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Abstract. Starting from the hyperbolic Brownian motion as a time-changed Brownian motion,
we explore a set of probabilistic models–related to the SABR model in mathematical finance–

which can be obtained by geometry-preserving transformations, and show how to translate the
properties of the hyperbolic Brownian motion (density, probability mass, drift) to each particular
model. Our main result is an explicit expression for the probability of any of these models hitting
the boundary of their domains, the proof of which relies on the properties of the aforementioned

transformations as well as time-change methods.

1. Introduction

Stochastic analysis on manifolds is a vibrant and well-studied field dating back to the sem-
inal work of Varadhan [30], followed by Elworthy [11], Hsu [19], Stroock [29], Grigoryan [13],
Avramidi [2] and, in a financial context [1, 12, 16, 17]. A quintessential object studied in these
works is Brownian motion on a Riemannian manifold1. The underlying manifold here is the state
space of the process, which is in most cases a complete open manifold. This is not the case, for
example for the following process:

(1.1)
dXt = YtX

β
t dWt +

β

2
Y 2
t X

2β−1
t dt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,
d⟨Z,W ⟩t = ρdt,

where ν > 0, ρ ∈ (−1, 1), β ∈ [0, 1), and W and Z are two correlated Brownian motions on a
filtered probability space (Ω,F , (Ft)t≥0,P). While in the case β = 0, the natural state space is
H := R × (0,∞) both open and complete, the natural underlying space when β > 0 is H+ :=
[0,∞) × (0,∞), a (non-complete) manifold with boundary {0} × (0,∞). In these situations it is
natural to wonder about the probability that the process on this state space never reaches the
boundary. In the specific case β = ρ = 0, ν = 1, the SDE (1.1) describes the dynamics of Brownian
motion on hyperbolic plane. This (hyperbolic) Brownian motion is particularly tractable, and its
density is known in closed form. Therefore, it is a good starting point for the study of the law and
the large-time behaviour of processes of the form (1.1). Indeed, restricting hyperbolic Brownian
motion to H+ with the addition of Dirichlet boundary conditions along the ray {0}×(0,∞) makes
this process suitable for the framework of Hobson [18, Theorem 4.2], who studies the large-time
behaviour of stochastic volatility models via coupling and comparison methods. There, Hobson
provides the following classification (and examples) of the large-time behaviour of sample paths
of the X process for such models: (i) it can hit zero in finite time, (ii) it converges to a strictly
positive limit, or (iii) it is always positive, but converges to zero as time tends to infinity. Note
that these cases are not necessarily exclusive from one another, and (i) and (ii) can both happen
with positive probability; for a given model, however, it is in general difficult to estimate these
probabilities precisely. In this article we single out some processes for which these probabilities can
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be quantified. The hyperbolic Brownian motion, for example, exhibits such a non-trivial large time
behaviour, where both (i) and (ii) occur with strictly positive probabilities, for which we derive
explicit expressions using time change techniques and properties of hitting times of Brownian
motion. We further present transformations of the hyperbolic Brownian motion under which
this large-time property remains valid, and provide formulae for these probabilities; the resulting
processes turn out to be precisely of the form (1.1)2. One particular feature of (1.1) is that the
state space is not compact. In geometry, the large-time behaviour of the heat kernel (and the
corresponding semigroup) is well known in the compact case–via its infinite series representation
(see for example [8])–and several results have extended this to the non-compact case (see for
example [9, 23, 25, 26]). The majority of the existing literature however focuses on the case where
the state space is a complete manifold, and results for the case of manifolds with boundary are
rare [31]. In probability, such results, known for continuous time Markov chains on finite state
space (by Perron-Frobenius theorem), do not have a general formulation for infinite state space.

In this article, we display several tractable properties of the solution to (1.1), which we refer
to as a Brownian motion on the SABR plane, since it characterises a Brownian motion in a
suitably chosen Riemannian manifold with boundary (the SABR plane cf. [16, Subsection 3.2]), as
emphasized in Lemma 2.3 below. We analyse furthermore the effect of the parameters β and ρ on
the large-time behaviour of the process (1.1) by focussing on the cases where either one of these
parameters (or both) is zero. Our analysis confirms that the large-time behaviour is independent of
the order in which the parameters β and ρ were introduced (this follows from the commutativity of
the diagram on Page 3, proved in Theorem 2.1). We also relate (whenever possible) the properties
of this model to those of the SABR model

