefond [32] considered the
properties of the map f 7→

∫ ·
0
K(·, s)f(s)ds in order to include the fractional Brownian motion in

his setting.

3.5.1. Setting. We call a kernel a map K : T2 → R for which both
∫ t
0
K(t, s)2ds and K(t, s) are

finite for all t ∈ T and s 6= t. The associated space is defined as

K :=
{
u : T → R,{Ft}-progressively measurable, such that E

∫ t

0

[K(t, s)u(s)]
2
ds <∞, for all t ∈ T

}
.

Hence, for all u ∈ AK the stochastic integral

M̃K
t (u) :=

∫ t

0

K(t, s)u(s)dWs

is well defined for all t ∈ T in the Itô sense. For any α ∈ (0, 1), we denote the Riemann-Liouville
integral Iα and derivative Dα, as

(3.20) (Iαf)(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (Dαf)(t) :=
d

dt
(I1−αf)(t), for f ∈ L1, t ∈ T.

Define Iα,p := Iα(Lp) equipped with the norm ‖f‖Iα,p
:= ‖Dαf‖Lp if f ∈ Iα(Lp) and infinity

otherwise. If α > 1
p , then Iα,p ⊂ Cα−

1
p

0 , the space of (α − 1
p )-Hölder continuous functions null at

time 0. Let K denote the linear map associated to K(t, s) by

(3.21) Kf(t) :=

∫ t

0

K(t, s)f(s)ds,
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and introduce, for x ∈ (0,∞) \ {2},

(3.22) θ(x) :=
2x

2− x
.

Given the space inclusions above, the following assumption implies precise Hölder regularity for
the integral (3.21):

Assumption 3.21. There exist η ∈ (1, 2) and α > 1/θ(η) for which K is continuous from L2

to Iα+ 1
2 ,2

and from Lη to Iα,θ(η).

Example 3.22. The operators associated to the following kernels satisfy Assumption 3.21:
• The Riemann-Liouville kernel

JH(t, s) =
(t− s)

H− 1
2

+

Γ(H + 1
2 )

, with H ∈ (0, 1),

satisfies this assumption with α = H and any η < 2 [32, Theorem 4.1].
• The fractional Brownian motion kernel

KH(t, s) =
(t− s)

H− 1
2

+

Γ(H + 1
2 )

F

(
H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s

)
,

where F is the Gauss Hypergeometric function, also satisfies this assumption with the same
parameters as above [32, Theorem 4.2].

Decreusefond’s main result yields the Hölder regularity of the stochastic Volterra integral [32,
Theorem 3.1]:

Theorem 3.23. Under Assumption 3.21, let u ∈ K∩Lθ(η)(Ω×T). Then M̃K(u) has a measurable
version MK(u) which is γ-Hölder continuous for all γ < α− 1/θ(η).

From now on, we only consider the measurable version of the stochastic integral. Although this
theorem was proved in a one-dimensional setting, it also covers multi-dimensional stochastic Volterra
integrals by considering its components individually and summing them.

3.5.2. Large and moderate deviations. For all ε > 0 consider the stochastic Volterra equation

(3.23) Xε
t = Xε

0 +

∫ t

0

K(t, s)bε(s,X
ε
s )ds+ ϑε

∫ t

0

K(t, s)σε(s,X
ε
s )dWs,

which was studied in [30] without the ε-dependence. To complete the non-convolution setup we also
need the following condition.

Assumption 3.24. There exists q > 2 such that

(3.24) sup
t∈T

{∫ t

0

|K(t, s)|−θ(q) ds
}
<∞,

with θ(q) introduced in (3.22).

Let p > q > 2, then 2 < −θ(p) < −θ(q) and Hölder’s and Jensen’s inequalities yield[∫ t

0

|K(t, s)f(s)|2 ds
] p

2

≤
[∫ t

0

|K(t, s)|−θ(p) ds
] p−2

2
∫ t

0

|f(s)|p ds

≤ t
p−q
q

[∫ t

0

|K(t, s)|−θ(q) ds
] p

−θ(q)
∫ t

0

|f(s)|p ds.

This replaces the Gronwall-type inequality derived for convolution kernels in Lemma A.1. Hence
replacing Assumption 2.3 by the condition (3.24) one recovers the moments bounds of Lemmata 3.10
and 3.17 for the process Xε,v and for any p ≥ 1. Setting in particular p = θ(η) from Theorem 3.23
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and for ξ ∈ {bε, σε}, we have ξ(Xε,v) ∈ K ∩ Lp(Ω× T). Therefore Assumption 3.21, Theorem 3.23
and Assumption 3.24 yield the almost sure Hölder regularity of the following processes defined on T:∫ ·

0

K(·, s)ξ(Xε,v
s )ds and

∫ ·

0

K(·, s)ξ(Xε,v
s ) dWs.

Hence we recover the tightness of Lemmata 3.12 and 3.18 under this new set of assumptions. Notice
that we can consider kernels consisting of both convolution and non-convolution components. Finally
we extend the LDP and MDP results without further modifications:

Theorem 3.25. The conclusions of Theorems 3.8 and 3.16 stand for {Xε}ε>0 defined by (3.23)
when each component of the kernel K satisfies either Assumption 2.3 or Assumptions 3.21 and 3.24.

4. Application to rough volatility

We now show how our results (Theorems 3.8, 3.16 and 3.25) apply to a large class of models
recently developed in mathematical finance. Originally proposed by Comte and Renault [26] with
financial econometrics applications in mind, rough volatility models were rediscovered later in the
context of option pricing in [2, 6, 47, 51], developed and extended widely, and have now become the
new standards of volatility modelling. They usually take the following form:

(4.1)


Xt = −1

2

∫ t

0

Σ(Ys)ds+

∫ t

0

√
Σ(Ys)dBs,

Yt = y0 +

∫ t

0

K1(t− s)b(s, Ys)ds+

∫ t

0

K2(t− s)ζ(Ys)dWs,

where K1,K2 ∈ L2 and B and W are two standard Brownian motions with d〈B,W 〉t = ρdt, for
some correlation parameter ρ ∈ (−1, 1). We further define ρ :=

√
1− ρ2, and set X0 = 0 without

loss of generality. Here X denotes the logarithm of a stock price process, and Y its instantaneous
volatility. We adopt a slight abuse of notation, asX previously denoted the multidimensional system,
but writing now X as the log-stock price is consistent with the mathematical finance literature and
should not create any confusion. We summarise in Table 1 the most common rough volatility models
used in mathematical finance, indicating where their asymptotic behaviours were covered, and where
our framework not only encompasses those, but fills the gaps so far missing1. The detailed analysis
of these cases is then provided in Section 4.2 in the small-time case, and in Section 4.3 for their tail
behaviours.

4.1. Small-time rescaling (general). In the small-time case, we need to assume some scaling
behaviour for the kernel functions. We say that a function f : R → Rd×d is homogeneous of
degree α ∈ R if f(λx) = λαf(x) holds for all x, λ ∈ R.

Assumption 4.1. K1 and K2 are homogeneous of degrees ϖ ∈ (− 1
2 ,

1
2 ] and H − 1

2 ∈ (− 1
2 ,

1
2 ].

Since K1 is homogeneous of degree ϖ, then∫ h

0

K1(t)
2dt =

∫ h

0

K1(1)
2t2ϖdt ≤ K1(1)

1 + 2ϖ
h1+2ϖ, for any h > 0,∫ T

0

(
K1(t+ h)−K1(t)

)2
dt = K1(1)

2

∫ T

0

(
(t+ h)ϖ − tϖ

)2
dt = O

(
h1+2ϖ

)
, for h small enough,

1As discussed below, our application to the rough Heston model is conditional on the latter to have a unique pathwise
solution, a problem that remains open so far.
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Models

Rough Multifactor
Rough Stein-Stein Bergomi rough Bergomi Rough Heston

Small-time Tail Small-time Small-time Small-time
[42] Tail

LDP
[56] MDP LDP

[56] MDP LDP
[58] MDP LDP

[61] MDP LDP MDP LDP

(Xε, Y ε) IF IF IF - IF IF IF IF IF IF IF
Xε OP IF OP - OP IF OP OP OP IF OP
Xε OP CF OP - OP CF OP OP OP CF OP
σ̂ OP CF OP - OP CF OP OP OP CF OP
Y ε IF IF IF IF IF IF IF IF IF IF IF
Yε CF CF IF IF CF CF CF CF IF CF IF

Table 1. Summary of rough volatility results and form of the rate functions
(CF=closed-form; IF=integral form; OP=optimisation problem; shadowed cells are
new contributions from this paper). σ̂ corresponds to the implied volatility, defined
precisely after Remark 4.4.

and so Assumption 2.3 is satisfied with γ = 1+2ϖ ∈ (0, 2], and likewise for K2 with γ = 2H. Under
this assumption, the rescalings Xε

t := εH− 1
2Xεt and Y εt := Yεt turn (4.1) into

Xε
t = −ε

H+ 1
2

2

∫ t

0

Σ(Y εs )ds+ εH
∫ t

0

√
Σ(Y εs )dBs,

Y εt = y0 + ε1+ϖ
∫ t

0

K1(t− s)b(εs, Y εs )ds+ εH
∫ t

0

K2(t− s)ζ(Y εs )dWs,

(4.2)

so that we are precisely in the framework of (2.1) with d = 3, ϑε = εH ,

K(t) =

1 0 0
0 K1(t) K2(t)
0 0 0

 , bε(t, (x, y)) =

− 1
2ε
H+ 1

2Σ(y)
ε1+ϖb(t, y)

0

 , σε(t, (x, y)) =

ρ√Σ(y) ρ
√
Σ(y) 0

0 0 0
ζ(y) 0 0

 ,

where the third component is meaningless but allows us to handle the two different kernels. Note
that σε does not depend on ε but integrates the correlation. The controlled equation (3.4) for the
second component reads

Y ε,vt = y0+ ε
1+ϖ

∫ t

0

K1(t− s)b(s, Y ε,vs )ds+ εH
∫ t

0

K2(t− s)ζ(Y ε,vs )dWs+

∫ t

0

K2(t− s)ζ(Y ε,vs )vsds,

for each t ∈ T, ε > 0 and v ∈ A. Note that the dynamics of Xε do not feed back into Y ε and that
Σ ∈ S |Σ|

{2} in the sense of Definition 2.5. The following assumption stands throughout this section:

Assumption 4.2 (Small-time assumptions).
• Σ, ζ and b(t, ·) are continuous on R, uniformly in t ∈ T;
• b(t, ·) and ζ are of linear growth, uniformly in t ∈ T;
• Σ is either of linear growth or such that for all p ≥ 1, N > 0 and ε > 0 small enough,

(4.3) sup
t∈T,v∈AN

E
[ ∣∣Σ(Y ε,vt

)∣∣p ] <∞;

• the equation for Y ε in (4.2) is exact for small enough ε > 0.

