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1 Introduction

For any fixed evaluation time t, we consider a Forward-Start call option (origi-
nally introduced by Rubinstein [16]) with forward-start date s > t and maturity
T > s, written on some underlying stock price process S; the particular feature
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of this option is that it allows the holder to receive, at the future time s and
at no additional cost, a standard European Call option expirying at T , with
strike set to KSs, for some K > 0. Classical occurrences of Forward-Start op-
tions include for example employee stock options and cliquet options [16]. In
the Black-Scholes formula, stationarity of the increments implies, by a simple
conditional expectation argument, that the Forward-Start option corresponds
exactly to a plain Call option with time to maturity T − s. This is not true
any longer for general stochastic volatility models, though, and the resetting at
the forward-start date makes the whole analysis a lot more subtle. Lucic [12]
and Musiela and Rutkowski [14, I.7.1.10] applied a change-of-measure argu-
ment to relate the price of a Forward-Start option to that of a standard Call
option, albeit with a randomised starting volatility. Pricing formulae based on
the knowledge of the characteristic function–hence mainly applicable to affine
models, in the sense of [3]–were derived by Kruse and Nögel [11] and by Guo
and Hung [5].

Because of this resetting feature, the implied volatility of Forward-Start
options is substantially different from the usual vanilla smile. In a series of
papers, Jacquier and Roome [7, 8, 9] studied these specificities, and conducted
a thorough analysis in the case of the Heston model. They in particular singled
out the explosive nature of the forward smile as the remaining maturity becomes
small. Their analysis was based on the knowledge of the characteristic function
of the underlying process, and the asymptotic behaviour thereof. Recently,
Mazzon and Pascucci [13] took over the topic and proved an approximation
of the out-of-the-money forward smile in multi-factor local stochastic volatility
models, using expansions for parabolic equations. We concentrate here on the
at-the-money (ATM) case, and characterise the short-time limit of the forward
implied volatility, its skew and its curvature, for general Markovian stochastic
volatility models with continuous paths. Using Malliavin Calculus techniques,
we show that–contrary to the classical Vanilla case–the ATM short-time level is a
direct function of the correlation between the underlying and its instantaneous
volatility. The at-the-money skew depends of the Malliavin derivative of the
volatility process, in a similar way as for Vanilla options, but the curvature
decays at the speed O(T − s).

In Section 2, we introduce Forward-Start options and the main notations
used throughout the paper, and prove a decomposition formula for the option
price, which we use in Section 3 to compute the asymptotic behaviour of the at-
the-money implied volatility level, skew and curvature. We apply these formulae
in Section 4 to a generalised version of the Stein-Stein stochastic volatility model,
and postpone the proofs of the main results to Section A.
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2 Forward-Start options and the decomposition
formula

We consider a generic stochastic volatility model over a finite time horizon [0, T ],
solution to the stochastic differential equation

dXt =

(
r − 1

2
σ2
t

)
dt+ σt

(
ρdW ∗

t +
√

1− ρ2B∗
t

)
, (1)

where r is the instantaneous interest rate (assumed constant), W ∗ and B∗ are
independent standard Brownian motions on a given probability space (Ω,F ,P∗)
and σ is a positive, square-integrable process, adapted to the filtration generated
by W ∗. Here, X denotes the logarithm of a stock price, and we consider the dy-
namics (1) directly under a given risk-neutral probability measure P∗. We shall
denote by FW∗

and FB∗
the filtrations generated by W ∗ and B∗, and define

F := FW∗ ∨FB∗
. We are interested here in computing the price of a Forward-

Start option, the payoff of which, at maturity T , is equal to
(
eXT − eαeXs

)
+
,

where s ∈ [0, T ] is the forward-start date and α ∈ R the log-forward moneyness.
This is usually called Type-II Forward-Start, and we refer the reader to [12]
for details about Type-I and the symmetries between both types. Classical
no-arbitrage arguments yield that the price at inception t ≤ s is given by

Vt = e−r(T−t)E∗
t

(
eXT − eαeXs

)
+
, (2)

where E∗ denotes the conditional expectation under P∗ given Ft. If t ≥ s, this is
simply a standard European Call option evaluated during the life of the contract.
We shall denote by BS(t, x,K, σ) := exN (d+) − e−r(T−t)KN (d−) the price of
a European call option in the Black-Scholes model with constant volatility σ,
current log-stock price x, time to maturity T − t, strike K and interest rate r.
Here N is the Gaussian cumulative distribution function, and

d± :=
x− lnK + r(T − t)

σ
√
T − t

± σ

2

√
T − t.

