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Abstract. We propose a framework to study the optimal liquidation strategy in a limit order book for large-tick

stocks, with the spread equal to one tick. All order book events (market orders, limit orders and cancellations)

occur according to independent Poisson processes, with parameters depending on price move directions. Our

goal is to maximise the expected terminal wealth of an agent who needs to liquidate her positions within a

fixed time horizon. By assuming that the agent trades (through sell limit order or/and sell market order) only

when the price moves, we model her liquidation procedure as a semi-Markov decision process, and compute the

semi-Markov kernel using Laplace method in the language of queueing theory. The optimal liquidation policy

is then solved by dynamic programming, and illustrated numerically.

1. Introduction

Nowadays, most equity and derivative exchanges all over the world are using order-driven trading mechanisms:

Euronext, Helsinki, Hong Kong, Tokyo, Toronto are pure order-driven markets and NYSE, Nasdaq, LSE are

hybrid markets [23]. Different from a quote-driven market, where large market makers centralise buy and sell

orders and provide liquidity to other market participants through setting the bid and ask quotes, an order-driven

market is much more flexible, which allows all market participants to send buy or sell orders specifying the price

and amount they want to trade into a limit order book (LOB). According to the classical terminology [17,

Section II.B], orders leading to an immediate execution upon submission based on the LOB’s trade-matching

algorithm are called market orders, while orders that do not result in an immediate execution and therefore

are stored in the LOB are called limit orders. The active limit orders can either get executed by subsequent

counterpart market orders based on a certain priority rule1 or be cancelled. Therefore, a LOB can be understood

as a collection of buy and sell limit orders stored at different price levels awaiting to be executed by counterpart

market orders or cancellations.

Because of the popularity of the order-driven markets, many studies have recently been conducted on the

optimal execution strategies in LOBs. In fact, theoretical modelling of the complete dynamics of a LOB is ex-

tremely complicated, and currently there is no clear consensus on a universal approach. This makes constructing

an optimal trading strategy in a LOB even more difficult and one has to rely on simplifying assumptions for the
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order book, as well as setting constraints on the admissible strategies. For example, Obizhaeva and Wang [29]

and Alfonsi, Fruth and Schied [4] focus on the optimal execution strategies solely using market orders, as-

suming continuous price levels and exponential resilience of the LOB. Avellaneda and Stoikov [6] and Guil-

baud and Pham [19] construct an optimal market making policy for a small agent by assuming that the mid

price of the asset is an exogenous Markov process and the agent’s limit orders are matched by the market

counterparts at Poisson rates. Maglaras, Moallemi and Zheng [25] formulate an optimal liquidation strategy

consisting of a limit order placement at inception together with block and flow market order submissions over

a short time horizon. Fodra and Pham [15] model the asset price as a Markov renewal process and derive

an optimal market making strategy consisting of continuous placement of limit orders. Nevmyvaka, Feng and

Kearns [28] apply reinforcement learning to search for an optimal liquidation strategy by restricting the agent’s

actions to repositions of all the remaining inventory as a limit order and assuming the agent’s actions do not

change the LOB state.

The purpose of this paper is to formulate and solve a stylised optimal liquidation problem for an agent who

wants to sell a pre-specified quantity of stocks over a fixed (short) trading window in a LOB where the price-time

priority mechanism is applied. Information available to this agent contains historical order flows and states of

the LOB at the best prices (‘Level-I’ data). In particular, we are mostly interested in how different trading

conditions (LOB state, inventory position, time to maturity) impact the agent’s decisions. In order to achieve

this, we first build up a ‘Level-I’ LOB model describing the trading environment whose dynamics are driven

by the general market participants’ order flows and exogenous information. Realistic simplifying assumptions

for this LOB follow those in [11, 12], including unit order size, constant one-tick spread, Poisson order flows,

depletion of the best bid (resp. ask) queue moving the price one tick downward (resp. upward) and volumes

at best prices after a price move regarded as stationary variables drawn from a joint distribution. We further

develop this model by allowing the Poisson rates of the order flows and the joint distribution determining the

size of the volumes at the best prices after a price move to depend on the price move direction. Under these

assumptions, the evolution of this LOB can be modelled as a Markov renewal process [16], whose transition

mechanism is intuitively described by a queueing race between the volumes at the best prices. We then consider

a risk-neutral agent who tries to maximise her expected terminal wealth by selling a fixed amount of stock

within a fixed (finite) time horizon in this LOB. In order to model the price-time priority rule and capture the

execution of the agent’s limit orders, the agent can only submit a market order at the best bid price and/or

post a limit order at the best ask price immediately after the price moves, and her market orders never consume

up the volumes at the best bid price. The agent’s trading procedure is then formulated through a (stationary)

semi-Markov decision process within a finite horizon [21], among a certain class of deterministic stationary

policies. In general, at each price-change time, the optimal policy is a deterministic function which tells the

agent the size of the market and limit order to trade based on the current LOB state (price move direction,

volumes at the best prices), the agent’s inventory position and time to maturity in order to achieve terminal

wealth maximisation.

This framework is particularly suitable for large-tick stocks (see [7, Section 4] for definition and selection

criteria). Indeed, the bid-ask spread of a LOB for large-tick assets is almost always equal to one tick [13] and

such a LOB is in general fully occupied around the mid price. Furthermore, based on the fact that only about

0.1% to 0.5% of market orders on large-tick stocks exceed the size of the best queue volume [8], our constraints

on the agent’s market order strategy are reasonable.



OPTIMAL LIQUIDATION IN A LEVEL-I LIMIT ORDER BOOK FOR LARGE-TICK STOCKS 3

This paper is organised as follows. In Section 2, we set the basic assumptions and illustrate the evolutional

dynamics of a ‘Level-I’ LOB and define the objective as well as the admissible trading strategy set for the agent.

In Section 3, a semi-Markov decision process with a horizon-related deterministic stationary policy is introduced

to model the agent’s trading procedure and an optimal policy is defined. In Section 4, we provide an expression

for the semi-Markov kernel, which works as the transition mechanism of the semi-Markov decision process. Exis-

tence of the optimal policy are proved in Section 5, and empirical studies show our numerical results in Section 6.

Notations: we shall use the following notations: N := {0, 1, 2, . . . }, N+ := {1, 2, . . . }, R+ := (0,∞), R+
0 :=

R+ ∪ {0} and R− := R \ R+
0 . In this paper, T > 0 is a fixed terminal time, and we denote T := [0, T ] and

T− := R−∪ T. For a continuous-time process (Ls)s≥0, denote τL its first passage time to the origin, and fL

(resp. FL) the density (resp. cumulative distribution function) of τL and, as usual FL := 1− FL.

2. Limit Order Book and Trading Strategy

2.1. ‘Level-I’ Limit Order Book Model. We consider a limit order book characterised by two resolution

parameters as in [17]: the tick size ε > 0 represents the smallest interval (assumed constant) between price

levels, and the lot size, σ > 0, specifies the smallest amount of the asset that can be traded. All buy and sell

orders thus must arrive at a price k1ε and with a size k2σ, for some k1, k2 ∈ N+. Throughout this paper we

shall work with the following modelling assumptions for the limit order book:

Assumption 2.1 (Order book settings).

(a) orders from general market participants are of unit size, defined by σ actual size;

(b) the spread of the limit order book is equal to the tick size ε.

In particular, this limit order book is modelled on a ‘Level-I’ data, that is, the volumes and order flows at

the best bid and ask prices. This is motivated by the fact that the imbalance between the order flows at the

best bid and ask prices is shown to be a good predictor of the order book dynamics [9, 11], together with the

fact that data at the best prices are more obtainable than the ‘Level-II’ data. Following [10], we impose the

following assumptions for the evolution of the limit order book:

Assumption 2.2 (Evolution of the limit order book).

(a) whenever orders at the best bid (resp. ask) price are depleted, both the best bid and ask prices decrease

(resp. increase) by one tick;

(b) immediately after each price increase (resp. decrease), volumes at the best bid and ask prices are treated as

random variables with joint distribution f+1 (resp. f−1) : (N+)2 → [0, 1]; for any x1, x2 ∈ N+, f+1(x1, x2)

(resp. f−1(x1, x2)) represents the probability that the best bid and ask queue contain x1 and x2 unit limit

orders (of actual size x1σ and x2σ), right after a price increase (resp. decrease).

Remark 2.3. Assumption 2.2 presumes that the limit order book contains no empty level near mid price so

that price changes are restricted to one tick, and that price changes are entirely due to exogenous information,

in which case market participants swiftly readjust their order flows at the new best prices, as if a new state of

the limit order book is drawn from its invariant distribution [20]. In other words, we rule out the possibility

that depletion of the best bid (resp. ask) queue is followed by an insertion of buy (resp. sell) limit orders inside

the spread, keeping the best bid and ask prices unchanged.
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Modelling order flows from general market participants is based on the ‘zero-intelligence’ approach [10, 12, 31].