These conditions ensure that H2 holds with limit coefficients b ≡ (0, 0, 0)⊤ and σ = σε. Further-
more, Y ε is an autonomous subsystem in the sense of Definition 2.6 and H3 and the bound (3.6)
holds. An exact solution of the system (4.1) exists since Xε is explicit from Y ε, and H4 is satisfied.
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4.1.1. Large deviations. For more explicit results, we now fix K2(t) := 1
Γ(H+ 1

2 )
tH− 1

2 , a common
setup in rough volatility models. For each control v ∈ SN with N > 0, the limit equation (3.5) of
the volatility in the large deviations regime reads

(4.4) φt = y0 +

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

ζ(φs)vsds, for t ∈ T.

From Cauchy-Schwarz inequality, the linear growth condition of ζ and the continuity of Σ, we
obtain that |Σ(φt)| is uniformly bounded in t ∈ T and in v ∈ SN , hence (3.7) holds. Therefore
Assumption 3.6 and H1 - H4 follow from Assumption 4.2. Mimicking the fractional integral
notation from Section 3.5, we introduce for convenience the notations

I
H+ 1

2
x (f) := x+

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

fsds and I
H+ 1

2
x (L1) :=

{
I
H+ 1

2
x (f), f ∈ L1

}
,

and the fractional derivative D is defined in (3.20). From now on, to simplify the statements, we
write Zε ∼ LDP(I, ε−1) to express that the family of random variables {Zε}ε>0 satisfies an LDP
with rate function I and speed ε−1, as ε tends to zero.

Proposition 4.3 (Large deviations). Under Assumptions 3.1 for (4.4), 4.1 and 4.2, the following
hold:
(L1) (Xε, Y ε) ∼ LDP

(
I, ε−H

)
, where I : W2 → R+ is given by

I(ϕ, φ) =
1

2ρ

∫ T

0

 ϕ̇2t
Σ(φt)

1Σ(φt )̸=0 −
2ρϕ̇tD

H+ 1
2 (φ− y0)t

ζ(φt)
√

Σ(φt)
1ζ(φt)Σ(φt )̸=0 +

∣∣∣∣∣DH+ 1
2 (φ− y0)t
ζ(φt)

∣∣∣∣∣
2

1ζ(φt )̸=0

 dt,

if ϕ ∈ AC0 and φ ∈ I
H+ 1

2
y0 (L1), and infinity otherwise.

(L2) Xε ∼ LDP
(
IX , ε−H

)
, where

IX(ϕ) = inf
{
I(ϕ, φ) : φ ∈ I

H+ 1
2

y0 (L1)
}
,

if ϕ ∈ AC0 and infinity otherwise;
(L3) εH− 1

2Xε ∼ LDP
(
IX1 , ε

−H) where IX1 (x) = inf
{
IX(ϕ) : ϕ1 = x

}
for all x ∈ R;

(L4) Y ε ∼ LDP
(
IY , ε−H

)
, where

IY (φ) =
1

2

∫ T

0

∣∣∣∣∣DH+ 1
2 (φ− y0)(t)

ζ(φt)

∣∣∣∣∣
2

1ζ(φt )̸=0dt

if φ ∈ I
H+ 1

2
y0 (L1) and infinity otherwise;

(L5) Yε ∼ LDP
(
IY1 , ε

−H), with IY1 (y) = inf
{
IY (φ) : φ1 = y

}
for y ∈ R.

While (L1), (L2) and (L4) deal with pathwise large deviations, (L3) and (L5) are one-
dimensional large deviations statements, about the marginal distributions of X and Y . In this
small-time behaviour case, we recover the same scaling as in [42, 43].

Proof of Proposition 4.3.
(L1) As discussed above, the assumptions of Theorem 3.8 are satisfied, so that the three-dimensional

process (Xε, Y ε, Zε), where Zε ≡ 0 for all ε > 0, satisfies an LDP with rate function

J(ϕ, φ, ψ) = inf

{
1

2

∫ T

0

(
u2t + v2t + w2

t

)
dt : u, v, w ∈ L2,

ϕt =

∫ t

0

√
Σ(φs)

[
ρus + ρvs

]
ds, φ = I

H+ 1
2

y0

(
ζ(φ)v

)
, ψ ≡ 0

}
.
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The map (Xε, Y ε, Zε) 7→ (Xε, Y ε) is continuous so that the contraction principle [33, Theorem
4.2.1] yields an LDP for (Xε, Y ε) with rate function inf

{
J(ϕ, φ, ψ) : ψ ≡ 0

}
= J(ϕ, φ, 0),

which corresponds to

I(ϕ, φ) = inf

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u, v ∈ L2, ϕt =

∫ t

0

√
Σ(φs)

[
ρus + ρvs

]
ds, φ = I

H+ 1
2

y0 (ζ(φ)v)

}
.

We can identify the unique controls for each ϕ ∈ AC0, φ ∈ I
H+ 1

2
y0 (L1) by reverting the integrals:

ut =
1

ρ

(
ϕ̇t√
Σ(φt)

− ρvt

)
1Σ(φt) ̸=0, vt =

1

ζ(φt)
DH+ 1

2 (φ− y0)t1ζ(φt )̸=0, for all t ∈ T,

because whenever ζ(φt) = 0, although v is not uniquely determined by φ, the optimal choice
of control (the one minimising the cost) is vt = 0, and likewise for u when Σ(φt) = 0, see [27,
Remark 2.3] for more details. Plugging these into the rate function yields the claim. Note
that if ϕ /∈ AC0 or φ /∈ I

H+ 1
2

y0 (L1) then they cannot satisfy the equations and therefore the
infimum takes place over an empty set.

(L2) Since the map (Xε, Y ε) 7→ Xε is continuous, the claim follows from the contraction principle.
(L3) Projecting the pathwise large deviations (L2) onto the last coordinate point t = 1 is equivalent

to applying the contraction principle, and the claim follows immediately.
(L4) A direct application of Theorem 3.8 yields an LDP with rate function

IY (φ) = inf

{
1

2

∫ T

0

v2t dt : v ∈ L2, φ = I
H+ 1

2
y0 (ζ(φ)v)

}
;

Inverting it as above ends the proof and (L5) follows from the contraction principle.
�

Remark 4.4. The form of I above is reminiscent of the Freidlin-Wentzell rate function after appli-
cation of the contraction principle from the Brownian motion LDP. The weak convergence approach
allows to relax the assumptions of continuity (essentially Lipschitz continuity of the coefficients) to
simple well-posedness of the equation.

4.1.2. Moderate deviations. We now show how our moderate deviations results apply to the rough
volatility model (4.1). Let hε = ε−β for any β ∈ (0,H), and define the two-dimensional process

ηε :=
1

ϑεhε

(
Xε, Y ε − y0

)
=

1

εH−β

(
Xε, Y ε − y0

)
.

The case β = 0 corresponds to the Central Limit Theorem, whereas β = H is the LDP regime, so
that MDP precisely corresponds to some interpolation between the two. Regarding the assumptions
note that yε0 = y0 and bε clearly tends to zero as ε goes to zero, hence it is trivial that b ≡ 0 is
continuously differentiable and Lipschitz continuous, thus H5 and H7 hold.

Now let Assumption 4.2 hold. One notices that
∣∣b(1)ε (t, (x, y))− b(1)(t, (x, y))

∣∣ ≤ εH+ 1
2 |Σ(y)| and∣∣b(2)ε (t, (x, y))−b(2)(t, (x, y))

∣∣ ≤ ε1+ϖCL(1+ |y|) by linear growth. For H8 to hold, one then requires
that ε1+ϖ−(H−β) and εH+ 1

2−(H−β) both tend to zero as ε goes to zero. Moreover the bound (4.3)
corresponds to (3.17).

Assumption 4.5 (Moderate deviations assumptions).
• The parameters H,ϖ and β are such that (1 +ϖ) ∧ (H + 1

2 ) > H − β;
• There exists δ > 0 such that Σ and ζ are locally δ-Hölder continuous.

Notice that the first inequality is always satisfied if H ≤ 1
2 . Therefore, Assumptions 4.1, 4.2, 4.5

imply H1 - H8 and Assumptions 2.3 and 3.6. Similarly to the LDP case, and recalling the definition
of MDP from the introduction, we write Zε ∼ MDP(Λ, lε) if in fact εβ−H(Zε−Z) ∼ LDP(Λ, lε), for
any lε > 0 converging to zero as ε tends to zero, where Z is the limit in distribution of Zε. We also
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denote the subset of Wd of absolutely continuous functions by AC, and AC0 := {ϕ ∈ AC, ϕ0 = 0},
recall that K2(t) = tH− 1

2 /Γ(H + 1
2 ) and refer to (3.20) for the definition of the Riemann-Liouville

fractional derivative.