The corresponding Black-Scholes differential operator (in the log variable) is
denoted by

LBS(σ) := ∂t +
σ2

2
∂2
xk +

(
r − σ2

2

)
∂x − r,

so that in particular LBS (σ) BS (·, ·;K,σ) = 0. The inverse of BS with respect
to volatility shall be denoted by BS−1(·) := BS−1(t, x,K, ·), while α∗ := r(T−s)
represents the at-the-money forward log-moneyness, which will be a quantity of
particular interest. We will finally make heavy use of the following two functions:

G(t, x,K, σ) := (∂2
xk − ∂x)BS(t, x,K, σ) and H(t, x,K, σ) := ∂xG(t, x,K, σ).
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We introduce the strike-adjusted forward process

Mt := E∗
t

(
eαeXs

)
= eα+rs+X0 +

∫ t

0

σu11[0,s](u)e
α+Xuer(s−u)

(
ρdW ∗

u +
√

1− ρ2dB∗
u

)
= M0 + eα

∫ t∧s

0

σue
r(s−u)eXu

(
ρdW ∗

u +
√
1− ρ2dB∗

u

)
,

as well as the realised volatility vt :=
√

Yt/(T − t), with Yt :=
∫ T

t∨s
σ2
udu. No-

tice that, if t < s, vt
√
T − t = vs

√
T − s. In order to prove our main results, we

consider the following hypotheses, ensuring both a unique strong solution to (1)
and regularity of the solution in the Malliavin sense:

(H1) σ is bounded below and above almost surely by strictly positive constants.
(H2) Both σ and σeX belong to L2,2 ∩ L1,4.

The space Lp,q is the classical space on which processes are q times Malliavin
differentiable in Lp. We refer the reader to [15, Section 1.2] for full details. We
are now in a position to prove the following decomposition theorem, which
identifies the impact of correlation on the price of Forward-Start options. To

do so, let us introduce the auxiliary process ΛW∗

u :=
∫ T

u∨s
DW∗

u σ2
θdθ, for u ∈

[0, T ], where DW∗

u denotes the Malliavin derivative with respect to the Brownian
motion W ∗. One of the main results of this paper is the following decomposition
theorem, the proof of which is postponed to Section A.1.

Theorem 1 Under (H1) and (H2), for all 0 ≤ t ≤ s ≤ T ,

Vt = E∗
t

[
eXtBS (s, 0, eα, vs) +

ρ

2

∫ T

s

e−r(u−t)H(u,Xu,Mu, vu)σuΛ
W∗

u du

+
ρ

2
G(s, 0, eα, vs)

∫ s

t

e−r(u−t)eXuσuΛ
W∗

u du
]
.

Hypotheses (H1) and (H2) are stated here mainly for simplicity, and the
theorem, as can be seen through its proof, still holds under suitable integra-
bility conditions. In the case t = s, the Forward-Start option reduces to a
standard European Call option, and we recover precisely the decomposition for-
mula proved in [1]. If the volatility process is constant, equal to some σ > 0,
then vs = σ, ΛW = 0 almost surely, and, for t ≤ s,

Vt = eXtBS (s, 0, eα, σ) , (3)

which is the classical Forward-Start option price in Black-Scholes [16, 18].

3 At-the-money behaviour of the short-maturity
forward smile

We now delve into the core of our analysis, and use Theorem 1 to deduce the
precise short-maturity behaviour of the at-the-money forward implied volatility
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smile, its skew and its curvature. For t ∈ [0, s], we define the forward implied
volatility I(t, s;α) as the unique non-negative solution to the equation

Vt = eXtBS (s, 0, eα, I(t, s;α)) . (4)

Obviously, in the constant volatility case σu = σ > 0, so that I(t, s;α) = σ. In
order to streamline the presentation of the results, we introduce the following
quantity, which will appear several times:

Et,s :=
e−Xt

2
E∗
t

(
1

σs

∫ s

t

e−r(u−t)eXuσu

(
DW∗

u σ2
s

)
du

)
(5)

3.1 At-the-money smile

The following theorem, with proof relegated to Section A.2, provides the short-
maturity behaviour for the ATM forward smile.

Theorem 2 Under (H1)-(H2), for all t < s,

lim
T↓s

I(t, s;α∗) = E∗
t (σs) + ρEt,s.

Perhaps not surprisingly, in the uncorrelated case, the short-maturity ATM
smile is given uniquely as the expectation of the future instantaneous volatil-
ity. The correlation parameter acts as a correction term around this level. In
the Vanilla case s = t, the theorem recovers exactly the behaviour proved by
Durrleman [4]. For practical purposes, the integral and the expectation can be
computed in most (continuous Markovian) models used in financial practice.
We shall highlight in Section 4 how this looks like exactly in the case of the
Stein-Stein stochastic volatility model.

3.2 At-the-money skew

The at-the-money level of the forward smile is directly observable. From a
trader’s point of view, the skew, i.e. the derivative of the implied volatility with
respect to the (log) moneyness, is a key tool indicating the level of the Put-Call
asymmetry. Consider now the additional hypothesis regarding the regularity of
the volatility process:

(H3) There exist C > 0, δ ≥ 0, such that, for all t ≤ θ < u < r,

E∗
t

[(
DW∗

u σr

)2]
≤ C(r − u)2δ and E∗

t

[(
DW∗

u DW∗

u σr

)2]
≤ C

(
r − u

r − θ

)2δ

.

The small-maturity at-the-money forward skew is provided in the following the-
orem, proved in Section A.3.
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Theorem 3 Under (H1)-(H2)-(H3), assume that there exists a Fs-measurable
random variable σs such that

lim
T↓s

E∗
s

[
sup

s≤u≤θ≤T
E∗
u

(
DW∗

u σ2
θ − σ2

s

)4]
= 0. (6)

Then, for all s < t,

lim
T↓s

∂I

∂α
(t, s;α∗) =

ρe−r(s−t)

4eXt
E∗
t

(
eXs

σ2
s

σ2
s

)
.