Assumption 2.4 (Poisson order flows). All order book events (market orders, limit orders and cancellations)

from general market participants occur according to independent Poisson processes, with parameters depending

on the price move direction. To be more specific, taking order flows at the best ask price for example, during any

period between a price increase (resp. decrease) and the next price change, the following mutually independent

events happen:

(a) market buy orders arrive at independent, exponential times with rate µa
+1 > 0 (resp. µa

−1 > 0);

(b) limit sell orders arrive at independent, exponential times with rate κa
+1 > 0 (resp. κa

−1 > 0);

(c) cancellations of limit orders occur at independent, exponential times with rate θa+1 > 0 (resp. θa−1 > 0)

multiplied by the amount (in unit size) of the outstanding sell limit orders.

We assume an analogous framework at the best bid price, with parameters µb
+1, µ

b
−1, κ

b
+1, κ

b
−1, θ

b
+1, θ

b
−1 > 0.

Remark 2.5.

• Although the ‘zero-intelligence’ model is not exactly compatible with empirical observations [34], it still

retains the major statistical features of limit order books while remaining computationally manageable.

With the ‘zero-intelligence’ hypothesis, the agent can easily characterise the dynamical properties of

the limit order book from historical data without assuming behavioural assumptions or resorting to

unobservable parameters for other market participants.

• Assumption 2.4(c) means that if there are v limit orders at the best ask (resp. bid) price, each of

which can be cancelled at an exponential time with rate θa (resp. θb) independently, and the overall

cancellation rate is then θav (resp. θbv).

2.2. Objective and admissible trading strategies. In the limit order book model introduced in Section 2.1,

we assume that the agent is risk-neutral and her goal is to maximise the expected wealth obtained through

selling the stock of χ ∈ N+ unit size (χσ actual size) within the finite horizon T. The following assumption

describes the set of admissible trading strategies:

Assumption 2.6 (Admissible trading strategies).

(a) the agent can only trade immediately after a price change; let τn denote her n-th decision epoch, namely

the time of the n-th price change; τ0 = 0 and the last decision epoch before or at maturity is τn, where n :=

sup{n ∈ N : τn ≤ T};
(b) at maturity T , the agent is required to sell all the unexecuted stocks through a market order;

(c) at each decision epoch τn, the agent observes the bid and ask queues, with volumes of vb and va unit size;

she can then post a sell limit order of l unit size at the best ask price and submit a sell market order of m

unit size at the best bid price; we assume that the best bid queue is never depleted by the agent, and that

the agent is slow, meaning that her limit order (of l unit size) has less time priority upon submission than

the limit orders from other market participants (of va unit size);

(d) the agent follows a ‘no cancellation’ rule: she will not cancel her limit order unless the price goes down;

(e) short selling is not allowed.

Restricting the agent’s trading actions at price changes (Assumption 2.6(a)) might sound relatively strong,

but is necessary to capture the time-priority rule and the executions of the agent’s limit orders. We shall study

later in Section 3.3 how to define an optimal policy maximising the expected wealth at maturity T .
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3. Trading procedure modelled by semi-Markov decision processes

A semi-Markov decision model [33, Chapter 7] is a dynamic system whose states are observed at random

epochs, each of when an action is taken and a payoff incurs (either as a lump sum at that epoch or at a

rate continuously until the next epoch) as a result of the action. It also satisfies the following two Markovian

properties:

(M1) given the current state and the action at a given epoch, the time until the next epoch and the next

state only depend on the current state and action;

(M2) the payoff incurred at any epoch depends only on the state and the action at that epoch.

The semi-Markov decision model well describes the agent’s liquidation problem within our stylised limit order

book: the limit order book with the agent’s participation is a dynamic system, and the agent’s selling action at

each decision epoch may lead to a payoff. Indeed, Assumption 2.6(a) enables us to track the state of this system

merely at the decision epochs, and Assumptions 2.2, 2.4 and 2.6(c) ensure that the transition mechanism of the

system is stationary and satisfies (M1)-(M2). Moreover, according to Assumption 3.3, each payoff from the

agent’s matched limit order is allocated to the nearest incoming decision epoch in order to make the payoff as

a lump sum. In Section 3.1, we define a (stationary) semi-Markov decision model with lump-sum payoffs for

the agent’s liquidation procedure. In Section 3.2, we define a horizon-related deterministic stationary policy

and illustrate the evolution of the semi-Markov decision process. In Section 3.3, we give the definition of the

expected reward function, the value function and the optimal policy for the agent’s liquidation problem.

3.1. Semi-Markov decision model. The semi-Markov decision model with lump-sum payoffs and the finite-

horizon constraint is defined as a six-tuple {E , (A(e))e∈E , Q(·, ·|·), P (·|·), r(·, ·), w(·, ·)}, where each element is

defined below.

3.1.1. State space. Fix N ∈ N+ large enough. The state space E := {−1,+1} × {1, . . . , N+}3 × {0, . . . , N}2

is the set of all pre-decision conditions of the system (i.e. the limit order book with the agent’s participation)

observed at each decision epoch. Specifically, the system being in state e := (j, vb, va, p, z, y) ∈ E means that:

• the ask/bid price change is equal to j tick;

• the best bid (resp. ask) queue contains vb (resp. va) unit orders;

• the ask price2 is equal to pε;

• the executed part of the limit order posted by the agent at the previous decision epoch is of z unit size;

• the agent’s remaining inventory position is of y unit size.

3.1.2. Action space. The action space A := {0, . . . ,m}×{0, . . . , l}, with m, l ∈ N+, represents the set of trading

strategies, that is, the amount (in unit size) of the market and limit order that the agent chooses to submit and

post at the best bid and ask price respectively. The constant m (resp. l) represents the maximum amount (in

unit size) of a single market (resp. limit) order that the agent is allowed to trade. From Assumption 2.6(c)(e),

the agent’s admissible action space in state e ∈ E is defined by

A(e) :=
{
(m, l) ∈ A : m < vb,m+ l ≤ y

}
,

2The stylised limit order book model doesn’t implement a positive restriction on the stock price. But we assume that the stock

price is far above zero at inception and the liquidation horizon T is short, so that the stock price will never become negative.
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so that the agent will never consume up the entire best bid queue nor short sell. The set of all feasible state-action

pairs is denoted by K := {(e, α)|e ∈ E , α ∈ A(e)}.

3.1.3. Semi-Markov kernel. Before introducing our next concept, recall the following definition.

Definition 3.1 (sub-/semi-Markov kernel). Let (Ω1,F1) and (Ω2,F2) be real measurable spaces. A map p(·|·) :
F2 × Ω1 → [0, 1] is called a sub-Markov kernel on Ω2 given Ω1 if:

• for any ω1 ∈ Ω1, p(·|ω1) is a measure on (Ω2,F2) with p(Ω2|ω1) ≤ 1;

• for any F2 ∈ F2, p(F2|·) is a Borel measurable function.

In particular, if p(Ω2|ω1) = 1 for all ω1 ∈ Ω1, then p(·|·) is a Markov kernel on Ω2 given Ω1. Furthermore, a

map q(·, ·|·) : R+
0 ×F2 × Ω1 → [0, 1] is a semi-Markov kernel on R+

0 × Ω2 given Ω1 if:

• for (F2, ω1) ∈ F2 × Ω1, q(·, F2|ω1) is non-decreasing, right-continuous and q(0, F2|ω1) = 0;

• for t ≥ 0, q(t, ·|·) is a sub-Markov kernel on Ω2 given Ω1;

• the limit lim
t↑∞

q(t, ·|·) is a Markov kernel on Ω2 given Ω1.

In our model, let Q(·, ·|·) be a semi-Markov kernel on R+
0 ×E given K, determining the (stationary) transition

mechanism of the semi-Markov decision process: for any t ≥ 0 and ẽ ∈ E , given the state-action pair (e, α) ∈ K
at some decision epoch, the quantity3 Q(t, ẽ|(e, α)) represents the (joint) probability that the time until the

next decision epoch is less than or equal to t and the next system state is ẽ. Detailed computations are given

in Section 4.

3.1.4. Terminal kernel. The terminal kernel P (·|·) is a sub-Markov kernel on N given K × T−, and describes

the execution dynamics between the last decision epoch and the maturity: for any z ∈ N, given the state-action

pair (e, α) ∈ K and the time to maturity λ ∈ T− at some decision epoch4, the quantity5 P (z|(e, α), λ) represents
the (joint) probability that the time until the next decision epoch is strictly larger than λ and the executed part

of the limit order up to the maturity is of z unit size. Detailed computations are given in Section 4.

Remark 3.2. According to our modelling framework, the terminal kernel satisfies the following properties:

• P (0|(e, α), λ) = 1 when λ ≤ 0;

•
∑

z≥0 P (z|(e, α), λ) = 1−Q(λ, E|(e, α)) when λ > 0;

• P (z|(e, α), λ) = 0 when z > l;

for any (e, α) ∈ K.