Proposition 4.6. Under Assumptions 4.1, 4.2 and 4.5, the following moderate deviations hold:
(M1) (Xε, Y ε) ∼ MDP

(
Λ, ε−β

)
, where Λ : W2 → R+ is given by

Λ(ϕ, φ) =
1

2ρ

∫ T

0

 ϕ̇2t
Σ(y0)

1Σ(y0 )̸=0 −
2ρϕ̇tD

H+ 1
2 (φ− y0)t

ζ(y0)
√

Σ(y0)
1ζ(y0)Σ(y0 )̸=0 +

∣∣∣∣∣DH+ 1
2 (φ− y0)t
ζ(y0)

∣∣∣∣∣
2

1ζ(y0 )̸=0

 dt,

if ϕ ∈ AC0 and φ ∈ I
H+ 1

2
y0 (L1), and infinity otherwise;

(M2) Xε ∼ MDP
(
ΛX , ε−β

)
, where ΛX(ϕ) =

1

2Σ(y0)

∫ T

0

ϕ̇2tdt, if ϕ ∈ AC0 and infinity otherwise;

(M3) εH− 1
2Xε ∼ MDP

(
ΛX1 , ε

−β), with ΛX1 (x) =
x2

2Σ(y0)
, for x ∈ R;

(M4) Y ε ∼ MDP
(
ΛY , ε−β

)
, where ΛY : W → R+ is given by

ΛY (φ) =
1

2

∫ T

0

∣∣∣∣∣DH+ 1
2 (φ− y0)(t)

ζ(y0)

∣∣∣∣∣
2

1ζ(y0) ̸=0dt, if φ ∈ I
H+ 1

2
y0 (L1) and infinity otherwise;

(M5) Yε ∼ MDP(ΛY1 , ε
−β), where ΛY1 (y) =

1
2y

2 for y ∈ R.

Proof.
(M1) As discussed above, the assumptions of Theorem 3.16 are satisfied, thus it yields an MDP

with rate function

Λ(ϕ, φ) =

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u, v ∈ L2, ϕt =

∫ t

0

√
Σ(y0)

[
ρus + ρvs

]
ds, φ = I

H+ 1
2

y0 (ζ(y0)v)

}
,

and inverting it as in the proof of Proposition 4.3 gives the claim.
(M2) The contraction principle implies a MDP forXε holds with rate function ΛX(ϕ) = inf

{
Λ(ϕ, φ) :

φ ∈ I
H+ 1

2
y0 (L1)

}
. If ζ(y0) = 0, it is easy to check that ΛX(ϕ) = Λ(ϕ, 0). Otherwise,

let ψ ∈ AC0 such that ψ̇ := DH+1
2 (φ−y0)
ζ(y0)

1ζ(y0 )̸=0, then the rate function translates to

ΛX(ϕ) = inf

{
1

2ρ2

∫ T

0

(
ϕ̇2t

Σ(y0)
1Σ(y0 )̸=0 −

2ρϕ̇tψ̇t√
Σ(y0)

1Σ(y0 )̸=0 + ψ̇2
t

)
dt : ψ ∈ AC

}
,

which can be solved as a variational problem as in [59, Corollary 2.4]. The corresponding
Euler-Lagrange equation reads ψ̈ = ρϕ̈/

√
Σ(y0) hence ψ̇ = ρϕ̇/

√
Σ(y0) because ψ̇0 = 0 by

definition. Plugging into the above equation finishes the proof.
(M3) The rate function is given by contraction principle as

ΛX1 (x) = inf
{
ΛX(ϕ) : ϕ ∈ AC0, ϕ1 = x

}
= inf

{
1

2Σ(y0)

∫ T

0

ϕ̇2tdt : ϕ ∈ AC0, ϕ1 = x

}
.

Setting T = 1 the optimal path under the constraint ϕ1 = x is ϕt = xt by the Euler-Lagrange
equation. Again, plugging it into the rate function ends the proof.

(M4) Theorem 3.16 gives an MDP for Y ε with rate function

ΛY (φ) = inf

{
1

2

∫ T

0

v2t dt : v ∈ L2, φ = I
H+ 1

2
y0 (ζ(y0)v)

}
.

Inverting it yields (M4).
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(M5) By contraction principle: ΛY1 (y) := inf
{
ΛY (φ), φ1 = y

}
. Then setting ψ as in (M2) it boils

down to the same optimisation problem as for (M3).
�

As in the large deviations results, (M1), (M2) and (M4) correspond to pathwise statements,
whereas (M3) and (M5) are finite-dimensional results about the marginal distributions. For the
log-stock price, (M3) corresponds precisely to the Moderately Out-of-The-Money regime presented
and justified in [46] (for diffusion volatility models), based on the observation that the range of
observable strikes grows with maturity.

4.1.3. Implied volatility asymptotics. We can easily deduce from the above results the asymptotic
behaviour of the implied volatility, a standard norm for quoting option prices. For each maturity
t ≥ 0 and log-moneyness k ∈ R, the implied volatility σ̂(t, k) is the unique non-negative solution
to CBS

(
t, k, σ̂(t, k)

)
= C(t, k), where CBS corresponds to the price of a European Call option under

the Black-Scholes model, and C a given Call option price (for example in a rough volatility model).
This notion is only well defined if the underlying stock price is a true martingale, which we have
not assumed so far, and may require additional conditions on the coefficients. This will be the case
though in all our examples below, but for now, with the current level of generality, we assume it:

Assumption 4.7. The process exp(Xε) in (4.2) is a true martingale for all small enough ε > 0.

Small-time implied volatility asymptotics can be derived from Properties 4.3 and 4.6 in a similar
fashion. The explicit form of the MDP rate function allows a closed form expression.

Corollary 4.8. Let Assumption 4.7 hold.
(LDP) Under the same assumptions as Proposition 4.3,

lim
t↓0

σ̂
(
t, kt

1
2−H

)2
=


k2

2 infx≥k IX1 (x)
, if k > 0,

k2

2 infx≤k IX1 (x)
, if k < 0.

(MDP) Under the same assumptions as Proposition 4.6 and for any β ∈ (0,H), k 6= 0,

lim
t↓0

σ̂
(
t, kt

1
2−β

)2
= Σ(y0).

Proof.
(LDP) Consider the case k > 0. Proposition 4.3(L3) translates into

lim
t↓0

t2H logP(tH− 1
2Xt ≥ k) = − inf

x≥k
IX1 (x).

Meanwhile in the Black-Scholes model with constant volatility σ > 0 the log-price process satisfies
Xt = −σ2t

2 + σBt for all t ∈ T, and simple Gaussian computations yield the large deviations
behaviour

lim
t↓0

t2H logP(Xt ≥ kt
1
2−H) = − k2

2σ2
.

The claim then follows directly from [49, Corollary 7.1], and by symmetry for the case k < 0.
(MDP) Following the same arguments as above, we obtain

lim
t↓0

σ̂
(
t, kt

1
2−β

)2
=


k2

2 infx≥k ΛX1 (x)
, if k > 0,

k2

2 infx≤k ΛX1 (x)
, if k < 0.

Plugging in the expression of ΛX1 from (M3) finishes the proof. �
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This concludes the presentation of the general results for rough volatility models. The next
sections display the diversity of the models found in the literature and how large and moderate
deviations principle apply to them.

4.2. Small-time rescaling (examples).

4.2.1. Rough Stein-Stein. The rough Stein-Stein, suggested in [56] is an extension of the classical
Stein-Stein volatility model [73] to the fractional setting. It corresponds to (4.1) with K1 ≡ 1

(hence ϖ = 0), K2(t) = 1
Γ(H+ 1

2 )
tH− 1

2 , H ∈ (0, 12 ), Σ(y) = y2, b(y) = κ(θ − y), κ, θ > 0 and
ζ(y) ≡ ξ > 0. The coefficients are Lipschitz continuous and well-behaved, hence Assumptions 4.2
and 4.5 are easily checkable and the limit equation (4.4) has a unique solution, hence Propositions 4.3
and 4.6 apply. Note that because ζ is constant, one can solve (L5) in closed-form using the Euler-
Lagrange equation in a similar way as in the proof of Proposition 4.6. Furthermore, since Y is
Gaussian, therefore its exponential moments are finite and Novikov’s condition [60, Section 3.5.D]
ensures that Assumption 4.7 holds. Therefore, Corollary 4.8 yields the small-time behaviour of
the implied volatility. Notice that the LDP and MDP for this model still hold when replacing the
Riemann-Liouville kernel with the standard fractional Brownian motion by virtue of Theorem 3.25.
The pathwise LDP for this model was first derived in [56] albeit with the different scaling Xε

t :=

εH− 1
2+2βXεt and Y εt := εβYεt, for β > 0.

4.2.2. Rough Bergomi. The rough Bergomi model as presented in [6, 58] reads
Xt = −1

2

∫ t

0

Vsds+

∫ t

0

√
VsdBs,

Vt = V0 exp

(∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

dWs − at2H

)
,

with V0 > 0 and a ∈ R. Proving an LDP is quite intricate because the exponential does not satisfy
the linear growth bound but we circumvented this issue by introducing the notion of autonomous
system, illustrated in Example 2.7 and completed by Assumption 3.6 and H3b. Hence, with Y :=

log(V ), the system (X,Y ) fits into (4.1) where K1(t) = t2H−1, K2(t) =
1

Γ(H+ 1
2 )
tH− 1

2 , for H ∈ (0, 12 ),
Σ(y) = exp(y), b(y) = −a/(2H), a > 0, ζ(y) ≡ 1 and y0 := log(V0). The bound (4.3) is then satisfied
since

∫ t
0
(t−s)H− 1

2 dWs is a Gaussian process hence its exponentional moments are bounded uniformly
in t ∈ T, and for each N > 0, and v ∈ AN :∫ t

0

(t− s)H− 1
2 vsds ≤ N

t2H

2H
,

almost surely, by Cauchy-Schwarz inequality. Therefore supt∈T E
[
exp

(
Y ε,vt

)]
is finite, yielding the

claim. Moreover, the volatility equation is explicit so we shall not be concerned with uniqueness and
the rest of Assumptions 4.2 and 4.5 is straightforward to check. This implies that Propositions 4.3
and 4.6 apply. Again, Theorem 3.25 guarantees that the LDP and MDP still hold when K2 is
replaced with the non-convolution fractional Brownian motion kernel. Gassiat [50] showed that,
if ρ ≤ 0, then the stock price process is a true martingale, ensuring that Assumption 4.7 holds, and
implied volatility asymptotics thus follow from Corollary 4.8.