In the Vanilla case t = s, this formula agrees with the at-the-money short-
time limit skew proved in [2]. Before proving the theorem, let us state the
following, short yet useful, result:

3.3 At-the-money curvature

We now concentrate our attention to the at-the-money curvature ∂2I
∂α2 (t, s;α

∗)
of the forward smile.

Theorem 4 Under (H1) and (H2), for all 0 ≤ t ≤ s ≤ T ,

lim
T↓s

(T − s)
∂2I

∂α2
(t, s;α∗) =

1

4
E∗
t

[∫ s

t

E∗
u

(
DW∗

u σ2
s

σs

)2
du

E∗
u(σs)3

]

+
1

E∗
t (σs)

− 1

E∗
t (σs) + ρEt,s

− ρ

2
e−XtE∗

t

(
1

σ3
s

∫ s

t

e−r(u−t)eXuσu

(
DW∗

u σ2
s

)
du

)
.

4 Example: the extended Stein-Stein model

The above formulae for the at-the-money forward implied volatility level, skew
and curvature look daunting. However, we emphasise here, through an example
widely used in practice, that they are in fact fully explicit. Consider a stochastic
volatility model of the form σ = f(Y ), for some f ∈ C1,2(R) where Y is an
Ornstein-Uhlenbeck process of the form

dYt = κ(m− Yt)dt+ λdW ∗
t , Y0 ∈ R, (7)

for some positive constants κ, m and λ. When σ(y) ≡ y, this model is nothing
else than the Stein-Stein stochastic volatility model [17], and the function f(·)
allows for greater flexibility. For any t ≤ s, we can then write

Ys = Yte
−κ(s−t) +m

(
1− e−κ(s−t)

)
+ λ

∫ s

t

e−κ(s−r)dW ∗
r

=: g(t, s) + λ

∫ s

t

e−κ(s−r)dW ∗
r ,
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from which we deduce DW∗

t Ys = λe−κ(s−t). Theorem 2 then applies with

Et,s = λe−XtE∗
t

[
f ′(Ys)

∫ s

t

e−r(u−t)eXuf(Yu)e
−κ(s−u)du

]
.

On the other hand, Theorems 3 and 4 yield

lim
T↓s

∂I

∂α
(t, s;α∗) =

ρλe−r(s−t)

2eXt
E∗
t

(
eXsf ′(Ys)

f(Ys)

)
lim
T↓s

(T − s)
∂2I

∂α2
(t, s;α∗) = λ2E∗

t

(∫ s

t

e−2κ(s−u)E∗
u (f

′(Ys))
2

E∗
u (f(Ys))

3 du

)

+
1

E∗
t (f(Ys))

− 1

E∗
t (f(Ys)) + ρEt,s

− ρE∗
t

(
Et,s

f(Ys)2

)
.

In the standard Stein-Stein case, where f(y) ≡ y (this function does not exactly
satisfy the regularity assumptions, but we assume it for practical purposes in
this example), we can make these computations more explicit, as f ′(y) = 1,

Et,s = λe−XtE∗
t

[∫ s

t

e−r(u−t)eXuYue
−κ(s−u)du

]
,

E∗
t (f(Ys)) =

∫
R
f

zλ

√∫ t

s

e−2κ(s−r)dr + g(t, s)

ϕ(z)dz = g(t, s),

where ϕ is the Gaussian density, so that

lim
T↓s

I(t, s;α∗) = g(t, s) + ρEt,s,

lim
T↓s

∂I

∂α
(t, s;α∗) =

ρλe−r(s−t)

2eXt
E∗
t

(
eXs

Ys

)
,

lim
T↓s

(T − s)
∂2I

∂α2
(t, s;α∗) = λ2E∗

t

(∫ s

t

e−2κ(s−u)

g(u, s)3
du

)
+

1

g(t, s)
− 1

g(t, s) + ρEt,s
− ρE∗

t

(
Et,s
Y 2
s

)
.

A Proofs

A.1 Proof of Theorem 1

Since the process M is a martingale, we can write

Vt = e−r(T−t)E∗
t

(
eXT − eαeXs

)
+
= e−r(T−t)E∗

t

(
eXT −MT

)
+
= e−r(T−t)BST ,
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where we denote BST := BS(T,XT ,MT , νT ) for clarity in the next few pages.
The anticipating Itô’s formula for the Skorohod integral [15, Theorem 3.2.2] yields

E∗
t

(
e−rTBS(T,XT ,MT , vT )

)
= E∗

t

[
e−rtBSt − r

∫ T

t

e−ruBSudu+

∫ T

t

e−ru∂uBSudu+

∫ T

t

e−ru∂σBSu

(
r − σ2

u

2

)
du

+
1

2

∫ T

t

e−ru∂2
xxBSuσ

2
udu+

∫ T

t

e−ru∂2
xKBSud⟨X,M⟩u

+
1

2

∫ T

t

e−ru∂2
KKBSud⟨M,M⟩u +

1

2

∫ T

t

e−ru
(
∂2
xk − ∂x

)
BSu

(
v2u − σ2

u11]s,T ](u)
)
du

+
1

2

∫ T

t

e−ru ∂

∂x

(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ T

t

e−ru∂K
(
∂2
xk − ∂x

)
BSuσue

αer(s−u)eXuρΛW∗

u 11[0,s](u)du
]
.