3.1.5. Periodical reward function. The periodical reward function r : K → R+
0 is defined as

(3.1) r(e, α) := ρ [m (p− 1) + z (p− j)] , for all (e, α) ∈ K, where ρ := εσ,

and represents the lump-sum payoff associated with a decision epoch given the state-action pair (e, α). Specifi-

cally, the definition (3.1) is given based on the following assumption that assigns the payoff from the matched

part of the agent’s limit order to the nearest incoming decision epoch.

Assumption 3.3 (Periodic reward function). For n ∈ N+, the payoff from the matched limit order within the

interval [τn−1, τn) is allocated at τn.

3By abuse of language, we write Q(t, {ẽ}|(e, α)) as Q(t, ẽ|(e, α)).
4A decision epoch with time to maturity λ < 0 means that it happens a period of time |λ| after the maturity.
5By abuse of language, we write P ({z}|((e, α), λ)) as P (z|(e, α), λ).
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Assuming that the system is in state e ∈ E and the agent takes action α ∈ A(e) at some decision epoch. She

then earns an immediate payoff worth m(p − 1)ρ from submitting the market order of m unit size at the best

bid price (p− 1)ε. On top of that, the matched limit order of z unit size at the previous best ask price (p− j)ε

entails a payoff worth z(p− j)ρ, which is allocated at the current decision epoch according to Assumption 3.3.

3.1.6. Terminal reward function. The terminal reward function w : K × N → R+
0 is defined as

(3.2) w(e, α, z) := ρ [(p− 1) (y −m) + z]− g (y −m− z) , for all (e, α) ∈ K and z ∈ N,

where the market impact function g : N → R+
0 is of the form

(3.3) g(x) := ρ
x

v
,

for a constant v ∈ N+. For any (e, α) ∈ K and z ∈ N, the quantity w(e, α, z) represents the lump-sum payoff

associated with the maturity T , given the state-action pair (e, α) at the last decision epoch, and the matched

part of the agent’s limit order between the last decision epoch and the maturity being of z unit size. Particularly,

the identity (3.2) is given based on the following assumption:

Assumption 3.4 (Terminal reward function).

(a) the payoff from the matched limit order obtained within the interval [τn, T ) is allocated at T ;

(b) when depicting the market impact brought by the market order at maturity, we assume that the impact is

linear with v representing the average depth (in unit size) on the bid side of the limit order book;

(c) the unexecuted shares at maturity cannot sweep all the liquidity on the bid side of the limit order book, so

that the terminal reward function is R+
0 -valued.

Assumption 3.4(b) yields the market impact function g in Formula (3.3). Furthermore, based on Assump-

tion 3.4(a)(b), the terminal reward w(e, α, z) consists of the payoff from the matched limit order (of amount ρpz)

and the market order at maturity (of amount ρ(p−1)(y−m−z)), deducted by the corresponding market impact

(of amount g(y −m− z)).

3.2. Dynamics of the finite-horizon semi-Markov decision process. We assume that the agent applies

a horizon-related deterministic stationary policy defined below, specifying a decision rule for her actions.

Definition 3.5. A horizon-related deterministic stationary policy is a measurable function

π : E × T− ∋ (e, λ) 7→ α ∈ A(e),

such that π(e, λ) = (0, 0) for any (e, λ) ∈ E × R−. We further denote by Π the set of all horizon-related

deterministic stationary policies.

Remark 3.6. At the n-th decision epoch, with system state en ∈ E and time to maturity λn := T − τn, an

action π(en, λn) is given by the policy π. In particular, at any decision epoch τn with n > n (namely λn < 0),

the agent stops trading as αn = (0, 0), following Assumption 2.6(b).

Table 1 summarises the evolution of the semi-Markov decision model with a deterministic stationary policy π.

Suppose that the system is in state e0 at τ0, and the agent has a planned trading horizon λ0. According to the

policy π, she chooses an action α0 = π(e0, λ0). It then takes a period of time t1 to reach the next decision epoch

(τ1 = τ0 + t1), at which point the system state changes to e1 and the time to maturity for the agent becomes

λ1 = λ0 − t1. She then chooses the action α1 = π(e1, λ1), and so on. At the n-th decision epoch, a periodic
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Index Time State Time to Maturity Action Payoff

Initial τ0 e0 λ0 ≥ 0 α0 = π(e0, λ0) r(e0, α0)

1st τ1 = τ0 + t1 e1 λ1 = λ0 − t1 ≥ 0 α1 = π(e1, λ1) r(e1, α1)

2nd τ2 = τ1 + t2 e2 λ2 = λ1 − t2 ≥ 0 α2 = π(e2, λ2) r(e2, α2)
...

...
...

...
...

...

(n− 1)-th τn−1 = τn−2 + tn−1 en−1 λn−1 = λn−2 − tn−1 ≥ 0 αn−1 = π(en−1, λn−1) r(en−1, αn−1)

n-th τn = τn−1 + tn en λn = λn−1 − tn ≥ 0 αn = π(en, λn) r(en, αn)

Terminal T w(en, αn, z)

(n+ 1)-th τn+1 = τn + tn+1 en+1 λn+1 = λn − tn+1 < 0 αn+1 = (0, 0) 0
...

...
...

...
...

...

Table 1. Evolution of the semi-Markov decision process

payoff of amount r(en, αn) incurs. At maturity T , a terminal payoff w(en, αn, z) is obtained. In particular,

after T (n > n), the agent takes no action (αn = (0, 0)), and no payoff is paid. In the following, we construct

the semi-Markov decision process in a probability space based on the Ionescu Tulcea’s Theorem.

Definition 3.7. Let (Ω,F) be a measurable space consisting of the sample space Ω, defined by

Ω :=
{
n ∈ N, z ∈ N,

(
{tn, en, λn, αn} ∈ R+

0 × E × T− ×A(en)
)
n∈N

}
,

and the corresponding Borel σ-algebra F . Define the random variables N, Z, Xn, En, Λn, An on (Ω,F) as:

N(ω) = n, Z(ω) = z,

Xn(ω) = tn, En(ω) :=
(
Jn, V

b
n , V

a
n , Pn, Zn, Yn

)
(ω) = en,

Λn(ω) = λn, An(ω) := (Mn, Ln) (ω) = αn,

for any ω ∈ Ω and n ∈ N, where

• Xn is the time between the (n− 1)-th and the n-th decision epoch (X0 = 0 almost surely);

• En,Λn, An represent the system state, time to maturity and agent’s action at the n-th decision epoch;

• N is the index of the last decision epoch;

• Z is the amount (in unit size) of the agent’s limit order executed between the N-th decision epoch and

the maturity.

Remark 3.8. Based on this modelling framework, the following properties hold almost surely for n ∈ N

• Λn+1 = Λn −Xn+1: evolution of the time to maturity;

• Pn+1 = Pn + Jn+1: evolution of the ask price (in tick size);

• Yn+1 = Yn −Mn − Zn+1: evolution of the inventory position (in unit size);

• Zn+1 ≤ Ln: the amount of the matched limit order cannot exceed that of the limit order posted by the

agent in each queueing race;

• N = sup{n ∈ N : Λn ≥ 0}: index of the last decision epoch;

• Z ≤ ZN+1: the amount of the matched limit order between the last decision epoch and the maturity

cannot exceed that of limit order executed when there is no finite-horizon restriction.
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Theorem 3.9. [Tulcea’s Theorem [5, Section 2.7.2]] For any (e, λ) ∈ E × T and π ∈ Π, there exists a unique

probability measure Pπ
(e,λ) on (Ω,F) such that, for any t ≥ 0, ẽ ∈ E, α ∈ A, z ∈ N and n ∈ N,

Pπ
(e,λ)(X0 = 0, E0 = e,Λ0 = λ) = 1,

Pπ
(e,λ)(An = α|Hn = hn) = 11{π(en,λn)=α},

Pπ
(e,λ)(Xn+1 ≤ t, En+1 = ẽ|Hn = hn, An = αn) = Q(t, ẽ|(en, αn)),

Pπ
(e,λ)(Xn+1 > λn,Z = z|Hn = hn, An = αn) = P (z|(en, αn), λn),

where

Hn :=

{
({X0, E0,Λ0}), if n = 0,(
{Xi, Ei,Λi, Ai}i=0,...,n−1, {Xn, En,Λn}

)
, if n ∈ N+,

is the sequence of random variables describing the history up to the n-th decision epoch (realisations of the

random variables (or sequences of random variables) are denoted by the corresponding lower case letters).

3.3. Value function and optimal policy. Consider an agent with objective and trading strategies as in

Section 2.2, introduce the following definition.