4.2.3. Rough Heston. As introduced in [41] the rough Heston model fits into the framework of (4.1)
with K1(t) = K2(t) =

1
Γ(H+ 1

2 )
tH− 1

2 , for H ∈ (0, 12 ), Σ(y) = y, b(s, y) = κ
(
θ(s) − y

)
, κ, θ > 0 and

ζ(y) = ξ
√
y, ξ ∈ Rd. Linear growth and local Hölder continuity of the coefficients clearly holds.

The weak existence and uniqueness was proved in [1], however the square-root coefficient brings an
issue for pathwise uniqueness of the SVE. We assume here that there exists a set U of coefficients
(H,κ, θ·, ξ, ρ, y0) such that pathwise uniqueness indeed stands. The only known result so far is due
to [74] in the smooth case H = 1

2 . We also recall that pathwise uniqueness was proved for ζ(y) = yγ
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where γ > 1
2H+1 in [67], but does not encompass the square root case. Therefore Assumption 4.2

holds in those cases. On a heuristic note remark that, even if pathwise uniqueness fails, there is
a unique candidate for Gε since there exists a unique strong solution until the first hitting time of
zero. The issue is it may not satisfy the SVE anymore after that time, but should be consistent for
small-time LDP.

Moreover, uniqueness of the limit equation (4.4) only holds up to first hitting time of zero. Hence
we will make use of the uniqueness relaxation presented in Section 3.1 and the same arguments as
in Example 3.5 to prove that Assumption 3.1 holds. The suggested rate function (3.3) reads now

I(ϕ, φ) =

{
1

2

∫ t

0

(
u2t + v2t

)
dt : u, v ∈ L2,

ϕt =

∫ t

0

√
φs
[
ρus + ρvs

]
ds, φt = y0 + ξ

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

√
φsvsds

}
=

∫ T

0

1φt>0

2ρ2φt

(∣∣ϕ̇t∣∣2 − 2ρϕ̇t
DH+ 1

2 (φ− y0)t
ξ

+

∣∣∣∣DH+ 1
2 (φ− y0)t
ξ

∣∣∣∣2
)
dt,(4.5)

if the integral is well defined, ϕ ∈ AC0, φ ∈ I
H+ 1

2
y0 (L1), and I = +∞ otherwise.

Lemma 4.9. Let v ∈ L2 and φ satisfying the Volterra equation (4.4) with K2(t) =
tH− 1

2

Γ(H+ 1
2 )
, H ∈

(0, 12 ), y0 > 0, ζ(y) = ξ
√
y, ξ ∈ R. Then the set D := {t ∈ [0, T ] : φt > 0} has Lebesgue measure T .

Proof. We follow some arguments in the proof of [1, Theorem 3.6]. Let us drop the subscript in the
kernel and write it K for clarity, and introduce its resolvent of the first kind L(dt) := t−H− 1

2

Γ( 1
2−H)

dt [53,
Definition 5.5.1]. Moreover, for h > 0, define ∆hK(t) := K(t+h) and for every measurable function
f on R+ and measure g on R+, (f ∗g)(t) :=

∫ t
0
f(t−s)dg(s). It is proved, in [1, Equation (3.9)], that

∆hK ∗ L is non-decreasing but in fact in this special (rough) case, it is strictly increasing. Indeed,
the authors show that in the general case, for all 0 ≤ s ≤ t ≤ T ,

(∆hK ∗ L)(t)− (∆hK ∗ L)(s) =
∫ h

0

K(h− u)
(
L(s+ du)− L(t+ du)

)
,

which is positive because K > 0 and L is decreasing. Furthermore K is decreasing and L > 0 thus

0 < (∆hK ∗ L)(t) < (K ∗ L)(t) = 1,

where the equality holds by definition. Let φt = y0 +
∫ t
0
K(t − s)ξ

√
φsvsds =: y0 + (K ∗ z)(t),

where z is trivially a semimartingale, hence from [1, Equation (2.15)]:

y0 + (∆hK ∗ dz)(t) =
(
1− (∆hK ∗ L)(t)

)
y0 +

(
∆hK ∗ L

)
(0)φt +

(
d(∆hK ∗ L) ∗ φ

)
(t),

which is strictly positive because because y0, φ ≥ 0 and the two lines before. Now let us suppose
there exists an interval [t, t+ h] ⊂ T on which φ = 0. Then

φt+h = y0 +

∫ t

0

K(t+ h− s)
√
φsvsds = y0 + (∆hK ∗ dz)(t) > 0,

which is a contradiction. Hence no such interval exists and the claim follows. �

Remark 4.10. This argument works for any rough kernel but not for the diffusion case H = 1
2 .

We refer to [35, Proposition 3.3] for the latter.

We can now prove the following:

Lemma 4.11. Let H ∈ (0, 12 ), then the functional I satisfies Assumption 3.1.
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Proof. Note that any solution φ of the second Volterra equation in (4.5) is non-negative. Let (ϕ, φ)

be such that Λ(ϕ, φ) is finite. Then, for each δ > 0, define φδt := φt+ δtH+ 1
2 such that φδ is strictly

positive. Therefore from definition (3.20):

DH+ 1
2 (φδ − y0)(t)−DH+ 1

2 (φ− y0)(t) =
d

dt

∫ t

0

(t− s)−H− 1
2 (φδs − φs)ds

= δ
d

dt

∫ t

0

(t− s)−H− 1
2 sH+ 1

2 ds = δ
π
(
H + 1

2

)
cos(πH)

.

Now define the control

vt :=
DH+ 1

2 (φ− y0)(t)√
φt

1φt>0,

and v belongs to L2 since Λ(ϕ, φ) is finite. Then for each δ > 0 the control vδ defined as

vδt :=
DH+ 1

2 (φδ − y0)(t)√
φδt

≤ DH+ 1
2 (φδ − y0)(t)√

φt

is also in L2 because 1φt>0 = 1 almost everywhere. Furthermore, for all t ∈ D, limδ↓0
(
φδt
)−1

=

(φt)
−1 and therefore limδ↓0 v

δ
t = vt. Let P (φ) denote the term between brackets in (4.5) divided

by 2ρ2, which is non-negative by design since it corresponds to φ(u2+v2). Therefore, by Lemma 4.9,

I(ϕ, φ)− I(ϕ, φδ) =

∫
D

(
1

φt
− 1

φδt

)
P (φ)tdt+

∫
D

1

φδt

(
P (φ)t − P (φδ)t

)
dt,

where the first integrand is smaller than P (φ)t/φt for all t ∈ D and this upper bound belongs to L1

by assumptions. Hence the dominated convergence theorem implies that the first integral goes to
zero. From the calculations above we deduce that P (φ)t−P (φδ)t tends to zero uniformly as δ goes
to zero, hence the second integrand converges pointwise and, for δ small enough, is dominated by
P (φ)/φ. A second application of DCT yields convergence of the integral, and the claim follows. �

Therefore the large and moderate deviations from Propositions 4.3 and 4.6 apply if the coefficients
belong to U and H ∈ (0, 12 ]. Observe that Proposition 4.6(M3) agrees with [42, Section 3.5],
although the routes taken differ significantly. El Euch and Rosenbaum [40, Appendix B] showed
that Assumption 4.7 is satisfied, and the implied volatility behaviour thus follows from Corollary 4.8.

4.2.4. Multifactor rough Bergomi. Let W be an Rm+1-Brownian motion, Z :=
(
Z(1), · · · , Z(m)

)†
where

Z
(j)
t :=

∫ t

0

K(j)(t− s)dW (j)
s ,

and we allow K(j), 1 ≤ j ≤ m, to be homogeneous of different degrees Hj − 1
2 with Hj ∈ (0, 1].

Assume without loss of generality that the Hj are ordered by increasing values, then we will design
the rescaling at the speed ε−H1 . Denote m⋆ := inf{j = 2, ..,m : Hj > H1}. Let L be an m-
dimensional square matrix and Y an m-dimensional process defined for all t ∈ T by

Yt := y0 + LZt − at2H1 ,

where y0, a ∈ Rm and the log price reads

Xt = −1

2

∫ t

0

m∑
i=1

exp
(
Y (i)
s

)
ds+

∫ t

0

m∑
i=1

exp

(
1

2
Y (i)
s

)
dBs.
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The rescaling Xε
t = εH1− 1

2Xεt, Y
ε
t = Yεt yields

Xε
t = −ε

H1+
1
2

2

∫ t

0

m∑
i=1

exp(Y ε,(i)s )ds+ εH1

∫ t

0

m∑
i=1

exp

(
1

2
Y ε,(i)s

)
dBs,

Y
ε,(i)
t = y

(i)
0 +

m∑
j=1

εHjLi,jZ
(j)
t − ai(εt)

2H1 = y
(i)
0 + εH1

m∑
j=1

Lεi,jZ
(j)
t − ai(εt)

2H1 , for all 1 ≤ i ≤ m,

where B = ρW (m+1) +
∑m
i=1 ρiW

(i), ρ2 +
∑m
i=1 ρ

2
i = 1, and Lεi,j := εHj−H1Li,j goes to zero

if Hj > H1, i.e. if j > m⋆. It means that the roughest component(s) (the one(s) with H1) will
outweigh the others, and only the former will make a contribution to the rate function.

Although similar to its one-dimensional counterpart, this model does not fit into the framework
of (4.1). Regarding the assumptions of Theorems 3.8, we only check H3b and Assumption 3.6
because the others are standard and similar to the one-dimensional case. Clearly (Y ε,(1), · · · , Y ε,(m))
is an autonomous subsystem. As a Gaussian process, LZ has exponential moments of all orders and
for all N > 0, 1 ≤ j ≤ m and vj ∈ SN :∫ t

0

K(j)(t− s)v(j)s ds ≤
√
N‖K(j)‖2 almost surely,

thus exp
(
Y ε,(i),v

)
∈ Lp(Ω) for all p ≥ 1. Therefore the bound (3.6) and Assumption 3.6 are satisfied.

This estimate also checks that (3.17) and thus H8 stand. Since ϑ = εH1 , we define for the moderate
deviations regime hε = εβ , β ∈ (0,H1).