That is, since t ≤ s,

Vt = E∗
t

[
BS(t,Xt,Mt, vt) +

∫ T

t

e−r(u−t)LBS (vu) BSudu

+
1

2

∫ T

t

e−r(u−t)
(
∂2
xk − ∂x

)
BSu

(
σ2
u − v2u

)
du+

∫ T

t

e−r(u−t)∂2
xKBSud⟨X,M⟩u

+
1

2

∫ T

t

e−r(u−t)∂2
KKBSu)d⟨M,M⟩u +

1

2

∫ T

t

e−r(u−t)
(
∂2
xk − ∂x

)
BSu

(
v2u − σ2

u11]s,T ](u)
)
du

+
1

2

∫ T

t

e−r(u−t)∂x
(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ s

t

e−r(u−t)∂K
(
∂2
xk − ∂x

)
BSuσue

αer(s−u)eXuρΛW∗

u du
]
.

Thus, we get, for t ≤ s,

Vt = E∗
t

[
BSt +

∫ T

t

e−r(u−t)LBS (vu) BSudu

+
1

2

∫ T

t

e−r(u−t)
(
∂2
xk − ∂x

)
BSu

(
σ2
u − σ2

u11]s,T ](u)
)
du

+

∫ T

t

e−r(u−t)∂2
xKBSud⟨X,M⟩u +

1

2

∫ T

t

e−r(u−t)∂2
KKBSud⟨M,M⟩u

+
1

2

∫ T

t

e−r(u−t)∂x
(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ s

t

e−r(u−t)∂K
(
∂2
xk − ∂x

)
BSuσue

αer(s−u)eXuρΛW∗

u du
]
.
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Now, taking into account the identities LBS (vu) BSu = 0 and

d⟨M,X⟩u = σ2
ue

αer(s−u)eXu11[0,s](u)du, ∂2
xKBS = − 1

K

(
∂2
xk − ∂x

)
BS,

d⟨M,M⟩u = σ2
ue

2αe2r(s−u)e2Xu11[0,s](u)du, ∂2
KKBS =

1

K2

(
∂2
xk − ∂x

)
BS,

with BS evaluated at (t, x,K, σ). It follows that

Vt = E∗
t

[
BS(t,Xt,Mt, vt) +

1

2

∫ T

t

e−r(u−t)∂x
(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ s

t

e−r(u−t)∂K
(
∂2
xk − ∂x

)
BSuσue

αer(s−u)eXuρΛW∗

u du
]

= E∗
t

[
BSt +

1

2

∫ T

s

e−r(u−t)∂x
(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ s

t

e−r(u−t)∂x
(
∂2
xk − ∂x

)
BSuσuρΛ

W∗

u du

+
1

2

∫ s

t

e−r(u−t)∂K
(
∂2
xk − ∂x

)
BSuσuMuρΛ

W∗

u du
]
.

Since the Black-Scholes function satisfies

∂x
(
∂2
xk − ∂x

)
BS (t, x, k, σ) =

exN ′(d+)

σ
√
T − t

(
1− d+

σ
√
T − t

)
,

∂K
(
∂2
xk − ∂x

)
BS (t, x, k, σ) =

exN ′(d+)

Kσ
√
T − t

(
d+

σ
√
T − t

)
,

then it is easy to see that

Vt = E∗
t

[
BSt +

ρ

2

∫ T

s

e−r(u−t)H(u,Xu,Mu, vu)σuΛ
W∗

u du

+
ρ

2

∫ s

t

e−r(u−t)G(u,Xu,Mu, vu)σuΛ
W∗

u du
]
.

The proof then follows from the easy computations

BSt = eXtN
(
−α+ r(T − s)

vs
√
T − s

+
vs
√
T − s

2

)
− eαeXte−r(T−s)N

(
−α+ r(T − s)

vs
√
T − s

− vs
√
T − s

2

)
= eXtBS (s, 0, eα, vs)

and, for all u < s,

G(u,Xu,Mu, vu) =
eXu

vs
√
T − s

N ′
(
−α+ r(T − s)

vs
√
T − s

+
vs
√
T − s

2

)
= eXuG(s, 0, eα, vs).

9



A.2 Proof of Theorem 2

Before diving into the proof, let us state and prove the statement when the
correlation ρ is null. We shall always consider t < s.

Lemma 5 Under (H1)-(H2), if ρ = 0, then lim
T↓s

I(t, s;α∗) = E∗
t (σs).

Proof. From the definition (4) of the implied volatility, we can write

I(t, s;α∗) = BS−1 ◦ E∗
t

[
BS
(
s, 0, eα

∗
, vs

)]
= E∗

t

{
BS−1 ◦ BS

(
s, 0, eα

∗
, vs

)
+BS−1 ◦ E∗

t

[
BS
(
s, 0, eα

∗
, vs

)]
− BS−1 ◦ BS

(
s, 0, eα

∗
, vs

)}
= E∗

t

[
vs +BS−1 ◦ E∗

t

[
BS
(
s, 0, eα

∗
, vs

)]
− BS−1 ◦ BS

(
s, 0, eα

∗
, vs

)]
.