Definition 3.10. Define the finite-horizon expected reward function under a policy π ∈ Π by

(3.4) V π(e, λ) := Eπ
(e,λ)

(
N∑

n=0

r(En, An) + w(EN, AN,Z)

)
, for any (e, λ) ∈ E × T,

as well as the value function

(3.5) V ∗(e, λ) := sup {V π(e, λ), π ∈ Π} .

A policy π∗ ∈ Π is called T-optimal if the equality

(3.6) V π∗
(e, λ) = V ∗(e, λ)

holds for all (e, λ) ∈ E × T.

Remark 3.11. For any (e, λ) ∈ E × T, we can rewrite the quantity V π(e, λ) in (3.4) as

V π(e, λ) = Eπ
(e,λ)

( ∞∑
n=0

(
r(En, An)11{N≥n}

)
+ w(En, An,Z)11{N=n}

)

= Eπ
(e,λ)

( ∞∑
n=0

(
r(En, An)11{Λn≥0} + w(En, An,Z)11{0≤Λn<Xn+1}

))

=
∞∑

n=0

Eπ
(e,λ)

(
r(En, An)11{Λn≥0} + w(En, An,Z)11{0≤Λn<Xn+1}

)
,(3.7)

where the second equality follows by writing

{N ≥ n} = {Λ0 ≥ 0, . . . ,Λn ≥ 0} = {Λn ≥ 0},

{N = n} = {Λ0 ≥ 0, . . . ,Λn ≥ 0,Λn+1 < 0} = {Λn ≥ 0,Λn+1 < 0} = {0 ≤ Λn < Xn+1},

since the sequence {Λn}n∈N is non-increasing, and the third equality is due to the non-negativity of the peri-

odic/terminal reward function and the monotone convergence theorem.
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4. Semi-Markov kernel

We now provide the expressions for the semi-Markov kernel Q(·, ·|·) and the terminal kernel P (·|·) defined in

Section 3.1 using the language of queueing theory. We first (Section 4.1) model the dynamics of the best queues

with the agent’s participation as generalised birth-death processes, and derive the closed-form expressions for

the semi-Markov kernel and the terminal kernel in all possible scenarios in terms of the distributions of the first-

passage time of the generalised birth-death processes to zero. We then (Section 4.2) compute these distributions

by using Laplace method.

4.1. Closed-form expressions. For notational convenience, we shall fix an element (e, λ) in E × T together

with a deterministic stationary policy π ∈ Π and denote Pπ
(e,λ) by P throughout this section.

4.1.1. Semi-Markov kernel. According to Theorem 3.9 and the Markovian property (M1), we can express the

semi-Markov kernel as a (stationary) distribution of the duration and outcome of a queueing race given its

initial condition and the agent’s action:

(4.1) Q(t, ẽ|(e, α)) = P(Xn+1 ≤ t, En+1 = ẽ|En = e,An = α), for any t ≥ 0, ẽ ∈ E , (e, α) ∈ K, n ∈ N.

To simplify further calculations, we now factorise the conditional probability in (4.1).

Proposition 4.1. For any ẽ =
(
j̃, ṽb, ṽa, p̃, z̃, ỹ

)
∈ E and

(
e := (j, vb, va, p, z, y), α := (m, l)

)
∈ K, we have

(4.2) Q(t, ẽ|(e, α)) = Qj,v,α

(
t, j̃, z̃

)
fj̃
(
ṽb, ṽa

)
11{p̃=p+j̃}11{ỹ=y−m−z̃},

for all t ≥ 0, where6 for any n ∈ N,

Qj,v,α

(
t, j̃, z̃

)
:= P

(
Xn+1 ≤ t, Jn+1 = j̃, Zn+1 = z̃

∣∣∣Jn = j, (V b
n , V

a
n ) = (vb, va), An = α

)
.

Proof. According to Assumption 2.2 and Remark 3.8, we can write

Q(t, ẽ|(e, α)) = P
(
Xn+1 ≤ t, Jn+1 = j̃, Zn+1 = z̃|En = e,An = α

)
×

P
(
(V b

n+1, V
a
n+1) = (ṽb, ṽa), Pn+1 = p̃, Yn+1 = ỹ

∣∣Xn+1 ≤ t, Jn+1 = j̃, Zn+1 = z̃, En = e,An = α
)

= Qj,v,α

(
t, j̃, z̃

)
P
(
(V b

n+1, V
a
n+1) = (ṽb, ṽa)|Jn+1 = j̃

)
×

P
(
Pn+1 = p̃|Jn+1 = j̃, Pn = p

)
P (Yn+1 = ỹ|Yn = y,Mn = m,Zn+1 = z̃)

= Qj,v,α

(
t, j̃, z̃

)
fj̃
(
ṽb, ṽa

)
11{p̃=p+j̃}11{ỹ=y−m−z̃}.

�

Remark 4.2. The function Q is a semi-Markov kernel on R+
0 × E ′ given K′, where

E ′ := {−1,+1} × {0, 1, . . . , N};

K′ :=
{
(j, vb, va, α) : j ∈ {+1,−1}, (vb, va) ∈ {1, . . . , N}2, α ∈ A,m < vb

}
.

Indeed, for any (j, vb, va, α) ∈ K′, the probability Qj,v,α (t, {+1,−1}, {0, . . . , l}) converges to 1 for large t,

indicating the amount of the matched limit order cannot exceed that of the limit order posted by the agent.

6P (short for Pπ
(e,λ)

in this section) is the probability measure introduced in Theorem 3.9, and we use the short-hand notation

P
(
Xn+1 ≤ t, Jn+1 = j̃, Zn+1 = z̃,

∣∣∣ · · ·) = P
(
Xn+1 ≤ t, Jn+1 = j̃, Zn+1 = z̃, V b

n+1 ∈ N+, V a
n+1 ∈ N+, Pn+1 ∈ N+, Yn+1 ∈ N

∣∣∣ · · ·)
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According to Assumptions 2.2, 2.4 and 2.6, the semi-Markov kernel Q describes the dynamical mechanism

of a queueing race between the volumes sitting at the best bid and ask prices. Intuitively, fix
(
j, vb, va, α

)
∈ K′,

and consider a queueing race starting with vb and va units limit orders (from the general market participants)

at the best bid and ask prices at a certain decision epoch. The agent subsequently submits a sell market order

of m unit size, which decreases the best bid volume to (vb −m) unit size, and posts a sell limit order of l unit

size, which has less time priority than the pre-existing va units limit orders at the best ask price. After the

agent’s action, mutually independent order book events happen at exponential times with the rates depending

on the price move direction j and therefore change the volumes of the best bid and ask queues. The queueing

race terminates whenever the volume of either the best bid or ask queue reaches zero, and we denote the result

of a queueing race by +1 (resp. −1) if the best ask (resp. bid) queue is depleted first. For (t, j̃, z̃) ∈ R+
0 × E ′,

the quantity Qj,v,α(t, j̃, z̃) is the probability that the duration of the race is less than or equal to t, the result

is j̃, and z̃ unit size of the agent’s limit order gets executed. In the following, we model the dynamics of the

volumes at the best bid and ask prices as generalised birth-death processes, and therefore build a connection

between the semi-Markov kernel and the queueing theory.

Definition 4.3. Let (Ω,F ,P) be a new filtered probability space. For v ∈ N+, l ∈ N and κ, µ, θ, η > 0, define

the following processes on this space:

• (B[v, κ, µ, θ]s)s≥0 is a birth and death process with state space N and absorbing state 0, given the initial

state v; κ is the birth rate and µ+ iθ the death rate when in state i ∈ N+;

• (C[v, l, µ, θ]s)s≥0 is a pure death process with state space N and absorbing state 0 given initial state l+v;

the death rate equals to µ+max(0, i− l)θ when in state i ∈ N+;

• (G[κ, µ, θ, η]s)s≥0 is a process with state space N given initial state 0. Strictly before time η, it is a birth

and death process with birth rate κ and death rate iθ when in state i ∈ N. After η, the birth and death

rate of this process change to κ and µ+ iθ when in state i ∈ N+ and 0 becomes the absorbing state.

• (A[v, l, κ, µ, θ]s)s≥0 is a process with state space N2 defined by

A[v, l, κ, µ, θ]s :=
(
C[v, l, µ, θ]s, G[κ, µ, θ, τC[v,l,µ,θ]]s

)
, for s ≥ 0.

Lemma 4.4. [12, Lemma 2] Fix
(
j, vb, va, α

)
∈ K′. Suppose that, at the n-th decision epoch, the queueing race

starts with vb and va units limit orders at the best bid and ask prices after the price moves by j tick, and the

agent takes an action α = (m, l). On [τn, τn+1), define the following processes:

• B̃: size of the orders sitting at the best bid price;

• C̃: size of the agent’s limit order together with the orders with higher time priority at the best ask price;

• G̃: size of the orders with lower time priority than the agent’s limit order at the best ask price.