(1.2)
dXt = YtX

β
t dWt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,
d⟨Z,W ⟩t = ρdt,

introduced in [15, 16], and now widely used in financial markets. Compared to the SABR
model (1.2), the X-dynamics of (1.1) include an additional drift term, which appears in an ex-
pansion of the density only as a higher-order term perturbation correction [16]. The behaviour of
the drift in (1.1) is significantly different when β ∈ (0, 1/2) and β ∈ (1/2, 1): in the former case
the drift explodes when X approaches zero, while it vanishes in the latter case; when β = 1/2,
the drift does not depend on X at all. Interestingly however, the large-time behaviour remains
invariant under some transformations affecting β, while local properties (such as the density) can
be translated from one case to another, reflecting the ‘phase transition’ occurring in the above
three cases. As observed in [10], the constraints ρ = 0 or β = 0 are the only parameter con-
figurations where certain advantageous regularity properties of (1.2) are valid. In fact these are
the only cases for which (1.2) can be written as a Brownian motion on some weighted3 manifold.
Note furthermore, that in the β = 0 case, the drift in (1.1) vanishes and the SDEs (1.1) and (1.2)
coincide for all values of ρ. According to [3] and [16], in the prevalence of low interest rates, the
choice β = 0 is rather common practice on interest rate desks, and, in this case, (1.2) is usually
referred to as the ‘normal SABR’ model.

Event (i) in Hobson’s classification coincides with the probability

(1.3) P := P(Xt = 0 for some t ∈ (0,∞)),

and our main result (Theorem 3.1) is an exact expression for this probability as

P =

∫ ∞

0

dt

∫ t

0

f(s, t)ds,

2 Up to a deterministic time change, ν can be taken equal to one, and we assume this without loss of generality.
3See [13, Definition 3.17] for a precise definition of a weighted manifold.
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where the function f is available in closed form (as an infinite series). In the case β = ρ = 0, the
function f admits the simplified formulation (In denoting the Bessel function of the first kind)

f(s, t) =
2 exp

(
− (x2

0+y2
0)(t+s)
4st

)
π(t− s)

√
st

∞∑
n=1

n sin

[
2n

(
π

2
− arctan

(
y0
x0

))]
In

(
(x2

0 + y20)(t− s)

4st

)
.

Similar probabilities (yet not this one in particular), of hitting some boundary, or a ball around
it, have been studied for the hyperbolic Brownian motion in [6, 7, 14, 21, 22]

In Section 2, we analyse the dynamics of (1.1) under different parameter configurations, and
propose several space transformations to translate properties of one model configuration to the
other. In Section 3, we use these maps to derive an exact formula for P for general parameter
values. We recall in Appendix A some notions on the heat equation on manifolds, needed along
the paper.

Notations: For a given real-valued stochastic process X (with continuous paths) and a real
number z, we denote by τXz := inf{t ≥ 0 : Xt = z} the first hitting time of X at level z. For

convenience, we shall use the (now fairly standard) notation ρ :=
√
1− ρ2. For two functions f

and g, we shall write f(z) ∼ g(z) as z tends to zero whenever lim
z→0

f(z)/g(z) = 1.

2. SABR geometry and geometry preserving mappings

We first exhibit a set of mappings allowing to translate the properties of one model configuration
to another. Let H := R × (0,∞) and H+ := (0,∞)2, and introduce the following pairs of spaces
together with their metrics:

H := (H, h), H+ := (H+, h), U := (H+, u), S := (H+, g), S0 := (H, g0), S0+ := (H+, g
0),

where the Riemannian metrics on their respective spaces are given by

h(x̃, ỹ) =
dx̃2 + dỹ2

ỹ2
, (x̃, ỹ) ∈ H,

g(x, y) =
1

ρ2

(
dx2

y2x2β
− 2ρdxdy

y2xβ
+

dy2

y2

)
, (x, y) ∈ H+,

g0(x̂, ŷ) =
1

ρ2

(
dx̂2

ŷ2
− 2ρdx̂dŷ

ŷ2
+

dŷ2

ŷ2

)
, (x̂, ŷ) ∈ H,

u(x̄, ȳ) =
1

ȳ2

(
dx̄2

x̄2β
+ dȳ2

)
(x̄, ȳ) ∈ H+.

Clearly, U corresponds to the uncorrelated (ρ = 0) model, while S0 is the general SABR plane
with β = 0; H represents the classical Poincaré plane with its associated Riemannian metric [13,
Section 3.9], and S the general SABR plane, generated by (1.1). The following diagram summarises
the different relations between the mappings and the spaces (we also include the corresponding
coordinate notations):

(x̃,ỹ)

H

χ̄
**(x̂,ŷ)

S0

ϕ̃0

44

χ

��

(x̄,ȳ)

U

φ̃0

jj

(x,y)

S

ϕ̄0

FF

φ̂0

XX
ϕ̃0
0

OO

Regarding the mapping notations, subscripts are related to the correlation parameter (for ex-
ample, ϕ̄0 ‘annihilates’ ρ), whereas superscripts 0 indicate that the map ‘annuls’ the parameter β;
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the map χ reintroduces this parameter. The mappings between these spaces are defined as follows:

(2.1)

ϕ̃0
0 : S ∋ (x, y) 7−→ (x̃, ỹ) :=

(
x1−β

ρ(1− β)
− ρy

ρ
, y

)
∈ H,

φ̂0 : S ∋ (x, y) 7−→ (x̂, ŷ) :=

(
x1−β

1− β
, y

)
∈ S0,

ϕ̄0 : S ∋ (x, y) 7−→ (x̄, ȳ) :=

(
(1− β)

1
1−β

(
x1−β

ρ(1− β)
− ρy

ρ

) 1
1−β

, y

)
∈ U, ρ ≤ 0

ϕ̃0 : S0+ ∋ (x̂, ŷ) 7−→ (x̃, ỹ) :=

(
x̂− ρŷ

ρ
, ŷ

)
∈ H,

χ : S0+ ∋ (x̂, ŷ) 7−→ (x, y) :=
(
(1− β)

1
1−β x̂

1
1−β , ŷ

)
∈ S,

χ̄ : H+ ∋ (x̃, ỹ) 7−→ (x̄, ȳ) :=
(
(1− β)

1
1−β x̃

1
1−β , ỹ

)
∈ U,

φ̃0 : U ∋ (x̄, ȳ) 7−→ (x̃, ỹ) :=

(
x̄1−β

1− β
, ȳ

)
∈ H+,

From now on, if not indicated otherwise, we restrict the domains of the above maps to the first
quadrant H+, which–when considering compositions–impose restrictions on the parameters in
order to ensure that images also belong to this set (for example the restriction ρ ∈ (−1, 0] needs

to be imposed for the composition ϕ̃0
0 ◦χ). While the map ϕ̃0 can be extended to the whole upper

halfplane H, thus describing an asset with negative value, the maps φ̃0, ϕ̃0
0, χ and χ̄ cannot be

defined in the real plane. They can be extended to the line {(x, y) ∈ H : x = 0} though, and are
non-differentiable there. The following theorem gathers the properties of all these maps:

Theorem 2.1. The diagram is commutative and all the mappings in (2.1) are local isometries on
their respective spaces:

• the maps φ̂0 and χ (resp. φ̃0 and χ̄) on H+ are onto and inverse to one another;

• the compositions ϕ̄0 ◦ φ̃0 and φ̂0 ◦ ϕ̃0 coincide with ϕ̃0
0;

• the equalities χ◦ϕ̃0
0 = ϕ̃0 and ϕ̃0

0◦χ̄ = ϕ̄0 hold, and the latter is well defined for ρ ∈ (−1, 0];
• the map φ̂0 (resp. φ̃0) transforms the Brownian motion on (S, g) (resp. (U, u)) into the
SABR model (1.2) with β = 0 (resp. ρ = β = 0), which in turn is transformed back to
Brownian motion on its original spaces by the map χ (resp. χ̄);

• the maps ϕ̄0 (resp. the extension of ϕ̃0) transforms the Brownian motion on (S, g) (resp.
(S0, g0)) into its uncorrelated version on (U, u) (resp. (H, h)).

Proof. The first three items follow from simple computations; the remaining statements follow
from Lemmas (2.3),(2.6), (2.5) and (2.7) below. �

Remark 2.2. The map ϕ̃0
0 was first considered in [16], and is a local isometry mapping a Brownian

motion on (S, g) to a Brownian motion on the hyperbolic half-plane (H, h). The refined analysis
of Theorem 2.1 confirms that we can treat the effect of the parameters ρ and β separately. Disas-
sembling the influence of the parameters ρ and β further allows us to draw consequences on the
large-time behaviour of these processes (see Remark 2.4 and Section 3 below).

As a first step we investigate the maps φ̂0, φ̃0, which annul β and χ, χ, which reintroduce β.

Lemma 2.3. The solution (X,Y ) to (1.1) coincides in law with a Brownian motion on (S, g).
The process (X̂, Ŷ ) defined pathwise by

(2.2) (X̂t, Ŷt) := φ̂0(Xt, Yt) =

(
X1−β

t

1− β
, Yt

)
, for all t ≥ 0.

is a SABR process (1.2) with β = 0, which coincides in law with a Brownian motion on the
correlated hyperbolic plane (S0, g0).
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Remark 2.4. This map φ̂0 : S → S0 will be essential in our study of the long-time behaviour of
the process X in Section 3. Indeed, since β ∈ [0, 1), we have, for the probability defined in (1.3),

(2.3) P := P(Xt = 0 for some t ∈ (0,∞)) = P(X̂t = 0 for some t ∈ (0,∞)).