A direct application of Clark-Ocone’s formula [15, Proposition 1.3.14] yields
BS
(
s, 0, eα

∗
, vs
)
= AT , with

Uu := E∗
u

[
∂BS

∂σ

(
s, 0, eα

∗
, vs

) DW∗

u

∫ T

s
σ2
rdr

2(T − s)vs

]
, (8)

Au := E∗
t

[
BS(s, 0, eα

∗
, vs)

]
+

∫ u

t

UrdWr.

Applying Itô’s formula to BS−1(Au) and taking expectations, we obtain

E∗
t

[
BS−1 ◦ E∗

t

[
BS
(
s, 0, eα

∗
, vs

])
− BS−1 ◦ BS

(
s, 0, eα

∗
, vs

) ]
= −1

2
E∗
t

{∫ T

t

(BS−1)′′
(
Er

[
BS
(
s, 0, eα

∗
, vs

)])
U2
r dr

}
,

so that

lim
T↓s

I(t, s, α∗) = E∗
t (σs)−

1

2
lim
T↓s

E∗
t

{∫ T

t

(BS−1)′′
(
Er

[
BS
(
s, 0, eα

∗
, vs

)])
U2
r dr

}
.

Now, considering that(
BS−1

)′′ (Er

[
BS
(
s, 0, eα

∗
, vs

)])
=

BS−1
(
Er

[
BS
(
s, 0, eα

∗
, vs
)]

(T − s)
)

4N ′(γ)2(T − s)
,

where γ := 1
2BS

−1
(
Er

[
BS
(
s, 0, eα

∗
, vs
)]√

T − s
)
, the lemma follows from

lim
T↓s

1

2
E∗
t

{∫ T

t

(BS−1)′′
(
Er

[
BS
(
s, 0, eα

∗
, vs

)])
U2
r dr

}
= 0.

The following technical lemma, which follows similar arguments to [2, Lemma
4.1], shall be of fundamental importance in the proof of the theorem:

10



Lemma 6 Let 0 ≤ t ≤ s, u < T . For every n ≥ 0, there exists C > 0 such that

∣∣∣E(∂n
xG (u,Xu,Mu, vu)| Ft ∨ FW∗

T

)∣∣∣ ≤ CE
(
eXs∧u

∣∣Ft ∨ FW∗

T

)(∫ T

s

σ2
sds

)− 1
2 (n+1)

.

Proof of Theorem 2. We know, from Theorem 1, that

I(t, s;α∗) = BS−1
{
E∗
t

[
BS
(
s, 0, eα

∗
, vs

)]
+

ρ

2
e−XtE∗

t

(∫ T

s

e−r(u−t)H(u,Xu,Mu, vu)σuΛ
W∗

u du

)

+
ρ

2
e−XtE∗

t

(
G(s, 0, eα

∗
, vs)

∫ s

t

e−r(u−t)eXuσuΛ
W∗

u du

)}
.

By the mean value theorem, we can find θ between E∗
t

[
BS(s, 0, eα

∗
, vs)

]
and

E∗
t

[
BS
(
s, 0, eα

∗
, vs

)
+

ρ

2
e−Xt

∫ T

s

e−r(u−t)H(u,Xu,Mu, vu)σuΛ
W∗

u du

+
ρ

2
e−XtG(s, 0, eα

∗
, vs)

∫ s

t

e−r(u−t)eXuσuΛ
W∗

u du

]
,

such that, denoting Ĩ1, Ĩ2 respectively the second and third expectations,

I(t, s;α∗)−BS−1◦E∗
t

[
BS(s, 0, eα

∗
, vs)

]
=

√
2π exp

{
BS−1(θ)

8 (T − s)
}

√
T − s

(Ĩ1+Ĩ2) =: I1+I2.

From Lemma 6, we have

lim
T↓s

|I1| ≤ C lim
T↓s

e−Xt

√
T − s

∫ T

s

E∗ (eXs |Gt

)
T − s

∣∣∣ΛW∗

u

∣∣∣ du ≤ Ce−Xt lim
T↓s

√
(T − s)E∗ (e2Xs |Gt ) = 0,

which, together with Lemma 5, implies

lim
T↓s

I(t, s;α∗) = E∗
t (σs) +

ρeXt

2
lim
T↓s

E∗
t

exp
(

v2
s(T−s)

8

)
vs(T − s)

∫ s

t

e−r(u−t)eXuσuΛ
W∗

u du


= E∗

t (σs) +
ρeXt

2
E∗
t

(
1

σs

∫ s

t

e−r(u−t)eXuσu

(
DW∗

u σ2
s

)
du

)
,

and the theorem follows.