Corollary 4.12. Denoting Y ε := (Y ε,(1), · · · , Y ε,(m)), we have:
• (Xε, Y ε) ∼ LDP

(
I, ε−H1

)
where for all ϕ ∈ W, φ ∈ Wm:

I(ϕ, φ) = inf

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u ∈ L2(R), v ∈ L2(Rm),

ϕt =

∫ t

0

[ m∑
i=1

eφ
(i)
s /2

][
ρus +

m∑
j=1

ρjv
(j)
s

]
ds, φ

(i)
t = y

(i)
0 +

∫ t

0

m⋆∑
j=1

K(j)(t− s)Li,jv
(j)
s ds

}
.

• (Xε, Y ε) ∼ MDP
(
Λ, ε−β

)
where for all ϕ ∈ W and φ ∈ Wm,

Λ(ϕ, φ) = inf

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u ∈ L2(R), v ∈ L2(Rm),

ϕt =

∫ t

0

[ m∑
i=1

ey
(i)
0 /2

][
ρus +

m∑
j=1

ρjv
(j)
s

]
ds, φit = y

(i)
0 +

∫ t

0

m⋆∑
j=1

K(j)(t− s)Li,jv
(j)
s ds

}
.(4.6)

Proof. The LDP is a direct application of Theorem 3.8 and the MDP of Theorem 3.16. �

If L is lower triangular (i.e. Li,j = 0 for all i < j), for instance if it arises from the Cholesky
decomposition of a covariance matrix, then for all ϕ ∈ W, φ ∈ Wm one can derive the vector v
recursively. Note that if m⋆ < m, φ may not be attainable by the restrained number of controls
{v(j), 1 ≤ j ≤ m⋆}.

Example 4.13. Consider the case m = 2. Let K1(t) = K2(t) = 1
Γ(H+ 1

2 )
tH− 1

2 for H ∈ (0, 12 ) and
L be lower triangular (i.e. L12 = 0). Then v and u are explicit from (4.6):

v(1) =
1

L11
DH+ 1

2

(
φ(1) − y

(1)
0

)
, v(2) =

1

L22
DH+ 1

2

(
φ(2) − y

(2)
0

)
− L21

L22
v(1),

u =
1

ρ

ϕ̇{exp(y(1)0

2

)
+ exp

(
y
(2)
0

2

)}−1

− ρ1v
(1) − ρ2v

(2)

 .
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Remark 4.14. We can similarly consider multidimensional versions of the other models presented
in this paper and derive large and moderate deviation principles. We only work out the computations
for the multifactor rough Bergomi model because it is the most relevant in the literature.
4.3. Tail rescaling. We now investigate tail rescalings, which generally have the form Xε = εX,
such that an LDP provides asymptotic estimates on P(Xε ≥ 1) = P(X ≥ ε−1). The MDP for
the whole system is not available in this case because Y := limε↓0 Y

ε ≡ 0 hence the limit equation
for Xε, arising from (3.16), would be independent of the control. Note that the theory does not break
down but the rate function is trivial (equals zero at zero and +∞ everywhere else). Furthermore,
the exponential function prevents the study of such a rescaling in the rough Bergomi model.

4.3.1. Rough Stein-Stein. This model was defined in Section 4.2.1, but with the rescaling Y εt := εYt
and Xε

t := ε2Xt, the system becomes
Xε
t = −1

2

∫ t

0

(Y εs )
2ds+ ε

∫ t

0

Y εs dBs,

Y εt = εy0 +

∫ t

0

κ (εθ − Y εs ) ds+ ε

∫ t

0

ξ
(t− s)H− 1

2

Γ(H + 1
2 )

dWs,

(4.7)

where the coefficients are identical to the small-time case. Although the rescaling is diferent, As-
sumption 2.3 and H1 - H4 are easily satisfied in a similar way, the limit equation (3.5) has a unique
solution, and therefore Theorem 3.8 applies.
Corollary 4.15. The following hold:
(L1) (Xε, Y ε) ∼ LDP

(
I, ε−1

)
with

I(ϕ, φ) =
1

2

∫ T

0

(
u2t + v2t

)
dt, where


u =

1

ρ

(
ϕ̇

φ
+

1

2
φ− ρv

)
1φ̸=0,

v =
1

ξ

(
DH+ 1

2 (φ) + κI
1
2−H(φ)

)
,

if ϕ, φ ∈ AC0 and infinity otherwise.
(L2) Xε ∼ LDP

(
IX , ε−1

)
with IX(ϕ) = inf

{
I(ϕ, φ) : φ ∈ AC0

}
if ϕ ∈ AC0 and infinity otherwise.

(L3) For each t ∈ T, ε2Xt ∼ LDP
(
IXt , ε

−1
)
, where IXt (x) = inf

{
IX(ϕ) : ϕt = x

}
.

Proof. For (L1), Theorem 3.8 entails that the rate function is

I(ϕ, φ) = inf

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u, v ∈ L2,

ϕt = −1

2

∫ t

0

φ2
sds+

∫ t

0

φs
[
ρus + ρvs

]
ds, φt = −

∫ t

0

κφsds+

∫ t

0

ξ
(t− s)H− 1

2

Γ(H + 1
2 )

vsds

}
.

Inverting the integrals to obtain the unique controls yields the claim. Similarly to the small-time
case, (L2) follows from the contraction principle, and one only needs to fix t ∈ T to prove (L3). �

One can prove an LDP for Y ε in a similar way; a more interesting problem is the moderate devia-
tions setting. Recall that an MDP for the couple (Xε, Y ε) would have a trivial rate function because
the limit equation of Xε is independent of the control. However, since the diffusion coefficient of
Y ε is constant equal to ξ, one can obtain an MDP for Y ε. More surprisingly, the limit equations in
the large deviations (3.5) and moderate deviations (3.16) regimes coincide, which leads to identical
rate functions. Notice that ϑε = ε in this example, and therefore let hε = ε−β where β ∈ (0, 1).
Corollary 4.16. Y ε ∼ MDP

(
ΛY , ε−β

)
where,

ΛY (φ) =
1

2ξ2

∫ T

0

(
DH+ 1

2 (φ)(t) + κI
1
2−H(φ)(t)

)2
dt,

if φ ∈ AC0 and infinity otherwise.
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Proof. From (4.7), bε(y) := κ(εθ − y) converges to b(y) = −κy and the diffusion coefficient is
constant, hence H2 - H6 are easily satisfied. Moreover, bε − b ≡ εκθ and ε1−(H−β) tends to zero
thus H7 and H8 also hold. Theorem 3.16 thus yields an MDP with rate function

ΛY (φ) = inf

{
1

2

∫ T

0

v2t dt : v ∈ L2, φt = −
∫ t

0

κφsds+ ξ

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

vsds

}
.

Inverting the integral yields the claim. �

4.3.2. Rough Heston. Introduced in Section 4.2.3, with the rescaling Y εt := ε2Yt and Xε
t := ε2Xt,

we obtain
Xε
t = −1

2

∫ t

0

Y εs ds+ ε

∫ t

0

√
Y εs dBs,

Y εt = ε2y0 +

∫ t

0

κ
(t− s)H− 1

2

Γ(H + 1
2 )

(
ε2θ − Y εs

)
ds+ ε

∫ t

0

ξ
(t− s)H− 1

2

Γ(H + 1
2 )

√
Y εs dWs.

Clearly H1 - H3 hold and we recall that U is the set of coefficients such that pathwise uniqueness,
and hence H4, hold. We appeal to the uniqueness relaxation in the same way as the small-time
case to prove the following result, which extends [27, Theorem 1.1] to the rough case.

Corollary 4.17. If the rough Heston coefficients belong to U and H ∈ (0, 12 ), then the following
hold
(L1) (Xε, Y ε) ∼ LDP

(
I, ε−1

)
where

I(ϕ, φ) =
1

2

∫ T

0

(
u2t + v2t

)
dt, where


u =

1

ρ

(
ϕ̇
√
φ
+

1

2

√
φ− ρv

)
1φ>0,

v =
1

ξ
√
φ

(
DH+ 1

2 (φ) + κφ
)
1φ>0,

where ϕ ∈ AC0 and φ ∈ I
H+ 1

2
0 (L1) and infinity otherwise.

(L2) Xε ∼ LDP
(
IX , ε−1

)
with IX(ϕ) = inf

{
I(ϕ, φ) : φ ∈ I

H+ 1
2

0

}
if ϕ ∈ AC0 and infinity otherwise.

(L3) For each t ∈ T, ε2Xt ∼ LDP
(
IXt , ε

−1
)
, where IXt (x) = inf

{
IX(ϕ) : ϕt = x

}
.

Proof. The proof is similar to the small-time case. The potential rate function for the couple is

I(ϕ, φ) = inf

{
1

2

∫ T

0

(
u2t + v2t

)
dt : u, v ∈ L2,

ϕt = −1

2

∫ t

0

φsds+

∫ t

0

√
φs
[
ρus + ρvs

]
ds, φt =

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2 )

(
− κφs + ξ

√
φsvs

)
ds

}
.

The same arguments that were used to prove Lemmata 4.9 and 4.11 in the small-time case can be
applied again here. They entail that Assumption 3.1 holds and hence Theorem 3.8 applies, and the
form of the rate function in (L1) follows by inverting the relationships between (u, v) and (ϕ, φ).
(L2) and (L3) follow from the same steps as in Corollary 4.15. �

4.3.3. Implied volatility asymptotics. We can also obtain implied volatility asymptotics since, by the
same arguments as before, exp(Xε) is a martingale in both the rough Stein-Stein and rough Heston
models.

Corollary 4.18. In both the rough Stein-Stein and rough Heston models, for each t ∈ T, the implied
volatility σ̂ satisfies

lim
k↑∞

σ̂(t, k)2t

k
=

1

2

(
inf
y≥1

IXt (y)

)−1

,

where IXt is the respective rate function, given in Corollaries 4.15(L3) and 4.17(L3).
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Proof. Mapping ε2 to 1/k we have from Corollaries 4.15 and 4.17 respectively that, for each t ∈ T,

lim
k↑∞

1

k
logP(Xt ≥ k) = − inf

y≥1
IXt (y).