Then there exist two independent processes B[vb −m,κb
j , µ

b
j , θ

b
j ] and A[va, l, κa

j , µ
a
j , θ

a
j ] such that

B[vb −m,κb
j , µ

b
j , θ

b
j ]s = B̃s+τn and A[va, l, κa

j , µ
a
j , θ

a
j ]s = (C̃s+τn , G̃s+τn), for all s ∈ [0, τn+1 − τn).

According to Lemma 4.4, we now provide an expression for Q, and defer its proof to Appendix A.

Proposition 4.5. Fix (j, vb, va, α) ∈ K′, introduce the short-hand notations:

Bb := B[vb −m,κb
j , µ

b
j , θ

b
j ], Ba := B[va, κa

j , µ
a
j , θ

a
j ],

Al := A[va, l, κa
j , µ

a
j , θ

a
j ], Cl := C[va, l, µa

j , θ
a
j ],

as well as the scenarios:
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S1 S2± S3 S4 S5 S6

l ≥ 1 l = 0 l ≥ 1 l = 1 l > 1 l > 1

j̃ = +1 j̃ = ±1 j̃ = −1 j̃ = −1 j̃ = −1 j̃ = −1

z̃ = 0 z̃ = 1 z̃ ∈ {1, . . . , l − 1} z̃ = l

Then the following holds for any (t, j̃, z̃) ∈ R+
0 × E ′:

Qj,v,α

(
t, j̃, z̃

)
=



[
FAl(t)−

∫ t

0

fAl(u)FBb(u)du

]
11{z̃=l}, [S1],[

FBa(t)−
∫ t

0

fBa(u)FBb(u)du

]
11{z̃=0}, [S2+],[

FBb(t)−
∫ t

0

fBb(u)FBa(u)du

]
11{z̃=0}, [S2−],

FBb(t)−
∫ t

0

fBb(u)FC1(u)du, [S3],∫ t

0

fBb(u) [FC1(u)− FA1(u)] du, [S4],∫ t

0

f∗
Bb(ϵ)

∫ ϵ

0

f∗
Cz̃ (u)du dϵ, [S5],∫ t

0

fBb(u) [FC1(u)− FAl(u)] du−
l−1∑
z=1

∫ t

0

f∗
Bb(ϵ)

∫ ϵ

0

f∗
Cz (u)dudϵ, [S6],

0, otherwise,

where f∗
Cz (ξ) := eµ

a
j ξfCz (ξ) and f∗

Bb(ξ) := e−µa
j ξfBb(ξ) for any ξ ≥ 0 and z ∈ N+.

4.1.2. Terminal kernel. According to Theorem 3.9 and the Markovian property (M1), we can express the

terminal kernel as

(4.3) P (z|(e, α), λ) = P(Xn+1 > λ,Z = z|En = e,An = α),

for any (e, α) ∈ K, λ ∈ R, z ∈ N. Remark 3.2 implies that only the cases when λ > 0 and z ∈ {0, . . . , l} need to

be considered. According to Lemma 4.4, we now provide an expression for Q, proved in Appendix B.

Proposition 4.6. For any λ > 0, (e, α) ∈ K (with the corresponding (j, vb, va, α) ∈ K′)), introduce the pro-

cesses Bb, Ba, Al, Cl as in Proposition 4.5. Then the following equality holds:

P (z|(e, α), λ) =



FBb(λ)FBa(λ), if l = 0 and z = 0,

FBb(λ)FC1(λ), if l ≥ 1 and z = 0,

FBb(λ) [FCz(λ)− (FCz ∗ FΞ) (λ)] , if l > 1 and z ∈ {1, . . . , l − 1},
FBb(λ) [FCl(λ)− FAl(λ)] , if l ≥ 1 and z = l,

0, otherwise,

where Ξ is an exponentially distributed random variable with parameter µa
j , and ∗ is the convolution operator.

4.2. Laplace method. Not surprisingly, the distributions of the first-passage time of the generalised birth-

death processes A,B,C in Definition 4.3 do not admit closed-form expressions. To compute them, we first

determine their Laplace transforms, and invert them numerically. We keep here the notations of Proposition 4.5.

Definition 4.7. Let f : R+
0 → R be a function absolutely integrable on [0, ω] for any ω > 0. Its (one-sided)

Laplace transform is defined by f̂(s) := lim
ω↑∞

∫ ω

0

e−stf(t)dt, for all s ∈ C such that the right-hand side converges.
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The standard (albeit simplified) inversion formula for the Laplace transform is the Bromwich contour integral,

or Mellin inversion [1, Chapter 1]: for an absolutely integrable continuous function f , the identity f(t) =
1

2πi

∫ x+i∞
x−i∞ etsf̂(s)ds holds for any x > 0, and, by symmetry arguments, can be simplified to

(4.4) f(t) =
2ext

π

∫ ∞

0

ℜ
[
f̂(x+ iu)

]
cos(ut)du, for all t > 0.

We then apply the Euler algorithm [3, Section 1] that exploits the specific structure of the integrand in (4.4). We

now consider the general case of a birth-death process Xb with initial state b ∈ N+, and with birth rate λn ≥ 0

and death rate µn > 0 in state n ∈ N+. The following lemma, derived in [12, Equation (14)] following Abate-

Whitt methodology [2, Section 4], expresses the Laplace transforms of the density and cumulative distribution

function of τXb .

Lemma 4.8. The equality F̂Xb(s) = s−1f̂Xb(s) holds on {s ∈ C : ℜ(s) > 0}, and

(4.5) f̂Xb(s) =
b∏

n=1

[
− 1

λn−1
Φ
k≥0

(
−λk+n−1µk+n

λk+n + µk+n + s

)]
, for all s ∈ C such that ℜ(s) > 0,

where Φ
k≥0

ak
bk

:= lim
k↑∞

t0 ◦ t1 ◦ · · · ◦ tk(0) and tk(u) :=
ak

bk + u
for u ≥ 0.

Proposition 4.9. Fix v ∈ N+, l ∈ N and κ, µ, θ > 0, and denote the processes A[v, l, κ, µ, θ], B[v, κ, µ, θ],

C[v, l, µ, θ] (as in Definition 4.3) by A, B and C, respectively. In particular, we denote the process B[j, κ, µ, θ]

by Bj for any j ∈ N+. Assume that fA, fB and fC are continuous on R+. Then

f̂B(s) =
1

(−κ)v

v∏
n=1

Φ
k≥0

[
−κµ− κ(k + n)θ

κ+ µ+ (k + n)θ + s

]
, and f̂C(s) =

(
µ

µ+ s

)l l+v∏
n=l+1

µ+ (n− l)θ

µ+ (n− l)θ + s
,

for ℜ(s) > 0. Furthermore, for Rj(u) :=
1
j! exp

(
−κ

θ

(
1− e−θu

)) [κ
θ

(
1− e−θu

)]j
for u ≥ 0 and j ∈ N, we have

(4.6) fA(t) = fC(t)R0(t) +

∫ t

0

∞∑
j=1

fBj (t− u)fC(u)Rj(u)du.

Proof. The formulae for f̂B and f̂C are derived directly from Lemma 4.8, and we therefore focus on (4.6).

Let τ∆ := τA − τC . Before time τC , the process (Gu) := (G[κ, µ, θ, τC ]u) can be regarded as an initial

empty M/M/∞ queue with arrival rate κ and service rate θ. Let Rj(u) denote the probability of Gu be-

ing in state j ∈ N when u < τC . Then, by [32, p. 160], we have

Rj(u) = P
(
Gu = j

∣∣∣τC = u
)
=

1

j!
exp

{
−κ

θ

(
1− e−θu

)} [κ
θ

(
1− e−θu

)]j
.

Given τC = u,Gu = j ∈ N+, the probability density function of τ∆ is fBj . Indeed, in the case when τC = u

and Gu = GτC = j, the time spent on depleting the agent’s order and the orders with higher time priority is u

and at that time the volume remaining in the queue is of j unit size. The remaining queue can be described by the

process Bj , and the depletion time τ∆ is thus τBj (with density fBj ). And given τC = u,Gu = 0, we have ∆ = 0

almost surely. Therefore, the mixture density δ(·)R0(u) +
∑∞

j=1 fBj (·)Rj(u), with δ(·) being the Dirac mass,

provides the density of τ∆ given τC = u. Furthermore, the function δ(· − u)R0(u) +
∑∞

j=1 fBj (· − u)Rj(u)(u)

is the density of τA = τ∆ + τC given τC = u. Consequently, for all t > 0, we have

fA(t) = fC(t)R0(t) +

∫ t

0

∞∑
j=1

fBj (t− u)fC(u)Rj(u)du.
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�

5. Existence of Optimal Policy

We now illustrate our main result, namely the existence and uniqueness of the value function, and the

existence of the optimal policy, as in the following theorem.

Theorem 5.1. The value function in (3.5) exists and is unique, and the T-optimal policy in (3.6) exists.