Proof. The statement that (1.1) has the same law as Brownian motion on (S, g) follows from
the computation of the infinitesimal generator of (1.1), which coincides with the Laplace-Beltrami
operator 1

2∆g on a manifold with metric tensor g(x, y) (see (A.4) and (A.5)). The second statement
is an application of Itô’s formula, which transforms the system (1.1) into

(2.4)
dX̂t := ŶtdWt, X̂0 = x̂0 := x1−β

0 /(1− β),

dŶt = νŶtdZt, Ŷ0 = ŷ0,
d⟨W,Z⟩t = ρdt,

which is identical to (1.2) with β = 0, and ρ ∈ (−1, 1). Its generator coincides with the Laplace-
Beltrami operator 1

2∆g0 of the respective manifold, which yields the last statement. �

Lemma 2.5. The map χ (resp. χ̄) is a local isometry between (S0+, g0) and (S, g) (resp. (H+, h)
and (U, u)) and transforms the Brownian motion on the hyperbolic plane (S0+, g0) (resp. (H+, h)),
whose dynamics are described by (2.4), into a Brownian motion on the general SABR plane (S, g)
(resp. (U, u)), satisfying (1.1).

Proof. For a local isometry between (S0+, g0) and (S, g) (resp. (H, h) and (U, u)), it holds that
for any (x̂, ŷ) ∈ S0 (resp. (x̃, ỹ) ∈ H) there exists a small open neighbourhood U(x̂,ŷ) ⊂ S0 (resp.
U(x̃,ỹ) ⊂ H), such that the map χ|U(x̂,ŷ)

(resp. χ̄|U(x̃,ỹ)
) is an isometry onto its image; in particular

it satisfies the pullback relation (pullback notations and definitions are explained in Appendix A)

(χ∗g) (x, y) = χ∗

(
dx2

ρx2βy2
+

2ρdxdy

ρxβy2
+

dy2

ρy2

)
=

dx̂2 + 2ρdx̂dŷ + dŷ2

ρŷ2
= g0(x̂, ŷ),

respectively, for zero correlation

(χ̄∗u) (x̄, ȳ) = χ̄∗

(
dx̄2

x̄2β ȳ2
+

dȳ2

ȳ2

)
=

dx̃2 + dỹ2

ỹ2
= h(x̃, ỹ).

For any (x̂, ŷ) ∈ S0 (resp. (x̃, ỹ) ∈ H), the Jacobians read

∇χ(x̂, ŷ) =

(
(1− β)

β
1−β x̂

β
1−β 0

0 1

)
and ∇χ̄(x̃, ỹ) =

(
(1− β)

β
1−β x̃

β
1−β 0

0 1

)
,

respectively, hence the local pullback property is clearly satisfied by χ (resp. χ̄). The last statement
follows by Itô’s lemma. �

The maps ϕ̃0, ϕ0 affect the correlation parameter as follows:

Lemma 2.6. The map ϕ̃0 : S0 → H is a global isometry and transforms the SABR model (1.2)
with β = 0 into a Brownian motion on (H, h). Furthermore, the heat (or transition) kernel of the
solution of the system (2.4) is available in closed form:

ρ−1Kh
ϕ0(x,y)

(s, ϕ0(x, y)), for s > 0 and (x, y) ∈ S0,

where Kh
(x̃,ỹ)(s, ·) denotes the hyperbolic heat kernel at (x̃, ỹ) ∈ H, for which a closed-form expres-

sion and short- and large-time asymptotics are known ([13, Equation (9.35)] and [16]).

Proof. The following shows that ϕ0 is in fact a global isometry: ϕ̃0 is onto and invertible on S0
and, for any (x, y) ∈ S0, its Jacobian

∇ϕ̃0(x, y) =

(
1/ρ −ρ/ρ
0 1

)
,

is independent of x and does not explode at x = 0. Furthermore, for any (x, y) ∈ S0,(
ϕ̃0∗h

)
(x, y) =ϕ̃0∗

(
dx̃2 + dỹ2

ỹ2

)
=

1

y2

(
dx

ρ
− ρdy

ρ

)2

+
(dy)2

y2
= g0(x, y).



6 ARCHIL GULISASHVILI, BLANKA HORVATH, AND ANTOINE JACQUIER

The last statement follows from Lemma A.4 together with det(∇ϕ̃0(·)) = 1/ρ ̸= 0. One can easily
verify by Itô’s lemma that the dynamics (2.4) for general ρ ∈ (−1, 1) are transformed into (2.4)

for ρ = 0 under the map ϕ̃0. �
We now verify that ϕ̄0 is a ‘geometry-preserving’ map from the general SABR plane (S, g) into

the uncorrelated SABR plane (U, u), which of course reduces to the identity map when ρ = 0, and

to ϕ̃0 when β = 0.

