LARGE AND MODERATE DEVIATIONS FOR IMPORTANCE
SAMPLING IN THE HESTON MODEL

MARC GEHA, ANTOINE JACQUIER, AND ZAN ZURIC

ABSTRACT. We provide a detailed importance sampling analysis for variance reduction in
stochastic volatility models. The optimal change of measure is obtained using a variety
of results from large and moderate deviations: small-time, large-time, small-noise. Spe-
cialising the results to the Heston model, we derive many closed-form solutions, making
the whole approach easy to implement. We support our theoretical results with a detailed
numerical analysis of the variance reduction gains.
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1. INTRODUCTION AND GENERAL OVERVIEW

1.1. Introduction. Monte Carlo simulation is the standard (if not the only) technique for
most numerical problems in stochastic modelling. It has a long history and has been success-
fully applied in many fields, such as biology [82], statistical Physics [d], Finance [[’7] among
others. The default order of magnitude for the variance of the estimator is O(N~'/2) with N
the number of sample paths. It has long been recognised though that several tricks achieve
lower variance with equivalent (hopefully zero) bias; among those antithetic variables and
importance sampling have become ubiquitous. We focus on the latter, for which large and
moderate deviations (LDP and MDP) provide closed-form formulae, making their applica-
tions pain-free and without additional computer costs.

The first attempt to reduce the variance of a Monte Carlo estimator based on asymptotics
originated, rather heuristically, in [€0]. This was then made rigorous by Glasserman and
Wang [[8], who also highlighted pitfalls of the method and by Dupuis and Wang [i2], who
provided clear explanations on the trade-off between asymptotic approximations and the
restrictions they entail on the induced change of measure. Guasoni and Robertson [20] put
this into practice for out-the-money path-dependent options in the Black-Scholes model, and
Robertson [86] developed a thorough analysis for the Heston model using sample path large
deviations. This is our starting point, and the goal of our current enterprise is to analyse
different asymptotic regimes (small-time, large-time, small-noise), both in the large deviations
and in the moderate deviations regimes, in the Heston model and to show how these yield
closed-form formulae for an optimal change of measure for importance sampling purposes.

We propose, in particular, a specific form of adaptive drift, allowing for fast computation
and increase in variance reduction. For geometric Asian Call options in the Heston model,
MDP-based estimators with deterministic changes of drift turn out to be no better than
those computed with deterministic volatility approximation in the LDP approach. However,
MDP-based estimators with adaptive changes of drift perform much better than their LDP
counterparts with deterministic volatility approximation, and in fact show a performance
very close to the LDP-based estimators in Heston. These adaptive MDP-based estimators
therefore provide an efficient alternative in models where LDP is difficult to compute.

Setting and notations Throughout this paper we work on a filtered probability space
(Q, F,P,F) with a finite time horizon T > 0, where Q = C([0,T] — R?) is the space of
all continuous functions, F is the Borel-o-algebra on © and F := (F;):e[o,7) is the natural
filtration of a given two-dimensional standard Brownian motion W := (W, W+). For a pair
of (possibly deterministic) process (X,Y), with X predictable and Y a semi-martingale,
we write the stochastic integral X oY := fo X.dY; and X oy W := (X o W); for any
t € [0,7]. We denote any d-dimensional path by h := (hy,...,hq) for d € N, and for
such a path, [|h|Z = fOT (|h1(t)[* + -+ + |ha(t)|?) dt. The Cameron-Martin space HY. of
Brownian motion is isomorphic to the space of absolutely continuous functions AC([0,T])
starting at zero and with square integrable first derivatives. We define a similar space
HE :={p € C([0,T) = RY) : oy =z + fot ¢sds, ¢ € L? ([0,T];R?)} for processes starting at
z € R? and a subspace H: " C H2 where functions map to (R*)? instead of R?. Whenever a
variable has an obvious time-dependence, we drop the explicit reference in the notation. We
also write C := C([0,T] — R) to simplify statements. Finally {X¢} ~ LDP(IX,Cr) means
that the sequence {X¢} satisfies a large deviations principle as e tends to zero on Cr with
good rate function I¥. For a given function f, we denote by D(f) its effective domain. We
finally write Rt := [0,00) and BV for the space of paths with bounded variation.