The proof of the theorem relies on several ingredients. In the first place, to make a finite-horizon semi-Markov

model sensible, it is essential to have a (almost surely) finite number of decision epochs before maturity. In our

setting, this is equivalent to the following lemma.

Lemma 5.2. For any (e, λ) ∈ E × T, π ∈ Π, the limit lim
n↑∞

Pπ
(e,λ)(N < n) = 1 holds for N as in Definition 3.7.

Proof. According to [21, Proposition 2.1], it suffices to prove that there exist ζ, υ > 0 such that

(5.1) Q(ζ, E|(e, α)) ≤ 1− υ,

for any (e, α) ∈ K. According to (4.1) and Lemma 4.4, we can write, for any ζ > 0 and (e, α) ∈ K,

Q(ζ, E|(e, α)) = Pπ
(e,λ)(Xn+1 ≤ ζ|En = e,An = α) = P (τBb ∧ τAl ≤ ζ) = 1− P (τBb > ζ)P (τAl > ζ) .

By Assumption 2.6(c), the agent never consumes up all the volumes at the best bid price through her market

order, so that there is at least one unit size order left at the best bid and ask price after the agent’s action. By

stochastic ordering for the birth and death processes [22, Section 3], the inequalities

P (τBb > ζ) ≥ P
(
τB[1,0,µb

j ,θ
b
j ]
> ζ
)
≥ e−ιζ ,

and

P (τAl > ζ) ≥ P (τCl > ζ) ≥ P
(
τC[1,0,µa

j ,θ
a
j ]

> ζ
)
≥ e−ιζ ,

hold with ι := max
{
µs
j + θsj : (s, j) ∈ {a, b} × {+1,−1}

}
, and (5.1) therefore holds for ζ > 0 and υ = e−2ιζ . �

Next, let U denote the Banach space of non-negative valued functions on E × T with finite supremum norm:

U :=

{
u : E × T → R+

0

∣∣∣∣∣ ∥u∥ := sup
(e,λ)∈E×T

|u(e, λ)| < ∞

}
,

and, for any π ∈ Π, define the dynamic programming operator T π acting on U as

T πu(e, λ) := r(e, π(e, λ)) +
∞∑
z=0

w(e, π(e, λ), z)P (z|(e, π(e, λ)), λ) +
∑
ẽ∈E

∫ λ

0

u(ẽ, λ− t)Q
(
dt, ẽ|(e, π(e, λ))

)
,

for any (e, λ) ∈ E × T. The following proposition, as proved in Appendix C, summarises the properties of T π.

Proposition 5.3. For any π ∈ Π, T π is a monotone contraction on U with codomain U , and the identity V π =

T πV π holds on E × T.

Together with Proposition 5.3, the Banach Fixed-Point’s Theorem [18] guarantees the existence and unique-

ness of V π: for any π ∈ Π, if there exists uπ ∈ U satisfying T πuπ = uπ, then uπ = V π. Introduce now the

iteration operator A acting on U as, for any u ∈ U and (e, λ) ∈ E × T,

(5.2) Au(e, λ) := sup
α∈A(e)

{
r(e, α) +

∞∑
z=0

w(e, α, z)P (z|(e, α), λ) +
∑
ẽ∈E

∫ λ

0

u(ẽ, λ− t)Q(dt, ẽ|(e, α))

}
,
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which is also a contraction with codomain U . Indeed, A(U) ⊂ U is immediate since the action space is finite,

and the contraction property is inherited from that of T π by [14, Theorem 2]. The Banach Fixed-Point’s

Theorem for contraction mapping ensures that Au = u has a unique solution, denoted by u∗. Directly from

Proposition 5.3 and [14, Theorem 3], we have u∗ = V ∗. Finally, by [26, Section 1], a T-optimal policy is given

by, for any (e, λ) ∈ E × T,

(5.3) π∗(e, λ) := argmax
α∈A(e)

{
r(e, α) +

∞∑
z=0

w(e, α, z)P (z|(e, α), λ) +
∑
ẽ∈E

∫ λ

0

V ∗(ẽ, λ− t)Q(dt, ẽ|(e, α))

}
.

Theorem 5.1 therefore follows.

6. Empirical studies

Our empirical calculations are based on the ‘Level-I’ LOBSTER data [8, Section 4] for three large-tick stocks:

Microsoft (MSFT), Intel (INTC) and Yahoo (YHOO), that are traded on the Nasdaq platform from 11 April

2016 to 15 April 2016, recording all market order arrivals, limit order arrivals, and cancellations at the best

prices between 9.30am and 4pm. In order to avoid the impact from the abnormal trading behaviours shortly

after market opening or shortly before market closing, we exclude market activities during the first and the last

twenty minutes of each trading day. In the following, we first (Section 6.1) illustrate the estimation methodology

of the Poisson parameters in Assumption 2.4, as well as the joint distribution of the best volumes after a price

change in Assumption 2.2(b). We then (Section 6.2) give a numerical scheme that approximates the value

function. We finally (Section 6.3) visualise the optimal policy for liquidating the stock YHOO under different

trading conditions.

6.1. Parameter estimation.

6.1.1. Poisson parameters. As in Assumption 2.1(a), orders from the general market participants are of unit

size. We first compute the average size of the market orders, limit orders and cancellations at the best prices,

denoted by Sm, Sl and Sc respectively, and choose the unit size to be Sl. Estimation results are given in Table 2.

MSFT INTC YHOO

Sm 140 188 152

Sl 176 317 209

Sc 163 309 201

Table 2. average order size (in shares)

We then estimate the Poisson parameters as follows. From historical data, we formulate the set Q+1

(resp. Q−1) as the queueing races happening immediately after a price increase (resp. decrease): if the spread

is currently one tick, a queueing race q+1 ∈ Q+1 (resp. q−1 ∈ Q−1) starts when the best bid (resp. ask) price

increases (resp. decreases) by one tick after the best ask (resp. bid) queue depletes, and ends whenever either

the new best ask or bid queue depletes. By maximum likelihood estimation (see Appendix E), we have

(6.1) µ̂s
j =

Nm
s,j

Dj

Sm

Sl
, κ̂s

j =
N l

s,j

Dj
, θ̂sj =

N c
s,j

Vs,j

Sc

Sl
, for s ∈ {a, b} and j ∈ {+1,−1},

where
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• Nm
s,j , N

l
s,j and N c

s,j represent the total number of market orders, limit orders and cancellations at s

price7 for the queueing races in set Qj ;

• Dj represents the sum of the length of the queueing races in Qj ;

• Vs,j :=

#Qj∑
i=1

∫
Ti

Volsi (t)dt, where Volsi (t) (resp. Ti) denotes the volume in unit size at s price at time t

(resp. the time interval) of the i-th queuing race in Qj .

Table 3 gives the Poisson parameter estimation where the agent’s action at each decision epoch has no latency.

For the three stocks, we find that:

• the rates of market order arrivals are indifferent to the side of the best price and the price move direction;

• immediately after a price increase (resp. decrease), there is a surge of limit order arrivals and cancella-

tions at the best bid (resp. ask) price;

• from an estimation (of the Poisson parameters) point of view, an increase of the price on the bid (resp.

ask) side is symmetric to a decrease of price on the ask (resp. bid) side.

Table 4 gives the Poisson parameter estimation where the agent’s action at each decision epoch has a one-

millisecond latency8. By comparing it with Table 3, we observe that:

• the rates of market order arrivals barely change;

• the rates of limit order arrivals and cancellations see a decrease, especially on the bid side after a price

increase and on the ask side after a price decrease;

• the symmetry remains unaffected.

MSFT INTC YHOO

s j µ κ θ µ κ θ µ κ θ

a +1 0.42 3.08 0.31 0.20 2.45 0.16 0.19 1.97 0.26

b +1 0.40 5.83 0.50 0.23 3.54 0.20 0.20 3.45 0.31

a -1 0.44 5.84 0.51 0.24 3.82 0.22 0.19 3.21 0.33

b -1 0.42 3.07 0.31 0.23 2.22 0.16 0.21 1.93 0.21

Table 3. Poisson parameter estimation with no latency

MSFT INTC YHOO

s j µ κ θ µ κ θ µ κ θ

a +1 0.42 2.89 0.27 0.20 2.36 0.15 0.19 1.87 0.23

b +1 0.39 3.31 0.40 0.23 2.36 0.17 0.20 2.08 0.25

a -1 0.42 3.22 0.41 0.24 2.48 0.18 0.18 1.82 0.27

b -1 0.42 2.87 0.27 0.23 2.14 0.14 0.21 1.83 0.18

Table 4. Poisson parameter estimation with 1ms latency

7By abuse of language, ‘at a (resp, b price)’ means ‘at the best ask (resp. bid) price’.
8When estimating the Poisson parameters in this case, market activities at the first one millisecond of each queueing race are

excluded, and the queueing races with duration shorter than one millisecond are excluded.
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6.1.2. Volume distribution after a price change. The volume in unit size is approximated by rounding the

division of the volume in shares by Sl up to the nearest integer. Figure 1 compares the volume distribution

immediately after a price change and one millisecond later for YHOO. We observe that:

• the volume at the best bid (resp. ask) price is quite thin immediately after a price increase (decrease),

but see a dramatic increase one millisecond later;

• the volume at the best ask (resp. bid) price keeps the distribution almost unchanged within the first

millisecond of the queueing race starting with a price increase (resp. decrease).
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Figure 1. YHOO: f+1 (left) and f−1 (right) with no latency (top) and with 1ms latency (bottom)

6.2. Numerical scheme. Dynamic programming techniques usually suffer from the ‘curse of dimensional-

ity’ [30] to compute the value function through the iteration operator A in (5.2). The next proposition, as

proved in Appendix D, allows us to reduce the dimension of the problem, and hence to accelerate the imple-

mentation.
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Proposition 6.1. Given e := (j, vb, va, p, z, y) ∈ E, e := (j, vb, va, p, z, y) ∈ E and λ ∈ T, we have

V ∗(e, λ) = V ∗(e, λ) + ρ(p− p)(y + z) + ρ(z − z)(p− j).