Lemma 2.7. For any (ρ, x) ∈ (−1, 0]×S, the map ϕ̄0 is a local isometry between (S, g) and (U, u).

Proof. The statement follows directly from the fact that the map ϕ̄0 and its partial derivatives

∂xx̄(x, y) =
x−β

ρ
(1− β)

β
1−β

(
x1−β

ρ(1− β)
− ρy

ρ

)β/(1−β)

,

∂yx̄(x, y) = −ρ

ρ
(1− β)

β
1−β

(
x1−β

ρ(1− β)
− ρy

ρ
C

)β/(1−β)

,

∂xȳ(x, y) = 0, ∂y ȳ(x, y) = 1,

(2.5)

satisfy the following system of differential equations implied by the local pullback property
(
ϕ̄∗
0u
)
(x̄, ȳ) =

g(x, y), for any (x, y) ∈ S, (x̄, ȳ) ∈ U for the Riemannian metrics g and u:

(∂xx̄)
2

x̄2β ȳ2
+

(∂xȳ)
2

ȳ2
=

1

ρ2y2x2β
,

2(∂xx̄∂yx̄)

x̄2β ȳ2
+

2(∂xȳ∂y ȳ)

ȳ2
=

−2ρ

ρ2y2xβ
,

(∂yx̄)
2

x̄2β ȳ2
+

(∂y ȳ)
2

ȳ2
=

1

ρ2y2
.

�
As an application of Lemma 2.7 it may be possible to relate the absolutely continuous part of

the distribution of the Brownian motion on the uncorrelated SABR plane (U, u) and that of the
Brownian motion on the general SABR plane (S, g) via the relation (A.3) of the heat kernels [28];
this can be performed following similar steps as in [16], but care is needed, as discussed below.

Lemma 2.8. Let Kg
Z and Ku

Z denote the fundamental solutions (in terms of Lebesgue) at Z ∈
H+ (i.e. the limit lims↓0 K

g
Z(s, ·) = δZ(·) is the Dirac delta distribution), of the heat equations

corresponding to the metrics g and u. Then, for any z = (x, y) ∈ H+,

(2.6) Kg
Z(s, z) =

(1− β)
β

1−β

ρxβ

(
x1−β

ρ(1− β)
− ρy

ρ

) β
1−β

Ku
ϕ̄0(z)

(s, ϕ0
0(z)).

When β = 1/2, the formulae simplify to ϕ̄0(x, y) ≡
(

1
(1−ρ)2

(
x−

√
xρy + ρ2y2

4

)
, y
)
, and det(∇ϕ̄0(x, y)) =(

1− ρy
2
√
x

)
/(1− ρ)2, for all (x, y) ∈ S.

Proof. The statement follows from Lemma A.4: the Radon-Nikodym derivatives are dz
dµg(z)

=

ρ2y2xβ and dz̄
dµu(z̄)

= ȳ2x̄β , with µg and µu the Riemannian volume elements on S and U (Defini-

tion A.2 in Appendix A), and the Jacobian of ϕ̄0 at z = (x, y) ∈ S is as in (2.5), so that

det
(
∇ϕ̄0(x, y)

)
=

(1− β)
β

1−β

ρxβ

(
x1−β

ρ(1− β)
− ρy

ρ

) β
1−β

.

�
Such a relation of heat kernels relies on the commutativity property of Laplace-Beltrami oper-

ators in Lemma A.1, which is not meaningful for (A.4) at x = 0 for general β. Hence a statement
relating the heat kernels might not hold true in the vicinity of the origin. Although in the case
of exploding Jacobians the relation (A.3) of ‘kernels’ formally indicates that the map under con-
sideration induces an atom, it does not allow for an exact computation. Remark further, that
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non-differentiability issues at x = 0 of the maps may induce a local time at this point, which we
do not investigate further for φ̂0, φ̃0, χ̄ and χ, as we imposed Dirichlet boundary conditions at
x = 0. But they might be of importance for the map ϕ̄0 introduced in (2.1) above and for the

map ϕ̃0
0 considered in [16]. A statement similar to Lemma 2.8 below was made in [16] relating Kg

to the hyperbolic heat kernel Kh; in their analysis, the determinant was det(∇ϕ̃0
0(x, y)) ≡ x−β/ρ.

The knowledge of the exact form of the absolutely continuous part of the distribution would
provide a means to infer the probability of the process X hitting its boundary. This, however,
would involve intricate formulae with multiple integrals. Instead, in the following section, we
compute this probability in a more concise way, and use the knowledge of the kernel only to show
that introducing first β then ρ (or conversely) has no influence on this probability.