In the Black-Scholes model with constant volatility σ > 0, we can directly compute

lim
k↑∞

1

k
logP(Xt ≥ k) = − 1

2σ2t
,

and, similarly to the small-time case, the proof follows from [49, Corollary 7.1]. �

Appendix A. Technical large deviations proofs

A.1. Abstract relaxation: Proof of Theorem 3.3. The proof follows [13, Theorem 4.4]. The
lower bound stands as it is except that at the very end, when taking the infimum, the condition
becomes ϕ ∈ G0

v instead of ϕ = G0
v . Thus it suggests the potential rate function I in (3.3). We prove

the Laplace principle upper bound, for all F ∈ Cb(Wd : R):

lim sup
ε↓0

−ε2 logE
[
e−F◦Gε(W )/ε2

]
≤ inf
ψ∈Wd

{I(ψ) + F (ψ)}.

Assume that the right-hand side is finite otherwise there is nothing to prove. Fix ϵ > 0 and
let ϕ ∈ Wd such that

I(ϕ) + F (ϕ) ≤ inf
ψ∈Wd

{I(ψ) + F (ψ)}+ ϵ.

Since F is continuous, there exists δ ∈ (0, ϵ) such that
∣∣F (ϕ1)− F (ϕ2)

∣∣ ≤ ϵ when
∥∥ϕ1 − ϕ2

∥∥
T ≤ δ,

for all ϕ1, ϕ2 ∈ Wd. If ϕ is uniquely characterised then the proof is the same as in [13]. Other-
wise, by Theorem 3.3(iii), we can choose ϕδ uniquely characterised such that

∥∥ϕ− ϕδ
∥∥
T ≤ δ and∣∣I(ϕ)− I(ϕδ)

∣∣ ≤ δ, which implies
∣∣I(ϕ) + F (ϕ)− I(ϕδ)− F (ϕδ)

∣∣ ≤ 2ϵ. Hence, combining inequali-
ties we obtain

I(ϕδ) + F (ϕδ) ≤ inf
ψ∈Wd

{I(ψ) + F (ψ)}+ 3ϵ.

Moreover, there exist {vn}n∈N in L2 such that (3.2) is satisfied with ϕδ and m ≥ 1/ϵ such that

G0
vm = {ϕδ} and 1

2

∫ T

0

|vmt |2 dt ≤ I(ϕδ) +
1

m
≤ I(ϕδ) + ϵ,

and therefore the remainder of the upper bound proof unfolds identically.
Along the subsequence {εn}n≥0, Gεn(W + ε−1

n

∫ ·
0
vmt dt) converges in distribution to ϕδ. Using

the variational representation formula (1.3) and the convergence we obtain

lim sup
n↑∞

−ε2n logE
[
exp

{
−F ◦ Gεn(W )

ε2n

}]
= lim sup

n↑∞
inf
v∈A

E

[
1

2

∫ T

0

|vt|2 dt+ F ◦ Gεn
(
W + ε−1

n

∫ ·

0

vtdt

)]

≤ lim sup
n↑∞

E

[
1

2

∫ T

0

|vmt |2 dt+ F ◦ Gεn
(
W + ε−1

n

∫ ·

0

vmt dt

)]

=
1

2

∫ T

0

|vmt |2 dt+ F (ϕδ)

≤ I(ϕδ) + F (ϕδ) + ϵ ≤ inf
ψ∈Ω

{I(ψ) + F (ψ)}+ 4ϵ.

Since ϵ > 0 is arbitrary this concludes the proof.
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A.2. LDP moment bounds: Proof of Lemma 3.10. Let us fix p ≥ 2, N > 0, v ∈ AN , ε > 0 and
t ∈ T. Let τn := inf{t ≥ 0 : |Xε,v

t | ≥ n}∧T for all n ∈ N. For clarity we write bns := bε(s,X
ε,v
s 1s≤τn)

and σns := σε(s,X
ε,v
s 1s≤τn). We start by assuming that all the coefficients satisfy the linear growth

condition H3a. We fix n ∈ N and observe that, almost surely:

|Xε,v
t |p 1t≤τn ≤4p−1

[
|Xε

0 |
p
+

∣∣∣∣∫ t

0

K(t− s)bns ds

∣∣∣∣p + ∣∣∣∣∫ t

0

K(t− s)σns vsds

∣∣∣∣p + ϑpε

∣∣∣∣∫ t

0

K(t− s)σns dWs

∣∣∣∣p ]
=:4p−1

[
|Xε

0 |
p
+ In + IIn + IIIn

]
,(A.1)

because if t > τn then the left-hand side is zero while the right-hand side is non-negative, and
if t ≤ τn then s ≤ τn for all s ∈ [0, t] and the τn dependence vanishes on both sides of the inequality.
For ε small enough we can bound |Xε

0 | by 2 |X0| and ϑε by 1 and we will do so repetitively in the
sequel. Using Hölder’s and Jensen’s inequalities, we obtain the following estimates almost surely:
(A.2)

In ≤
[∫ t

0

|K(t− s)|
4
p |bns |

2
ds

] p
2
[∫ t

0

|K(t− s)|2−
4
p ds

] p
2

≤ t
p
2 ‖K‖p−2

2

∫ t

0

|K(t− s)|2 |bns |
p
ds,

and

(A.3) IIn ≤ N
p
2

[∫ t

0

|K(t− s)|2−4/p |K(t− s)|
4
p |σns |

2
ds

] p
2

≤ N
p
2 ‖K‖p−2

2

∫ t

0

|K(t− s)|2 |σns |
p
ds,

where we also used that
∫ T
0
|vs|2 ds ≤ N almost surely. Notice that {

∫ u
0
K(t − s)σns dWs, u ∈ T} is

a continuous local martingale for fixed t ∈ T and is bounded in L2(Ω). Hence, using Burkholder-
Davis-Gundy (BDG) inequality and similar calculations as (A.3) there exists Cp > 0 such that

E[IIIn] ≤ Cp ‖K‖p−2
2

∫ t

0

|K(t− s)|2 E |σns |
p
ds.

From the linear growth condition on bε and σε (uniform in ε > 0) we deduce that there exists C1 > 0
independent of ε, v, n, t such that, for all n ∈ N, fnt := E

[
|Xε,v

t |p 1t≤τn
]

satisfies the inequality

(A.4) fnt ≤ C1 + C1

∫ t

0

|K(t− s)|2 fns ds.

The following lemma (Lemma A.1) yields a uniform bound in both n ∈ N and t ∈ T for fnt . Taking
the limit as n goes to infinity and using Fatou’s lemma concludes the first part of the proof.

Lemma A.1. Let f : T → R and K a kernel satisfying Assumption 2.3. If there exists c ≥ 0 such
that

f(t) ≤ c+ c

∫ t

0

|K(t− s)|2 f(s)ds, for all t ∈ T,

then f is uniformly bounded on T by a constant depending only on c, ‖K‖2 , T . If c = 0 then f = 0.

Proof of Lemma A.1. By definition |K(t− s)|2 =
∑d
i,j=1 |Ki,j(t− s)|2, and K̃(t, s) := c |K(t− s)|2 1s≤t

is a Volterra kernel in the sense of [53, Definition 9.2.1]. Following the same arguments as in the
proof of [1, Lemma 3.1], the generalised Gronwall lemma [53, Theorem 9.8.2] yields the bound

f(t) ≤ c− c

∫ t

0

R′(s)ds ≤ c− c

∫ T

0

R′(s)ds,

where R′ is the (non-positive) resolvent of type L1 of −K ′ [1, Equation (2.11)], proving the lemma.
�

If only H3b and Assumption 3.6 hold with an autonomous sub-system Υ, then by the previous
calculations for all l ∈ Υ, the components (Xε,v)(l) satisfy the bound (3.8) because their coefficients
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have linear growth. Then turning our attention to the components (Xε,v)(j), j /∈ Υ and using (3.6)
and Hölder’s inequality as in (A.3)

E

(∫ t

0

∣∣∣∣Kj(t− s)
(
σn
(
s,Xε,v

s 1s≤τn
))(j)∣∣∣∣2 ds

)p/2
≤ CpΥE

[(∫ t

0

|Kj(t− s)|2
(
1 +

∣∣∣Xε,v
s 1s≤τn

∣∣∣
Υc

+
∣∣∣Γ((Xε,v

s 1s≤τn)
(Υ)
)∣∣∣ )2ds)p/2]

≤ CpΥE
[∫ t

0

|Kj(t− s)|2
(
1 + |Xε,v

s 1s≤τn |Υc +
∣∣∣Γ((Xε,v

s 1s≤τn)
(Υ)
)∣∣∣ )pds](∫ t

0

|Kj(t− s)|2 ds
)p/2−1

≤ 3p−1CpΥ ‖K‖p−2
2

∫ t

0

|Kj(t− s)|2 E
[
1 +

∣∣∣Xε,v
s 1s≤τn

∣∣∣p
Υc

+
∣∣∣Γ((Xε,v

s 1s≤τn)
(Υ)
)∣∣∣p ]ds

≤ C2 + C2

∫ t

0

|Kj(t− s)|2 E
[
|Xε,v

s 1s≤τn |
p
Υc

]
ds,

(A.5)

for some C2 > 0. Applying the same calculations to the other terms and summing all the coefficients
we fall back on (A.4). Taking the limit and applying Fatou’s lemma again conclude the proof.