A.3 Proof of Theorem 3

Differentiating (4) with respect to the log-forward moneyness α yields

∂Vt

∂α
= eXt∂kBS (s, 0, e

α, I(t, s;α)) + eXt∂σBS (s, 0, e
α, I(t, s;α))

∂I

∂α
(t, s;α),

11



with k := log(K). Then, from Theorem 1 we are able to write

∂I

∂α
(t, s;α) =

∂Vt

∂α − eXt∂kBS (s, 0, e
α, I(t, s;α))

eXt∂σBS (s, 0, eα, I(t, s;α))

=
E∗
t [∂kBS (s, 0, e

α, vs)]− ∂kBS (s, 0, e
α, I(t, s;α))

∂σBS (s, 0, eα, I(t, s;α))

+
ρ

2

E∗
t

[∫ T

s
e−r(u−t)∂kH(u,Xu, e

αeXs , vu)σuΛ
W∗

u du
]

eXt∂σBS (s, 0, eα, I(t, s;α))

+
ρ

2

E∗
t

[
∂kG(s, 0, eα, vs)

∫ s

t
eXue−r(u−t)σuΛ

W∗

u du
]

eXt∂σBS (s, 0, eα, I(t, s;α))
=: T1 + T2 + T3.

(9)
In the uncorrelated case ρ = 0, this expression simplifies to

∂I

∂α
(t, s;α) =

E∗
t [∂kBS (s, 0, e

α, vs)]− ∂kBS (s, 0, e
α, I(t, s;α))

∂σBS (s, 0, eα, I(t, s;α))
,

and in the at-the-money case α = α∗, we obtain, by Theorem 1,

E∗
t

[
∂kBS

(
s, 0, eα

∗
, vs

)]
= E∗

t

[
−N

(
−vs

√
T − s

2

)]
= E∗

t

N
(

vs
√
T−s
2

)
−N

(
−vs

√
T−s
2

)
− 1

2


= E∗

t

[
BS
(
s, 0, eα

∗
, vs
)
− 1

2

]
=

Vte
−Xt − 1

2
.

Since furthermore

∂kBS
(
s, 0, eα

∗
, I(t, s;α∗)

)
= −N

(
−I(t, s;α∗)

√
T − s

2

)
=

Vte
−Xt − 1

2
,

then the at-the-money forward skew ∂I
∂α (t, s;α

∗) is null. Proceeding now to the
general correlated case, the decomposition (9) and Theorem 1 yield

E∗
t

[
∂kBS(s, 0, e

α∗
, vs)

]
− ∂kBS

(
s, 0, eα

∗
, I(t, s;α∗)

)
= E∗

t

[
BS
(
s, 0, eα

∗
, vs
)
− 1

2

]
− Vte

−Xt − 1

2

= −e−Xt

2
E∗
t

{
ρ

2

∫ T

s

e−r(u−t)H(u,Xu,Mu, vu)σuΛ
W∗

u du|α=α∗

−e−Xtρ

4
G(s, 0, eα

∗
, vs)

∫ s

t

e−r(u−t)σue
XuΛW∗

u du

}
.

12



Then, lim
T↓s

T1 = lim
T↓s

I1 + lim
T↓s

I2, where

I1 = −
e−XtρE∗

t

(∫ T

s
e−r(u−t)H(u,Xu,Mu, vu)σuΛ

W∗

u du
)
|α=α∗

4∂BS
∂σ (s, 0, eα∗ , I(t, s;α∗))

,

I2 = −
e−XtρE∗

t

(
G(s, 0, eα

∗
, vs)

∫ s

t
e−r(u−t)σue

XuΛW∗

u du
)

4∂BS
∂σ (s, 0, eα∗ , I(t, s;α∗))

.

Under (H3), lim
T↓s

I1 = 0 by Lemma 6. FurthermoreG(s, 0, eα
∗
, vs) = 2∂kG(s, 0, eα

∗
, vs),

so that

I2 = −ρ

2

e−XtE∗
t

(
∂kG(s, 0, eα

∗
, vs)

∫ s

t
e−r(u−t)eXuσuΛ

W∗

u du
)

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

= −T3.

On the other hand, using Theorem 3, Lemma 6 and the anticipating Itô’s for-
mula again, it follows that

lim
T↓s

T2 = lim
T↓s

ρ
2E

∗
t

[∫ T

s
e−r(u−t)∂kH(u,Xu,Mu, vu)σuΛ

W∗

u du
]

eXt∂σBS (s, 0, eα
∗ , I(t, s;α∗))

=
ρ

2
lim
T↓s

E∗
t

[
∂kH(s,Xs,Ms, vs)e

−r(s−t)
∫ T

s
σuΛ

W∗

u du
]

eXt∂σBS (s, 0, eα
∗ , I(t, s;α∗))

=
ρ

2
lim
T↓s

E∗
t

[
eXse−r(s−t)

eXtv3s(T − s)2

∫ T

s

σuΛ
W∗

u du

]

=
ρ

2eXt

{
lim
T↓s

E∗
t

(
eXse−r(s−t)

σ3
s(T − s)2

∫ T

s

σuΛ
W∗

u du

)}−1

.

Now, (6) allows us to write

lim
T↓s

T2 =
ρe−r(s−t)

4eXt
E∗
t

(
σ2
s

σ2
s

)−1

,

which completes the proof of the theorem.

A.4 Proof of Theorem 4

The proof of the theorem will be split into three parts: we first state and prove
the technical lemma below, similar to [1, Theorem 5], which we then use to
prove the theorem in the uncorrelated case ρ = 0, and we finally proceed to the
general case.