Besides, the value function V ∗ is monotone with respect to time to maturity. Indeed, let π∗ be T-optimal

and construct a policy πδ, for fixed δ ∈ (0, T ), as

πδ(e, λ) :=

{
π∗(e, λ+ δ), if λ ≤ T − δ,

(0, 0), if λ > T − δ.

Definition 3.10 immediately implies that V πδ

(e, λ) ≤ V ∗(e, λ) for any (e, λ) ∈ E×T and V πδ

(e, λ) = V ∗(e, λ−δ)

for any (e, λ) ∈ E × [δ, T ]. The monotonicity in time to maturity therefore follows since δ is arbitrary. As

in [24, 27], we can take advantage of the monotonicity of the value function to get a faster convergence rate.

The implementation procedure proceeds as follows, for some tolerance level tol:

Step 1. (initialization): let n = 0 and V0(e, λ) = ρ(p− 1)y + λρy/T for every (e, λ) ∈ E × T;
Step 2. (iteration): choose a random pair (en, λn) ∈ E × T and compute V̂n := AVn(en, λn);

Step 3. (correction): with Ûn := γV̂n + (1− γ)Vn(en, λn) for γ ∈ (0, 1), define the monotonicity projection as:

Vn+1(e, λ) =


Ûn, if e = en, λ = λn,

Ûn ∨ Vn(e, λ), if e = en, λ > λn,

Ûn ∧ Vn(e, λ), if e = en, λ < λn,

Vn(e, λ), if e ̸= en;

Step 4. (accuracy control): if ∥Vn+1−Vn∥≤ tol, end the scheme; otherwise go to Step 2 incrementing n to n+1.

6.3. Optimal policy. In this section, we provide the results of the optimal policy computed through For-

mula (5.3) in which the value function is approximated through the numerical scheme in Section 6.2. Figure 2

and 3 illustrate how different market conditions (time to maturity, latency, price move direction, volumes at the

best prices) can affect the agent’s optimal action (expressed by different colours). We find that posting limit

order tends to be prefered when there is more time to maturity, when there is less latency, after a price decrease

or when the best ask price has less volume relative to the best bid price.
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Figure 2. Impact of latency (top: no latency; bottom: 1ms latency) and price move direction

(left: j = −1; right: j = 1) when fixing inventory y = 2 and time to maturity λ = 10.

Appendix A. Proof of Proposition 4.5

In Scenario [S1], the agent posts a limit order at the best ask price (l ≥ 1), and the best ask queue is depleted

before the best bid queue (j̃ = +1). Hence,

• the execution time of the best ask queue is less than that of the best bid queue;

• the limit order posted by the agent must get fully executed in the queueing race;

• the duration of the queueing race is the depletion time of the best ask queue.



20 ANTOINE JACQUIER AND HAO LIU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ask Volume (unit size)

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
B

id
 V

ol
um

e 
(u

ni
t s

iz
e)

(0 1)

(0 0)

(1 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ask Volume (unit size)

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
B

id
 V

ol
um

e 
(u

ni
t s

iz
e)

(0 1)

(0 0)

(1 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ask Volume (unit size)

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
B

id
 V

ol
um

e 
(u

ni
t s

iz
e)

(0 1)

(0 0)

(1 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ask Volume (unit size)

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
B

id
 V

ol
um

e 
(u

ni
t s

iz
e)

(0 1)

(0 0)

(1 0)

Figure 3. Impact of time to maturity (top: λ = 3; bottom: λ = 10) and price move direction

(left: j = −1; right: j = 1) when fixing inventory y = 1 and 1ms latency.

Therefore, we can write

Qj,v,α

(
t, j̃, z̃

)
= P

(
Xn+1 ≤ t, Jn+1 = +1

∣∣∣Jn = j, (V b
n , V

a
n ) = (vb, va), An = α

)
P
(
Zn+1 = z̃

∣∣∣Jn+1 = +1, Ln = l
)

= P (τBb > τAl , τAl ≤ t) 11{z̃=l} =

{
FAl(t)−

∫ t

0

fAl(u)FBb(u)du

}
11{z̃=l}.

In Scenario [S2], the agent posts no limit order at the best ask price (l = 0). The dynamics of best ask queue

can be then described by the process Ba, independent of that of the best bid queue. The proof is similar to

that in Scenario [S1].

In Scenario [S3], the agent posts a limit order at the best ask price (l ≥ 0), and the best bid queue is depleted

before the best ask queue (j̃ = −1), while the agent’s limit order gets no execution (z̃ = 0). Hence,
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• the execution time of the best bid queue is less than that of one unit size of the agent’s limit order

together with the limit orders with higher time priority at the best ask price, and is therefore less than

that of the entire best ask queue;

• the duration of the queueing race is the depletion time of the best bid queue.

We then have

Qj,v,α

(
t, j̃, z̃

)
= P

(
Xn+1 ≤ t, Zn+1 = 0

∣∣∣Jn = j, (V b
n , V

a
n ) = (vb, va), An = α

)
P (Jn+1 = −1|Ln = l, Zn+1 = 0)

= P (τC1 > τBb , τBb ≤ t) = FBb(t)−
∫ t

0

fBb(u)FC1(u)du.

In Scenario [S4], the agent posts a limit order of one unit size at the best ask price (l = 1), the best bid queue

is depleted before the best ask queue (j̃ = −1) and the agent’s limit order gets executed (z̃ = 1). According to

Remark 4.2, we have Qj,v,α

(
t, j̃, {0, 1}

)
= Qj,v,α

(
t, j̃, 0

)
+Qj,v,α

(
t, j̃, 1

)
, so that

Qj,v,α (t,−1, 1) = P
(
Xn+1 ≤ t, Jn+1 = −1

∣∣∣Jn = j, (V b
n , V

a
n ) = (vb, va), An = (m, 1)

)
−Qj,v,α (t,−1, 0)

= P (τA1 > τBb , τBb ≤ t)−Qj,v,α (t,−1, 0)

= FBb(t)−
∫ t

0

fBb(u)FA1(u)du−
[
FBb(t)−

∫ t

0

fBb(u)FC1(u)du

]
=

∫ t

0

fBb(u) [FC1(u)− FA1(u)] du.

In Scenario [S5], the best bid queue is depleted before the best ask queue (j̃ = −1), while z̃ ∈ {1, . . . , l − 1}
out of l > 1 unit size of the agent’s limit order gets executed when this queueing race terminates. Hence,

• the execution time of the best bid queue lies within the interval [τCz̃ , τCz̃ +∆), where ∆ is the execution

time of one unit size of the agent’s limit order when at the top of the queue, which is exponentially

distributed with parameter µa
j and is independent of τCz̃ ;

• the duration of the queueing race is the depletion time of the best bid queue.