A.3. LDP tightness: Proof of Lemma 3.12. Let us fix p > 2∨ 2/γ, N > 0, v ∈ AN and ε > 0.
For clarity we will write bu := bε(u,X

ε,v
u ) and σu := σε(u,X

ε,v
u ) for all u ∈ T. In a first step we

assume that all the coefficients satisfy the linear growth condition H3a. Then, for all 0 ≤ s < t ≤ T ,
using Cauchy-Schwarz and BDG inequalities as in the previous proof we obtain:

E
[∣∣∣Xε,vε

t −Xε,vε

s

∣∣∣p] ≤ 6p−1E
[∣∣∣∣∫ s

0

(
K(t− u)−K(s− u)

)
budu

∣∣∣∣p]
+ 6p−1E

[∣∣∣∣∫ t

s

K(t− u)budu

∣∣∣∣p
]

+ 6p−1Np/2E

[(∫ s

0

∣∣(K(t− u)−K(s− u)
)
σu
∣∣2 du)p/2]

+ 6p−1Np/2E

[(∫ t

s

|K(t− u)σu|2 du
)p/2]

+ 6p−1ϑpεCpE

[(∫ s

0

∣∣(K(t− u)−K(s− u)
)
σu
∣∣2 du)p/2]

+ 6p−1ϑpεCpE

[(∫ t

s

|K(t− u)σu|2 du
)p/2]

.

Analogous calculations to the proof of Lemma 3.10, bounds on sup
t∈T,ε>0

E
[∣∣Xε,vε

t

∣∣p], linear growth

from H3a and Assumption 2.3 lead to

E
[∣∣∣Xε,vε

t −Xε,vε

s

∣∣∣p] ≤C1

(∣∣∣∣∫ s

0

(
K(t− u)−K(s− u)

)2
du

∣∣∣∣p/2 + ∣∣∣∣∫ t

s

K(t− u)2du

∣∣∣∣p/2
)

=C1

(∣∣∣∣∫ s

0

(
K(u+ t− s)−K(u)

)2
du

∣∣∣∣p/2 + ∣∣∣∣∫ t−s

0

K(u)2du

∣∣∣∣p/2
)

≤C2(t− s)γp/2,
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for some C1, C2 > 0 independent of ε, v, s, t. Again, if there are components such that only H3b
holds with Assumption 3.6 then following the example of (A.5) yields the same result. The Kol-
mogorov continuity theorem then asserts that Xε,vε admits a version which is Hölder continuous
on T of any order α < γ/2−1/p, uniformly in ε > 0 because C2 does not depend on ε, and which sat-
isfies (3.9). Furthermore, Aldous theorem [10, Theorem 16.10] states that the sequence {Xε,vε}ε>0

is tight.

A.4. LDP compactness: Proof of Lemma 3.14. We prove that for all N > 0, the sublevel sets

LN := {ϕ ∈ Wd : I(ϕ) ≤ N}

of the map I : Wd → R given by (3.3) or

(A.6) I(ϕ) = inf

{
1

2

∫ T

0

|vs|2 ds : v ∈ L2, ϕt = x0 +

∫ t

0

K(t− s)
[
b(s, ϕs) + σ(s, ϕs)vs

]
ds

}
are compact. Fix N > 0 and consider an arbitrary sequence J := {ϕn : n ∈ N} ⊂ LN , we will
show that there exists a converging subsequence the limit of which belongs to LN . Interestingy
enough, the proof parallels, in a deterministic context, the proofs of bound, Hölder continuity and
convergence of Xε,v.

Relative compactness. According to Arzelà-Ascoli’s theorem, the family J is relatively com-
pact in Wd if and only if {ϕnt } is bounded uniformly in n ∈ N and in t ∈ T and J is equicontinuous.
Moreover, for all n ∈ N and all t ∈ T, there exists vn ∈ L2 such that 1

2

∫ T
0
|vnt |

2
dt ≤ N and ϕn ∈ G0

vn ,
which means vn ∈ S2N and

ϕnt = x0 +

∫ t

0

K(t− s)
[
b(s, ϕns ) + σ(s, ϕns )v

n
s

]
ds.

Hence Remarks 3.11 and 3.13 grant the uniform bound and equicontinuity respectively. Therefore J
is relatively compact which entails that LN is relatively compact for any N > 0.

Closure. Let {ϕn}n∈N be a converging sequence of LN and denote its limit by ϕ ∈ Wd. The
controls vn associated to ϕn through (A.6) belong to S2N which is a compact space with respect to
the weak topology. Hence there exists a subsequence {nk}k∈N such that vnk converges weakly in L2

to a limit v ∈ S2N and limk↑∞ ϕnk = ϕ. Now let us prove that ϕ ∈ LN . For clarity we replace nk
by n from now on. The convergence as n goes to +∞ and the continuity of the paths entail

sup
n∈N

sup
t∈T

(
|ϕnt |+ |ϕt|

)
< +∞,

such that the paths lie in compact subsets of Rd and H2 asserts that uniform continuity of the
coefficients b and σ hold. Therefore they admit continuous moduli of continuity that we respectively
name ρb and ρσ. Using Cauchy-Schwarz inequality and H3 we get that for all t ∈ T:∣∣∣∣∫ t

0

K(t− s)b(s, ϕns )ds−
∫ t

0

K(t− s)b(s, ϕs)ds

∣∣∣∣ ≤ ‖K‖L1

∥∥ρb( |ϕn· − ϕ·|
)∥∥

T∣∣∣∣∫ t

0

K(t− s)σ(s, ϕns )v
n
s ds−

∫ t

0

K(t− s)σ(s, ϕs)vsds

∣∣∣∣
≤
∫ t

0

∣∣K(t− s)
(
σ(s, ϕns )− σ(s, ϕs)

)
vns
∣∣ds+ ∫ t

0

|K(t− s)σ(s, ϕs)(v
n
s − vs)|ds

≤ ‖K‖2 ‖v
n‖2 ‖ρσ(|ϕ

n
· − ϕ·|)‖T + ‖σ(ϕ)‖T

∫ t

0

|K(t− s)(vns − vs)|ds,
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which converges towards zero as n tends to infinity. Therefore, for all t ∈ T

ϕt = lim
n↑∞

ϕnt = lim
n↑∞

(
x0 +

∫ t

0

K(t− s)
[
b(s, ϕns ) + σ(s, ϕns )v

n
s

]
ds

)
= x0 +

∫ t

0

K(t− s)
[
b(s, ϕs) + σ(s, ϕs)vs

]
ds,

so that ϕ ∈ LN since v ∈ S2N , which concludes the proof of the closure and therefore of the
compactness of LN .

Appendix B. Technical moderate deviations proofs

B.1. MDP moment bounds: Proof of Lemma 3.17. Let p ≥ 2, N > 0, v ∈ AN , ε > 0 and
t ∈ T. Starting from (3.15), we proceed as in (A.1) and use Cauchy-Schwarz and BDG inequalities
to obtain

E
[
|ηε,vt |p

]
≤ 5p−1 |Xε

0 − x0|p(
ϑεhε

)p(B.1)

+ 5p−1E

∣∣∣∣∣
∫ t

0

K(t− s)
bε
(
s,Θε,vs

)
− b
(
s,Θε,vs

)
ϑεhε

ds

∣∣∣∣∣
p

+ 5p−1E

∣∣∣∣∣
∫ t

0

K(t− s)
b
(
s,Θε,vs

)
− b(s,Xs)

ϑεhε
ds

∣∣∣∣∣
p

+ 5p−1Np/2E

[(∫ t

0

∣∣K(t− s)σε
(
s,Θε,vs

)∣∣2 ds)p/2]

+
5p−1Cp
hpε

E

[(∫ t

0

∣∣K(t− s)σε
(
s,Θε,vs

)∣∣2 ds)p/2] .
The first term converges by H7 and is thus bounded. Notice that H8 entails

E

∣∣∣∣∣
∫ t

0

K(t− s)
bε
(
s,Θε,vs

)
− b
(
s,Θε,vs

)
ϑεhε

ds

∣∣∣∣∣
p

≤
(

νε
ϑεhε

)p
E
∣∣∣∣∫ t

0

K(t− s)Ξ
(
Θε,vs

)
ds

∣∣∣∣p ,
which is bounded because νε(ϑεhε)−1 tends to zero and

E
∣∣∣∣∫ t

0

K(t− s)Ξ
(
Θε,vs

)
ds

∣∣∣∣p ≤ ‖K‖p2 t
p/2−1 sup

s≤T
E
[ ∣∣Ξ(Θε,vs )∣∣p ] ≤ C1,

by Cauchy-Schwarz and Jensen’s inequalities and the bound (3.17), where C1 is a positive constant
that does not depend on ε. Since b(s, ·) is globally Lipschitz continuous uniformly on T, there exists
Cb > 0 such that for all s ∈ T:

(B.2)
∣∣b(s,Xs + ϑεhεη

ε,v
s

)
− b(s,Xs)

∣∣ ≤ Cb ϑεhε |ηε,vs | .

Therefore, using Cauchy-Schwarz and Jensen’s inequalities in the same way as (A.2)

E

∣∣∣∣∣
∫ t

0

K(t− s)
b
(
s,Θε,vs

)
− b(s,Xs)

ϑεhε
ds

∣∣∣∣∣
p

≤ E
∣∣∣∣∫ t

0

K(t− s)Cb |ηε,vs | ds
∣∣∣∣p

≤ Cpb t
p/2 ‖K‖p2

∫ t

0

|K(t− s)|2 E
[
|ηε,vs |p

]
ds.
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The last two terms of (B.1) are also uniformly bounded in n and ε because, similarly to (A.3),

E

[(∫ t

0

∣∣K(t− s)σε
(
s,Θε,vs

)∣∣2 ds)p/2]

≤ E

(∫ t

0

|K(t− s)|2
∣∣σε(s,Θε,vs )∣∣p ds)(∫ t

0

|K(t− s)|2 ds
) p−2

2


≤ ‖K‖p2 CL

(
1 + sup

t∈T
E
[
|Θε,vt |p

] )
,(B.3)

by Hölder’s inequality and the linear growth condition H3a. If the latter fails we rely on H3b and
the same calculations as in (A.5) to obtain a similar bound.

Overall this results in the existence of a constant C2 > 0 independent of ε, v, t such that

E
[
|ηε,vt |p

]
≤ C2 + C2

∫ t

0

|K(t− s)|2 E [|ηε,vs |p] ds, for all t ∈ T,

and Lemma A.1 yields the uniformly bound in ε and t.