A.4.1 A technical lemma

Lemma 7 Under (H1)-(H2), the equality

∂σBS
(
s, 0, eα

∗
, I(t, s;α∗)

) ∂2I

∂α2
(t, s;α∗) =

1

2
E∗
t

[∫ T

t

∂2Ψ

∂a2

(
E∗
u

(
BS
(
s, 0, eα

∗
, vs

)))
U2
udu

]

13



holds, where Ψ(a) := ∂2
kkBS

(
s, 0, eα

∗
,BS−1 (a)

)
and U is given in (8).

Proof. This proof is similar to that in [1, Theorem 5], so we only sketch it.
Differentiating the option price with respect to the log-moneyness yields

∂Vt

∂α
= eXt∂kBS (s, 0, e

α, I(t, s;α)) + eXt∂σBS (s, 0, e
α, I(t, s;α))

∂I

∂α
(t, s;α),

and

∂2Vt

∂α2
= eXt∂2

kkBS (s, 0, e
α, I(t, s;α)) + 2eXt∂2

σkBS (s, 0, e
α, I(t, s;α))

∂I

∂α
(t, s;α)

+ eXt∂2
σσBS (s, 0, e

α, I(t, s;α))
∂I

∂α
(t, s;α)2

+ eXt∂σBS (s, 0, e
α, I(t, s;α))

∂2I

∂α2
(t, s;α). (10)

Combining (10) and (3) yields

∂2Vt

∂α2

∣∣∣∣
α=α∗

= eXt∂2
kkBS

(
s, 0, eα

∗
, I(t, s;α∗)

)
+eXt∂σBS

(
s, 0, eα

∗
, I(t, s;α∗)

) ∂2I

∂α2
(t, s;α∗).

Then, taking into account Theorem 1 and the fact that I(t, s;α∗) = BS−1(e−XtVt),
we are able to write

e−Xt∂σBS
(
s, 0, eα

∗
, I(t, s;α∗)

) ∂2I

∂α2
(t, s;α∗)

=
∂2Vt

∂α2

∣∣∣∣
α=α∗

− e−Xt∂2
kkBS

(
s, 0, eα

∗
, I(t, s;α∗)

)
= e−XtE∗

t

(
∂2
kkBS

(
s, 0, eα

∗
, vs

)
− ∂2

kkBS
(
s, 0, eα

∗
, I(t, s;α∗)

))
= eXtE∗

t

[
∂2
kkBS

(
s, 0, eα

∗
,BS−1 ◦ BS(s, 0, eα

∗
, vs)

)
−∂2

kkBS
(
s, 0, eα

∗
,BS−1 ◦ E∗

t

(
BS(s, 0, eα

∗
, vs)

))]
.

Clark-Ocone’s formula above and Itô’s formula applied to the process

Au := ∂2
kkBS

(
s, 0, eα

∗
,BS−1 ◦ E∗

u

(
BS(s, 0, eα

∗
, vs

))
imply the result after taking expectations.
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A.4.2 The uncorrelated case

We now move on to the proof of Theorem 4 in the uncorrelated case ρ = 0.
Lemma 7 yields

lim
T↓s

(T − s)
∂2I

∂α2
(t, s;α∗)

= lim
T↓s

(T − s)

(
E∗
t

[∫ s

t
∂2
aaΨ

(
E∗
u

(
BS
(
s, 0, eα

∗
, vs
)))

U2
udu

]
2∂σBS (s, 0, eα

∗ , I(t, s;α∗))

)

+ lim
T↓s

(T − s)

E∗
t

[∫ T

s
∂2
aaΨ(E∗

u (BS (s, 0, α
∗, vs)))U

2
udu

]
2∂σBS (s, 0, eα

∗ , I(t, s;α∗))

 =: lim
T↓s

(T1 + T2).

Since by Assumption (H1) the process σ is bounded below and above al-
most surely, using that BS(s, 0, er(T−s), ·) is an increasing function, together
with (H3) and

∂2Ψ

∂a2
(E∗

u (BS (s, 0, α, vs))) =
2
√
2π

(T − s)3/2

exp
{

T−s
8

(
BS−1 ◦ E∗

u(BS(s, 0, e
r(T−s), vs))

)2}(
BS−1 ◦ E∗

u(BS(s, 0, e
r(T−s), vs))

)3 ,

we deduce that

0 < T2 ≤ CE∗
t

∫ T

s

exp
(

C(T−s)
8

)
c3(T − s)

U2
udu

 ≤ C

T − s

∫ T

s

E∗
t

(
U2
u

)
du ≤ C

√
T − s,

where C > 0 is a constant that may change from line to line, and hence
limT↓s T2 = 0. Finally, Dominated Convergence Theorem and Lemma 5 yield

lim
T↓s

T1 = π lim
T→s

∫ s

t

E∗
t

(
U2
u

)
I(u, s;α∗)3(T − s)

exp

{
I(u, s;α∗)2(T − s)