1.2. Overview of the importance sampling methodology. We consider a given risk-
neutral probability measure P, so that the fundamental theorem of asset pricing implies that
the price of an option with attainable payoff G € L2(Q;R) is equal to EF[G]. While, strictly
speaking, we do not need L?(Q;R) for pricing purposes, we require it to estimate the vari-
ance of payoff estimators. Monte-Carlo estimators rely on the (strong) law of large number,
whereby for iid samples {G;}1<i<,, from P o G! the empirical mean Gn = %Z?:l G
converges to the true expectation P-almost surely:
lim G, = EF[G].

ntoo
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Importance sampling is a method to reduce the variance of the estimator én, yielding a new
law Q such that EQ[G] = EF[G] and VQ[G] < VP[G] (and of course both the equality and

inequality remain true with G replaced by @n) Let for example Z := % denote the Radon-
Nikodym derivative of the change of measure, so that EF[G] = EQ[GZ~']. The variance of

the Monte-Carlo estimator based on iid samples of CA?,LZ ~! under Q is then
~ ~ . 2 _ 12
Ve [an*} = E° [GiZ*Z} —EQ [GnZ*l] =EP [GiZ*l} —EP [Gn}

If Z is chosen such that EF[G2 Z~!] < EP[G2], the variance is thus reduced. Finding such Z
however is usually hard, and we shall instead consider the approximation

(1.1) EF [éiZil} ~ clogE¥ [exp {ilog(G? ZEI)H .

for small € > 0, for two random variables G. and Z. whose choices will be discussed later.
The computation of this expression is then further simplified by the use of the Varadhan’s
lemma, (Theorem BT, which casts the problem into a deterministic optimisation over the
appropriate Cameron-Martin space.

1.3. Choosing an approximated random variable G.. Consider an attainable payoff
G(X), where X is a unique strong solution to the stochastic differential equation

(12) dXt = b(Xt)dt + O'(Xt)th, Xo = Xy,
where b,0 : R — R are sufficiently well-behaved deterministic functions and W is a standard
Brownian motion. The approximation of G is then defined as G. := G(X¢), where the

following are possible approximations of X:

Definition 1.3.1. Let X be a unique strong solution to (IZ2). The process X° is called

i) Small-noise approximation if

(1.3) dX§ = b(X§)dt + Veo (X)dWs,  X§ = 0.
it) Small-time approzimation if
(1.4) AX? = eb(X5)dt + Veo (X)) AWy,  X§ = o

iti) Large-time approximation if

[ 1 £ 1 (> £
(1.5) AX7 = bXP)dt+ —=o(Xp)AWs, - XG = a0,
The terminology here is straightforward since () follows from (IZ2) via the mapping
t — et and (I3) follows from (IZ2) via the mapping ¢ — t/c. The small-noise (I=3) comes
from the early works on random perturbations of deterministic systems by Varadhan [g1] and
Freidlin-Wentzell [I3].

1.4. General approach. We consider an asset price S := {S;};c[0,r] and the corresponding
log-price process X :=log(S) := {X;}+ejo,7), with dynamics

1
AX, =-—_Vidt+ VVidB;, X0 =0,
dVy = f(Vy)dt + g(Vy)dWy, Vo = v > 0,

where W = (W, W) is a standard two-dimensional Brownian motion and B := pW + pW*
with correlation coefficient p € (—1,1) and p := y/1 — p?. The drift and diffusion coefficients
of the volatility process satisfy f : Rt — R and g : Rt — RT and Assumption IZ1 if
not stated otherwise (e.g. in the case of large-time approximation in Section B=3 additional
assumptions are required for ergodicity purposes).

(1.6)

Assumption 1.4.1.
(i) The function f:R*T — R is globally Lipschitz continuous;
(ii) The function g : RT — RT is increasing, strictly positive outside origin. Furthermore,
there exist K >0 and p > % such that, for all x,y € RT,

l9(z) = g(y)| < K|z —y|”.
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Remark 1.4.1. Condition (i) in fact implies p-polynomial growth condition for p > %, i.e.,
lg(z)| < C(1+|z|P) for allz € RY. Indeed, let y = 0 and z € R, then |g(z) — g(0)| < K|z|?
and by the triangle inequality |g(z)| < |g(0)] + K|z|P.

Under this assumption, Yamada-Watanabe’s theorem [£2, Theorem 1] ensures the existence
of a unique strong solution to (IT8). Consider now the continuous map G € Cr, yielding the
option price E[G(X)]. Finding the optimal Radon-Nikodym derivative encoding the change
of measure from P to Q is hard in general and we instead consider the particular class of
change of measure

_do
CdP |,
which is well defined and satisfies Ef[Z7] = 1 whenever h € HY.. Now let F := log |G/, so that
EF[Z:'G(X)?] = EF[e2F(X)~108(Z1)]; the approximation (1) then yields for W¢ := /e W
the estimate

19) L) = mspelogE [p{l {QF(XE) . (_;mn? Fhor WET> }H

1. .
(1.7) Zp - :exp{—2||h||§~—|—hot WT},

to compute, for some proxies X°©.