B.2. MDP tightness: Proof of Lemma 3.18. Let p > 2∨2/γ, N > 0, ε > 0, and 0 ≤ s < t ≤ T .
We proceed as in Lemma 3.12; starting from (3.15), applying consecutively H8, then (B.2), Cauchy-
Schwarz and BDG inequalities we obtain

E
[∣∣∣ηε,vεt − ηε,v

ε

s

∣∣∣p]
≤8p−1E

∣∣∣∣ νεϑεhε

∫ s

0

(
K(t− u)−K(s− u)

)
Ξ
(
Θε,v

ε

u

)
du

∣∣∣∣p
+ 8p−1E

∣∣∣∣ νεϑεhε

∫ t

s

K(t− u)Ξ
(
Θε,v

ε

u

)
du

∣∣∣∣p
+ 8p−1E

∣∣∣∣∫ s

0

(
K(t− u)−K(s− u)

)
Cb

∣∣∣ηε,vεu

∣∣∣du∣∣∣∣p
+ 8p−1E

∣∣∣∣∫ t

s

K(t− u)Cb

∣∣∣ηε,vεu

∣∣∣du∣∣∣∣p
+ 8p−1Np/2E

[(∫ s

0

∣∣∣(K(t− u)−K(s− u)
)
σε
(
u,Θε,v

ε

u

)∣∣∣2 du)p/2]

+ 8p−1Np/2E

[(∫ t

s

∣∣∣K(t− u)σε
(
u,Θε,v

ε

u

)∣∣∣2 du)p/2]

+
8p−1Cp
hpε

E

[(∫ s

0

∣∣∣(K(t− u)−K(s− u)
)
σε
(
u,Θε,v

ε

u

)∣∣∣2 du)p/2]

+
8p−1Cp
hpε

E

[(∫ t

s

∣∣∣K(t− u)σε
(
u,Θε,v

ε

u

)∣∣∣2 du)p/2] .
In the first four terms, Cauchy-Schwarz inequality allows to separate the kernels from the random
variables. For the last four terms, analogous calculations to (A.3) achieve a similar separation of
kernels and random variables. Then linear growth or (3.6) and bounds on supt∈T,ε>0 E

[∣∣Ξ(Θε,vεt

)∣∣p]
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and supt∈T,ε>0 E
[∣∣ηε,vεt

∣∣p] lead to the existence of C1 > 0 independent of t and ε such that

E
[∣∣∣ηε,vεt − ηε,v

ε

s

∣∣∣p] ≤ C1

(∣∣∣∣∫ s

0

(
K(t− u)−K(s− u)

)2
du

∣∣∣∣p/2 + ∣∣∣∣∫ t

s

K(t− u)2du

∣∣∣∣p/2
)

= C1

(∣∣∣∣∫ s

0

(
K(u+ t− s)−K(u)

)2
du

∣∣∣∣p/2 + ∣∣∣∣∫ t−s

0

K(u)2du

∣∣∣∣p/2
)
.

Hence Assumption 2.3 yields the existence of a constant C2 > 0 such that

E
[∣∣∣ηε,vεt − ηε,v

ε

s

∣∣∣p] ≤ C2(t− s)γp/2.

Then the Kolmogorov continuity theorem asserts that ηε,vε admits a version which is Hölder contin-
uous on T of any order α < γ/2− 1/p, uniformly in ε > 0 and which satisfies (3.19). Furthermore,
Aldous theorem [10, Theorem 16.10] states that the sequence {ηε,vε}ε>0 is tight.

B.3. MDP weak convergence: Proof of Lemma 3.19. We have shown in Lemma 3.18 that for
any subsequence {εk}k∈N, {ηεk,vεk }k∈N and {vεk}k∈N are tight as families of random variables with
values in Wd and SN respectively. Hence there exists a subsubsequence, denoted hereafter

{
ηk, vk

}
,

that converges weakly to some Wd × SN -valued limit (η0, v) in a possibly different probability
space (Ω0,F0,P0) as n tends to +∞. We also denote εk, bk, σk, Xk

0 ,Θ
k along this subsequence.

We follow the same method as in the LDP case which comes from [22]. For all t ∈ [0, T ],
let Ψt : SN ×Wd → R such that

Ψt(f, ω) :=

∣∣∣∣ωt − ∫ t

0

K(t− s)
[
∇b(s,Xs)ωs + σ(s,Xs)fs

]
ds

∣∣∣∣ ∧ 1.

Clearly, Ψt is bounded and one can show its continuity along the same lines as in the LDP proof
but even simpler because it is linear. Therefore

lim
k↑∞

E
[
Ψt(v

k, ηk)
]
= E0

[
Ψt(v, η

0)
]
,

and we prove that the left-hand side is actually equal to zero. By H5 and Taylor’s formula there
exists a family of Rd-valued stochastic processes {Rε}ε>0 such that

b
(
s,Xs + ϑεhεη

ε,v
s

)
− b(s,Xs)

ϑεhε
= ∇b

(
s,Xs

)
ηε,vs +Rε(s),(B.4)

and a constant CR > 0 such that

|Rε(s)| ≤ CRϑεhε |ηε,vs |2 .

We recall that
∥∥∇b(·, X)

∥∥
T is finite from H5 and observe that

(B.5) E
[
|Rε(u)|p

]
≤
(
CRϑεhε

)pE [∣∣ηε,vεs

∣∣2p] <∞.
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Again starting from (3.15), we use H8, the Taylor estimate (B.4) and Itô isometry to get

E
[
Ψt(η

k, vk)2
]
≤
5
∣∣Xk

0 − x0
∣∣2

ϑ2εkh
2
εk

+ 5

(
νεk

ϑεkhεk

)2

E
∣∣∣∣∫ t

0

K(t− s)Ξ
(
Θks
)
ds

∣∣∣∣2
+ 5E

∣∣∣∣∫ t

0

K(t− s)Rε(s)ds

∣∣∣∣2
+ 5E

∣∣∣∣∫ t

0

K(t− s)
[
σk
(
s,Θks

)
− σ

(
s,Xs

)]
vksds

∣∣∣∣2
+

5

h2εk
E
[∫ t

0

∣∣K(t− s)σk
(
s,Θks

)∣∣2 ds]
=:5
(
Ik + IIk + IIIk + IVk + h−2

εk
Vk

)
.

H7 and H8 tell us that Ik+IIk tends to zero as ε goes to zero while an application of Cauchy-Schwarz
inequality and the bound (B.5) yields the same conclusion for IIIk.

To deal with IVk, recall that Θk converges in distribution towards X as k tends to infinity.
Since X is deterministic, the convergence actually takes place in probability, with respect to the
topology of uniform convergence. Moreover Θk is uniformly bounded in Lr for all r > p, thus the
family {

∣∣Θk∣∣p}k≥0 is uniformly integrable. Therefore the convergence also occurs with respect to
the Lp-norm.

The modulus of continuity of σ is only available on compact sets of T × Rd so we define a
constant M >

∥∥X∥∥T and introduce the following sets, for each k ∈ N:

Ek :=

{
ω ∈ Ω,

∥∥Θk(ω)−X
∥∥
T ≤M

}
,

with the observation that limk↑∞ P(Ek) = 1 thanks to the previous argument. Since X is uniformly
bounded,

∣∣Θkt (ω)∣∣ ≤ 2M for all t ∈ T, ω ∈ Ek, k ≥ 0. Therefore using Cauchy-Schwarz inequality,

E [IVk] ≤ 2NE
[∫ t

0

|K(t− s)|2
∣∣σk(s,Θks)− σ

(
s,Θks

)∣∣2 ds(1Ek
+ 1Ec

k
)

]
+ 2NE

[∫ t

0

|K(t− s)|2
∣∣σ(s,Θks)− σ(s,Xs)

∣∣2 ds(1Ek
+ 1Ec

k
)

]
,

where we will use the localisation to obtain convergence in the first term and Hölder continuity
in the second. Let us assume for the moment that linear growth H3a holds. We use that Θk is
uniformly bounded by 2M in Ek and linear growth for both σk and σ to obtain

sup
s∈T

E
[∣∣σk(s,Θks)− σ(s,Θks)

∣∣2] =sup
s∈T

E
[∣∣σk(s,Θks)− σ(s,Θks)

∣∣2 1Ek

]
+ sup

s∈T
E
[∣∣σk(s,Θks)− σ(s,Θks)

∣∣2 1Ec
k

]
≤‖σk − σ‖22M + sup

s∈T
E
[
1Ec

k
C2
L

(
2 + 2|Θks |

)2]
,(B.6)

which tends to zero as k goes to infinity because of H2 for the first term and because P(Ω\Ek) tends
to zero for the second. Moreover, by H6, σ is locally Hölder continuous thus there exist δ, C2M > 0
such that

sup
s∈T

E
[
1Ek

∣∣σ(s,Θks)− σ(s,Xs)
∣∣2] ≤ sup

s∈T
E
[
1Ek

C2M

∣∣Θks −Xs

∣∣2δ] ,
which tends to zero. Finally, linear growth leads to

(B.7) sup
s∈T

E
[
1Ec

k

∣∣σ(s,Θks)− σ(s,Xs)
∣∣2] ≤ E

[
1Ec

k
C2
L

(
2 + |Θks |+

∣∣Xs

∣∣ )2] ,
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which also tends to zero because P(Ω \ Ek) tends to zero. If only H3b with Assumption 3.6 hold
then a different bound depending on (2.2) would replace those in (B.6) and (B.7), by noticing
that X = G0(0). In both cases the above estimates tend to zero as k tends to infinity, hence E [IVk]
converges towards zero. Finally, {Vk}k∈N is uniformly bounded across k ≥ 0 as (B.3) shows,
thus h−pεk Vk tends to zero. We have proved that

lim
k↑∞

E
[
Ψt(v

k, ηk)
]
= 0,

and this entails that the limit η0 satisfies (3.16) P0-almost surely, for all t ∈ T. Since η0 has
continuous paths, this holds for all t ∈ T, P0-almost surely. Since the solution is unique we
conclude that η0 = ψ. Every subsequence has a subsequence for which this convergence holds
therefore {ηε,vε}ε>0 converges weakly towards ψ as ε goes to zero.
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