8

}
du

=
1

4
lim
T↓s

E∗
t

∫ s

t

1

I(u, s;α∗)3(T − s)
E∗
u

(∫ T

s
(DW∗

u σ2
r)dr

vs
√
T − s

)2

du

=
1

4
E∗
t

(∫ s

t

E∗
u

(
DW∗

s σ2
r

σs

)2
du

E∗
u(σs)3

)
,

which concludes the proof.
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A.4.3 The general case

Using Theorem 1 and (10), we can write

eXt∂σBS
(
s, 0, eα

∗
, I(t, s;α∗)

) ∂2I

∂α2
(t, s;α∗)

= eXtE∗
t

[
∂2
kkBS

(
s, 0, eα

∗
, vs

)
− ∂2

kkBS
(
s, 0, eα

∗
, I(t, s;α∗)

)]
− 2eXt∂2

σkBS
(
s, 0, eα

∗
, I(t, s;α∗)

) ∂I

∂α
(t, s;α∗)− eXt∂2

σσBS
(
s, 0, eα

∗
, I(t, s;α∗)

)[ ∂I
∂α

(t, s;α∗)

]2
+

ρ

2
E∗
t

[∫ T

s

e−r(u−t)∂2
kkH(u,Xu,Mu, vu)σuΛ

W∗

u du

∣∣∣∣∣
α=α∗

+∂2
kkG(s, 0, eα

∗
, vs)

∫ s

t

e−r(u−t)eXuσuΛ
W∗

u du

]
.

Therefore

(T − s)∂2
ααI(t, s;α

∗)

= (T − s)
E∗
t

(
∂2
kkBS

(
s, 0, eα

∗
, vs
)
− ∂2

kkBS
(
s, 0, eα

∗
, I0(t, s;α∗)

))
∂σBS (s, 0, eα

∗ , I(t, s;α∗))

+ (T − s)
E∗
t

(
∂2
kkBS

(
s, 0, eα

∗
, I0(t, s;α∗)

)
− ∂2

kkBS
(
s, 0, eα

∗
, I(t, s;α∗)

))
∂σBS (s, 0, eα

∗ , I(t, s;α∗))

− 2(T − s)
∂2
σkBS

(
s, 0, eα

∗
, I(t, s;α∗)

)
∂I
∂α (t, s;α

∗)

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

− (T − s)
∂2
σσBS

(
s, 0, eα

∗
, I(t, s;α∗)

)
(∂αI(t, s;α

∗))
2

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

+
ρ(T − s)

2eXt

E∗
t

[∫ T

s
e−r(u−t)∂2

kkH(u,Xu,Mu, vu)σuΛ
W∗

u du

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

∣∣∣∣∣∣
α=α∗

+
ρ(T − s)

2eXt

E∗
t

(
∂2
kkG(s, 0, eα

∗
, vs)

∫ s

t
e−r(u−t)eXuσuΛ

W∗

u du
)

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

=: T1 + T2 + T3 + T4 + T5 + T6.

Here I0(t, s;α) denotes the forward implied volatility in the uncorrelated case.
By definition of the Black-Scholes function and using Theorem 3, we have
limT↓s (T3 + T4 + T5) = 0, and

lim
T↓s

∂σBS
(
s, 0, eα

∗
, I(t, s;α∗)

)
∂σBS (s, 0, eα

∗ , I0(t, s;α∗))
= 1.

Then, the proof of Lemma 7 yields limT↓s T1 = limT↓s(T − s)∂2
kkI

0(t, s, α∗).
Computing the second derivative ∂2

kkBS, we also obtain

lim
T↓s

T2 = lim
T↓s

(
1

I0(t, s;α∗)
− 1

I(t, s;α∗)

)
.
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On the other hand,

lim
T↓s

T6 =
ρ

2
e−Xt lim

T↓s
(T − s)

E∗
t

(
∂2
kkG(s, 0, eα

∗
, vs)

∫ s

t
e−r(u−t)eXuσuΛ

W∗

u du
)

∂σBS (s, 0, eα
∗ , I(t, s;α∗))

= −ρ

2
e−XtE∗

t

(
1

σ3
s

∫ s

t

e−r(u−t)eXuσu

(
DW∗

u σ2
s

)
du

)
.

Finally, the result is a consequence of Lemma 5 and Theorem 2.
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[11] Kruse, S. and Nögel, U. On the pricing of forward starting options in Hes-
ton’s model on stochastic volatility. Finance and Stochastics, 9(2): 233-250,
2005.

[12] Lucic, V. Forward-start options in stochastic volatility models. Wilmott
Magazine, September 2003.

[13] Pascucci, A. and Mazzon, A. The forward smile in local-stochastic volatility
models. Risk, 20(3): 1-29, 2017.

[14] Musiela, M. and Rutkowski, M. Martingale methods in financial modeling.
Springer, Berlin, Heidelberg, New York, 1997.

[15] Nualart, D. The Malliavin Calculus and Related Topics. Second Edition.
Probability and its Applications. Springer-Verlag, 2006.

[16] Rubinstein, M. Pay now, choose later. Risk, 4(2), 1991.

[17] Stein, E. and Stein, J. Stock price distributions with stochastic volatility:
an analytic approach. Review of Financial Studies, 4(4): 727-752, 1991.

[18] Wilmott, P. Cliquet options and volatility models. Wilmott Magazine: 78-
83, December 2002.
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