We then have

Qj,v,α

(
t, j̃, z̃

)
= P

(
Xn+1 ≤ t, Zn+1 = z̃

∣∣∣Jn = j, (V b
n , V

a
n ) = (vb, va), An = α

)
P (Jn+1 = −1|La

n = l, Zn+1 = z̃)

= P
(
τCz̃ ≤ τBb < τCz̃ + ∆, τBb ≤ t

)
=

∫ ∞

0

∫ ∞

0

P (τBb ∈ [u, u+ ν), τBb ≤ t) fCz̃ (u)P(∆ ∈ dν)dudν

=

∫ t

0

∫ t−u

0

[FBb(u+ ν)− FBb(u)] fCz̃ (u)P(∆ ∈ dν)dνdu+

∫ t

0

∫ ∞

t−u

[FBb(t)− FBb(u)] fCz̃ (u)P(∆ ∈ dν)dνdu

= µa
j

∫ t

0

eµ
a
j ufCz̃ (u)

(∫ t

u

e−µa
j ϵFBb(ϵ)dϵ

)
du+ e−µa

j tFBb(t)

∫ t

0

eµ
a
j ufCz̃ (u)du−

∫ t

0

FBb(u)fCz̃ (u)du

= µa
j

∫ t

0

F ∗
Bb(ϵ)

∫ ϵ

0

f∗
Cz̃ (u)dudϵ+

∫ t

0

[F ∗
Bb(ϵ)]

′
∫ ϵ

0

f∗
Cz̃dudϵ

=

∫ t

0

f∗
Bb(ϵ)

∫ ϵ

0

f∗
Cz̃ (u)du dϵ

where f∗
Cz (ξ) := eµ

a
j ξfCz (ξ), f∗

Bb(ξ) := e−µa
j ξfBb(ξ) and F ∗

Bb(ξ) := e−µa
j ξFBb(ξ) for any ξ ≥ 0 and z ∈ N+.
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Finally, in Scenario [S6], according to Remark 4.2, for
(
j, vb, va, α

)
∈ K′ such that l > 1, we have

Qj,v,α (t,−1, {0, 1, . . . , l}) = Qj,v,α (t,−1, 0) +
l−1∑
z=1

Qj,v,α (t,−1, z) +Qj,v,α (t,−1, l) ,

which yields the result by using [S3] and [S5].

Appendix B. Proof of Proposition 4.6

If l = 0 and z = 0, then P (z|(e, α), λ) = P (τBb ∧ τBa > λ) = P (τBb > λ)P (τBa > λ) = FBb(λ)FBa(λ).

If l ≥ 1 and z = 0, then P (z|(e, α), λ) = P (τBb ∧ τAl > λ, τC1 > λ) = P (τBb > λ)P (τC1 > λ) = FBb(λ)FC1(λ).

If l > 1 and z ∈ {1, . . . , l − 1}, then

P (z|(e, α), λ) = P (τBb ∧ τAl > λ, τCz + Ξ > λ ≥ τCz) = P (τBb > λ)P (τCz + Ξ > λ ≥ τCz)

= P (τBb > λ)P
[
1− P (τCz > λ)− P (τCz + Ξ ≤ λ)

]
= FBb(λ) [FCz(λ)− (FCz ∗ FΞ) (λ)] .

If l ≥ 1 and z = l, then

P (z|(e, α), λ) = P (τBb ∧ τAl > λ, τCl ≤ λ) = P (τBb > λ)P (τAl > λ ≥ τCl)

= P (τBb > λ)
[
1− P (τCl > λ)− P (τAl ≤ λ)

]
= FBb(λ) [FCl(λ)− FAl(λ)] .

According to Remark 3.2, the terminal kernel has zero value in all other scenarios.

Appendix C. Proof of Proposition 5.3

For any π ∈ Π and u ∈ U , we have

∥T πu∥≤ sup
(e,λ)∈E×T

|r(e, π(e, λ))|+ sup
(e,λ)∈E×T
z∈{0,...,l̄}

|w(e, π(e, λ), z)|+ sup
(e,λ)∈E×T

∣∣∣∣∣∑
ẽ∈E

∫ λ

0

u(ẽ, λ− t)Q
(
dt, ẽ|(e, π(e, λ))

)∣∣∣∣∣ .
The first two terms are bounded since the state space E and the action space A are finite. Regarding the last

term, Lemma 5.2 yields

sup
(e,λ)∈E×T

∣∣∣∣∣∑
ẽ∈E

∫ λ

0

u(ẽ, λ− t)Q
(
dt, ẽ|(e, π(e, λ))

)∣∣∣∣∣ ≤ ∥u∥ sup
(e,λ)∈E×T

∣∣∣∣∣∑
ẽ∈E

∫ λ

0

Q
(
dt, ẽ|(e, π(e, λ))

)∣∣∣∣∣
= ∥u∥ sup

(e,λ)∈E×T
Q
(
λ, E|(e, π(e, λ))

)
≤ ∥u∥ sup

λ∈T
(1− e−2ιλ) = ∥u∥(1− e−2ιT ) < ∞,

so that the codomain of T π is U . The contraction property follows directly from (5.1), since the inequality

∥T πu− T πv∥ ≤ (1− e−2ιT )∥u− v∥ holds for all u, v ∈ U , and the monotonicity follows from the properties of
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the semi-Markov kernel. Finally, from (3.7) and Theorem 3.9, we can write, for any (e, λ) ∈ E × T,

V π(e, λ) =
∞∑

n=0

Eπ
(e,λ)

[
r(En,An)11{Λn≥0} + w(En,An,Z)11{0≤Λn<Xn+1}

]
= Eπ

(e,λ)

[
r(E0,A0)11{Λ0≥0} + w(E0,A0,Z)11{0≤Λ0<X1}

]
+

∞∑
n=1

Eπ
(e,λ)

[
r(En,An)11{Λn≥0} + w(En,An,Z)11{0≤Λn<Xn+1}

]
= Eπ

(e,λ)

[
Eπ
(e,λ)

[
r(E0,A0)11{Λ0≥0} +

∞∑
z=0

w(E0,A0, z)11{0≤Λ0<X1,Z=z}

∣∣∣H0

]]

+

∞∑
n=1

Eπ
(e,λ)

[
Eπ
(e,λ)

[
r(En,An)11{Λn≥0} + w(En,An,Z)11{0≤Λn<Xn+1}

∣∣∣H1,
]]

= r(e, π(e, λ)) +
∞∑
z=0

w(e, π(e, λ), z)P (z|(e, π(e, λ)), λ)

+
∞∑

n=1

Eπ
(e,λ)

[
Eπ
(E1,Λ1)

[
r(En−1,An−1)11{Λn−1≥0} + w(En−1,An−1,Z)11{0≤Λn−1<Xn}

]]
= r(e, π(e, λ)) +

∞∑
z=0

w(e, π(e, λ), z)P (z|(e, π(e, λ)), λ) + Eπ
(e,λ) [V

π(E1,Λ1)]
)

= r(e, π(e, λ)) +
∞∑
z=0

w(e, π(e, λ), z)P (z|(e, π(e, λ)), λ) +
∑
ẽ∈E

∫ λ

0

V π(ẽ, λ− t)Q
(
dt, ẽ|(e, π(e, λ))

)
.

Appendix D. Proof of Proposition 6.1

Let i := (0, 0, 0, 1, 0, 0) and k := (0, 0, 0, 0, 1, 0), so that e = e+∆pi+∆zk, where ∆p = p−p and ∆z := z−z.

Define further ê := e+∆zk. According to Proposition 5.3 and [14, Theorem 3], we can write

(D.1) V ∗(ê, λ) = AV ∗(ê, λ) = V ∗(e, λ) + ρ∆z(p− j).

With the auxiliary function u(e, λ) := V ∗(e−∆pi, λ) + ρ∆p(y + z) for (e, λ) ∈ E × T, simple calculations yield

Au(e, λ) = u(e, λ) for any (e, λ) ∈ E × T, and Theorem 5.1 implies that V ∗(e, λ) = V ∗(ê, λ) + ρ∆p(y + z).

Combining this with (D.1) finishes the proof.

Appendix E. Maximum Likelihood Estimation for the Poisson Parameters

Fix s ∈ {a, b}, j ∈ {+1,−1} and denote the Poisson parameters µs
j , κ

s
j , θ

s
j by µ, κ, θ respectively. Introduce

the auxiliary parameters µ′ := µSl/Sm and θ′ := θSl/Sc. Suppose we observe li times of limit order arrivals,

mi times of market order arrivals and ci times of cancellations on the s side in the i-th queueing race, whose

starting time is τi, duration is di and the volume in unit size at s price at time t is Voli(t), for i ∈ {1, . . . ,#Qj}.
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The likelihood functions are then constructed as:

L
(
µ′ : m1, . . . ,m#Qj , d1, . . . , d#Qj

)
:=

#Qj∏
i=1

(µ′di)
mi

mi!
e−µ′di ,

L
(
κ : l1, . . . , l#Qj , d1, . . . , d#Qj

)
:=

#Qj∏
i=1

(κdi)
li

li!
e−κdi ,

L
(
θ′ : c1, . . . , c#Qj ,Θ(d1), . . . ,Θ(d#Qj )

)
:=

#Qj∏
i=1

Θ(di)
ci

ci!
e−Θ(di),

where Θ(di) := θ′
∫ τi+di

τi
Voli(t)dt. Taking logarithms, and cancelling the derivatives yield the optima (6.1) with

Nϖ
s,j =

#Qj∑
i=1

ϖi, for ϖ ∈ {m, l, c} Ds,j =

#Qj∑
i=1

di, Vs,j =

#Qj∑
i=1

∫ τi+di

τi

Voli(t)dt.
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