3. Probability of hitting the boundary

Having characterised the isometries between the Brownian motion on the hyperbolic plane and
a more general version, with drift, on the SABR plane, we derive here a concise formula to compute
the hitting probability P (in (1.3)) of the boundary of this general process. A key ingredient here
is to note that this probability is equal to the limit of P(Xt = 0) as t tends to infinity. We shall
also determine the influence of the model parameters (β, ρ) on this quantity. The computation of
this probability (Theorem 3.1 below) follows the works of Hobson [18] on time changes. We apply
such a technique to progress from the Brownian motion on the correlated hyperbolic plane (2.4)
to a correlated Brownian motion on the Euclidean plane. The joint distribution of hitting times
of zero of two (correlated) Brownian motions without drift was first established by Iyengar [20],
and refined by Metzler [24] (see also [4] for further results on hitting times of correlated Brownian
motions). We also borrow some ideas from [10], where Hobson’s construction for the normal
SABR model [18, Example 5.2] is extended to (1.1) for general β ∈ [0, 1]. This indeed follows from
the observation that stochastic time change methods, going back to Volkonskii [32], can still be
applied to the Brownian motion on the SABR plane. In order to formulate our next statement,
we introduce several auxiliary parameters (see [24]):

a1 :=
x1−β
0

1− β
, a2 :=

y0
ν
, r0 :=

√
a21 + a22 − 2ρa1a2

ρ2
,

α :=


π + arctan

(
−ρ

ρ

)
, if ρ > 0,

π

2
, if ρ = 0,

arctan

(
−ρ

ρ

)
, if ρ < 0,

θ0 :=


π + arctan

(
a2ρ

ρ

)
, if a1 < ρa2,

π

2
, if a1 = ρa2,

arctan

(
a2ρ

ρ

)
, if a1 > ρa2.

Theorem 3.1. For the SDE (1.1), the probability (1.3) satisfies

P =

∫ ∞

0

dt

∫ t

0

f(s, t)ds,

where for any s < t (Iz denotes the modified Bessel function of the first kind [5, Page 638]),

f(s, t) =
π sin(α)

2α2(t− s)
√
s(t− s cos2(α))

exp

(
− r20
2s

t− s cos(2α)

2t− s(1 + cos(2α))

)
×

∞∑
n=1

n sin

(
nπ(α− θ0)

α

)
Inπ

2α

(
r20
2s

t− s

2t− s(1 + cos(2α))

)
.

Remark 3.2. In the uncorrelated case ρ = 0, the expressions in Theorem 3.1 simplify to α = π
2 ,

θ0 = arctan
(

a2

a1

)
, r0 =

√
a21 + a22, and

f(s, t) =
2

π(t− s)
√
st

exp

(
−r20(t+ s)

4st

) ∞∑
n=1

n sin
(
2n
(π
2
− θ0

))
In

(
r20(t− s)

4st

)
.
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Remark 3.3. When β = 0, in Theorem 3.1 above, a1 is equal to the starting point x0. In this
case (1.1) corresponds to the original ‘normal’ SABR model (1.2) for any ρ ∈ [−1, 1].

Proof. Recalling the process X̂ in (2.2), and the SDE (2.4), we wish to apply [18, Theorem 3.1]
to (2.4). Consider the system of SDEs

(3.1)

dX̃t = dW̃t, X̃0 = x̂0,

dỸt = νdZ̃t, Ỹ0 = y0,

d⟨W̃ , Z̃⟩t = ρdt,

where (W̃ , Z̃) is a two-dimensional correlated Brownian motion. With the time-change process

τ(t) := inf

{
u ≥ 0 :

∫ u

0

Ỹ −2
s ds ≥ t

}
,(3.2)

Theorem 3.1 in [18] implies that

(3.3) X̂t = X̃τ(t) and Yt = Ỹτ(t),

for all t ≥ 0. In addition, the map φ̂0 in (2.2) gives Xt =
(
x1−β
0 + (1− β)W̃τ(t)

)1/(1−β)

for all

t ≥ 0. Let now ε denote the explosion time of (3.1), namely the first time that either X̃ or Ỹ

hits zero. It is also the first time that the process W̃ hits the level −x̂0 or that Z̃ hits −y0/ν. Set

Γt :=
∫ t

0
Ỹ −2
s ds and ζ := limt↑ε Γt. The process Γ is strictly increasing and continuous, so that its

inverse Γ−1 is well defined, and clearly the time-change process (3.2) satisfies τ = Γ−1. Consider
a new filtration G and two processes W and Z defined, for each t ≥ 0, by Gt := Fτ(t),

Wt :=

∫ τ(t)

0

dW̃s

Ỹs

ds and Zt :=

∫ τ(t)

0

dZ̃s

Ỹs

ds.

Up to time ζ, W and Z are G-adapted Brownian motions, and the system (W,Z, X̂, Y ) is a weak

solution to (2.4). It is therefore clear that P
(
τ X̃0 ∈ ds, τ Ỹ0 ∈ dt

)
= P

(
τ W̃−x̂0

∈ ds, τ Z̃−y0/ν
∈ dt

)
.

Moreover, it follows from [24, Equation 3.2] with µ⃗ = 0⃗, x⃗0 = (x̂0, y0), and

σ =

(
ρ ρ
0 ν

)
,

that P
(
τ X̃0 ∈ ds, τ Ỹ0 ∈ dt

)
= f(s, t)dsdt, where the function f is defined in Theorem 3.1, so that

(3.4) P
(
τ X̃0 < τ Ỹ0

)
=

∫ ∞

0

dt

∫ t

0

f(s, t)ds.

Reversing the arguments presented in [10, 18], the probability P(τ X̃0 < τ Ỹ0 ) coincides with the

probability that the process X̂ hits zero over the time horizon [0,∞). Indeed, through (3.3), the

time change (3.2) converts the Brownian motion Ỹ into a geometric Brownian motion Y started

at y0 > 0, so that the (a.s. finite) point τ Ỹ0 is mapped to τY0 = ∞. Therefore the time-changed

process X̃ over [0, τ Ỹ0 ) corresponds to X̂ considered over [0,∞) and, using (3.3), we obtain

P
(
τ X̃0 < τ Ỹ0

)
= P

(
τ X̂0 < τY0

)
= P

(
τ X̂0 < ∞

)
= P

(
X̂t = 0, for some t ∈ (0,∞)

)
,

and Theorem 3.1 follows from (2.3) and (3.4). �

Remark 3.4. For the normal SABR model (β = 0) in (1.2), Hobson [18, Example 5.2] found the
following formula for the price process X:

Xt =
ρ

ν

(
Ỹτ(t) − y0

)
+ ρ2Z̃τ(t), for all t ≥ 0,

where the process Ỹ and the Brownian motion Z̃ are the same as in (3.1), and τ is as in (3.2).
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Remark 3.5. For β = 1, the SDEs (1.2) and (1.1) read

dXt = XtYtdWt and dXt = Xt

(
YtdWt +

1

2
Y 2
t dt

)
,

respectively, and, by the Doléans-Dade formula [27, Section IX-2], the solutions to these equations
are exponential functionals, and therefore do not exhibit mass at the origin.
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Appendix A. Reminder on the heat equation on manifolds

We recall some standard results on heat kernels on Riemannian manifolds, needed in Section 2.
For a given metric g, we denote by ∆g the corresponding Laplace-Beltrami operator. Following the
notations from [13, Section 3.12], let k ∈ N∪{∞}, M1,M2 two C

k+2-manifolds and ϕ : M2 → M1 a
Ck+2-diffeomorphism which is an isometry between (M2, g2) and (M1, g1). Any function f on M1

induces a pullback function ϕ∗f on M2 by the relation ϕ∗f = f ◦ ϕ. We start with a fundamental
property of this operator ([13, Lemma 3.27]).

Lemma A.1. The Laplace-Beltrami operator ∆gi (i = 1, 2) commutes with ϕ in the sense that
∆g2(ϕ∗f) = ϕ∗(∆g1f) holds for any f ∈ Ck+2(M1).

Definition A.2. Let (M, g) be a smooth Riemannian manifold and Z ∈ M . The smooth function
pZ : (0,∞)×M → R is a fundamental solution at Z of the heat equation on (M, g) if:

(i) it solves the heat equation ∆gpZ = ∂tpZ on (M, g);
(ii) limt↓0 pZ(t, ·) = δZ(·), where δZ denotes the Dirac measure at Z ∈ M :

lim
t↓0

∫
M

pZ(t, z)f(z)µg(dz) = f(Z),

for all test functions f ∈ C∞
0 (M), with µg(dz) being the Riemannian volume element at z.

The fundamental function pZ is said to be regular if furthermore pZ ≥ 0 and
∫
M

pZ(t, z)µg(dz) ≤ 1.

Proposition A.3. Let k ∈ N ∪ {0} ∪ {∞}, ϕ : (M2, g2) → (M1, g1) a Ck+2-smooth isometry,
pg1Z1

the fundamental solution at Z1 ∈ M1 of the heat equation on (M1, g1), and let Z2 ∈ M2 be

such that ϕ(Z2) = Z1. Then the map (t, z2) 7→ pg1ϕ(Z2)
(t, ϕ(z2)) ≡ ϕ∗p

g1
Z1
(t, z1) is the (unique)

fundamental solution at Z2 of the heat equation on (M2, g2).

Proof. Lemma A.1 implies that Definition A.2(i) holds for the above map. The operator ∆g2 acts
only on the space variable z2 ∈ M2 and not on the fixed point Z2 ∈ M2, so that

∆g2p
g1
ϕ(Z2)

(t, ϕ(z2)) = ∆g2

(
ϕ∗p

g1
Z1
(t, z1)

)
= ϕ∗

(
∆g1p

g1
Z1
(t, z1)

)
= ϕ∗

(
∂

∂t
pg1Z1

(t, z1)

)
=

∂

∂t
pg1ϕ(Z2)

(t, ϕ(z2)),(A.1)

with z1 := ϕ(z2), Z1 := ϕ(Z2), where the first equality follows from the pullback relation, the
second from the commutativity relation in Lemma A.1, and the third one since pg1Z1

satisfies the
heat equation on (M1, g1). We now check Definition A.2(ii). Let f1 ∈ C∞

0 (M1) be a test function
and f := ϕ∗f1. Set z1 = ϕ(z2) and Z1 = ϕ(Z2) for any z2, Z2 ∈ M2. Given that ϕ is an isometry,
so is ϕ−1 and the pullback (ϕ−1)∗µg2(d·) coincides with the volume form on (M1, g1). Then

lim
t↓0

∫
M2

pg1ϕ(Z2)
(t, ϕ(z2))f(z2)µg2(dz2) = lim

t↓0

∫
M2

pg1Z1
(t, ϕ(z2))f1(ϕ(z2))µg2(dz2)

= lim
t↓0

∫
M1

pg1Z1
(t, z1)f1(z1)

(
(ϕ−1)∗µg2

)
(dz1)

= lim
t↓0

∫
M1

pg1Z1
(t, z1)f1(z1)µg1(dz1) = f1(Z1) = f ◦ ϕ(Z2).

�
The fundamental solutions in Proposition A.3 are denoted with respect to the Riemannian

volume form. We can rewrite these with respect to the Lebesgue measure as follows: let the
Riemannian volume form be given in orthogonal coordinates, and let Kg

Z denote the fundamental
solutions (in terms of Lebesgue) at Z ∈ H+ of the heat equation corresponding to the Riemannian
metric g in the sense that the Radon-Nikodym derivative with respect to the Lebesgue measure is
already incorporated into the expression for Kg

Z : if pgZ(s, ·) denotes the fundamental solution (at
Z ∈ H+) as in Proposition A.3, then, for any test function f ,∫

H+

f(z)Kg
Z(s, z)dz :=

∫
H+

f(z)pgZ(s, z)
dz

µg(dz)
µg(dz) =

∫
H+

f(z)pgZ(s, z)
µg(dz)√
det(g)

.
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The following lemma follows directly from Proposition A.3. In order to translate the coordinate-
free result of Proposition A.3 to our setting, we assume from now on that M1 = M2 = H+.

Lemma A.4. For any i = 1, 2, let Kgi
Zi

denotes the fundamental solution (in terms of Lebesgue)
at Zi ∈ H+of the heat equations corresponding to the metric gi:

(A.2)

{
∂sK

gi
Zi

=
1

2
∆giK

gi
Zi
,

Kgi
Zi
(0, zi) = δ(zi − Zi).

If ϕ : (H+, g2) → (H+, g1) is an isometry such that ϕ(Z2) = Z1 and ϕ(z2) = z1, then

Kg1
Z1
(s, z1) = det (∇ϕ(Z2))K

g2
ϕ(Z2)

(s, ϕ(z2)).(A.3)

The generators of the Brownian motions on (S, g) (resp. (U, u))–(defined in Section 2)–are
defined on their respective spaces with {x ̸= 0} and {x̄ ̸= 0} for β ̸= 0 respectively and read

(A.4)
∆gf = y2

(
βx2β−1 ∂f

∂x
+ x2β ∂

2f

∂x2
+ 2ρxβ ∂

∂x

∂f

∂y
+

∂2f

∂y2

)
, for any f ∈ Ck+2(S),

∆uf = ȳ2
(
βx̄2β−1 ∂f

∂x̄
+ x̄2β ∂

2f

∂x̄2
+

∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

while the infinitesimal generators of the original SABR model (1.2) are

(A.5)
Af = y2

(
x2β ∂

2f

∂x2
+ 2ρxβ ∂

∂x

∂f

∂y
+

∂2f

∂ȳ2

)
, for any f ∈ Ck+2(S),

Aρ=0f = ȳ2
(
x̄2β ∂

2f

∂x̄2
+

∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

Note that for β = 0 the operators ∆g and A (resp. ∆u and Aρ=0) coincide.
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