Definition 1.4.1. A path h € HS minimising L(h) is called an asymptotically optimal change
of drift.

From this point onward, several approaches exist in the literature. In [0, 23, 00] fully
adaptive schemes are considered, where h is function of (¢, Xy, V;). These schemes effectively
reduce variance, but are expensive to compute. For that reason, we look at the case where h
is an absolutely continuous function with derivatives in L?([0,T];R). The main advantage is
the fast computation in comparison to the fully adaptive schemes. Conserving this advantage,
we also look at paths h of the form fo h(t)\/vtdt (yielding a stochastic change of measure)
for which computations are usually just as fast and variance reduction is higher. In the
case where h is a deterministic function (the approach is similar in other settings), the main
methodology we shall develop below then goes through the following steps:

i) We choose appropriate approximations X¢ as in Section [3;
ii) We prove an LDP (MDP) with good rate function I for {X®}.~0;
iii) We show that Varadhan’s Lemma applies, so that the function L(h) in (IR) reads

(1.9) L(h)= sup £(X;h),
XeD(IX)
where
1 . .
(1.10) £(X;h) :=2F(X) — (—2|h||2 +horp W€T> —IY(X).

iv) We consider the dual problem of () in the sense of Definition 2. For more details
see the remark below.

Definition 1.4.2. The primal problem is defined as

(1.11) inf  sup £(X;h),
heH] xeD(1X)

while the dual consists in

(1.12) sup inf £(X;h).
XED(IX) hGHOT

Remark 1.4.2. In many cases the primal optimisation problem (CId) may be difficult to
solve analytically, so we deal with the dual problem which turns out to be much simpler. With
further assumptions, it may be possible to prove strong duality, however this is outside the
scope of this paper. Note in particular that the functional £ does not admit any obvious
convexity property, making classical duality results unusable (see for example [37, Section 4]).
Recent results about duality and optimality conditions in stochastic optimisation [3, B5] could
provide some hints though.
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Remark 1.4.3. Small-time approxzimations may induce important loss of information because
the drift term in H® (the quadratic part in h) can be negligible and can thus lead to a trivial
dual problem. In the Black-Scholes setting (Section B1), a small-time approxzimation leads
to the following problem: let F : Ct — R be a smooth enough function so that Varadhan’s
Lemma (Theorem [BIIA) holds, then the small-noise approzimation problem reads

T . 1 T 1 T .
0 2 0 2 0

However, in the small-time case we actually have

T 1 /T
£(x;h) = 2F(x) — / hykdt — = / x2dt.
0 2 0

In this small-time setting, the dual problem (II2) then reads

T T
- 1
sup inf £(X;h)= sup inf {QF(X)—/ htj(tdt—f/ det}
xeD(IX)hEH% XED(IX)hEHg- 0 2 0

1 /T T
= sup {QF(X)—*/ %7dt — sup / htktdt}.
xeD(1X) 2 Jo heH?. Jo
Clearly the path h can be multiplied by any arbitrarily large positive constant to increase the

inner supremum, and therefore the optimisation does not admit a maximiser. In these cases,
we thus do not consider the small-time approrimation.

Remark 1.4.4. Another drawback of the outlined method exists. In most cases, solving the
dual problem in step i) involves numerical optimisation, which in turn means that the Novikov
conditions of the resulting optimal change of drift h cannot be rigorously verified. However,
practically we see notable reduction in variance, implying that the obtained Radon-Nikodym
derivative induces a change of measure and is indeed a martingale.

The paper’s structure is as follows. In Section B we look at stochastic volatility models
satisfying Assumption 270 and derive explicit solutions for large deviations approximations
for path-dependent payoffs of the form F ( fOT 19th,5) for general deterministic paths ¢ € Cr.
This includes state-dependent payoffs of European type, i.e., functions of Xp (for the choice
of ¥ = 1) and of Asian type J& X, dt (for 9, = L=1). In contrast to [36] we consider a more
general approach using Garcia’s theorem [I2], which includes small-time approximations and
studies stochastic changes of measure. Later in Section B we study moderate deviations,
where we derive small-noise, small-time and large-time MDPs, whose advantages, compared
to LDP, are simpler forms of rate functions. In Section B, we provide examples of models used
in mathematical finance, which satisfy our setup, with a particular emphasis on the Heston
model. Finally, in Section B we highlight numerical results for the Heston model and compare
variance reduction results for different approximation types. Some of the technical proofs are
relegated to the Appendix [l

2. IMPORTANCE SAMPLING VIA LARGE DEVIATIONS

2.1. Small-noise LDP. We start with the small-noise approximation of (ICH):

1 [ [
(2.1) dX7 = —gVidt+ Ve VEdB,, X§ =0,
dV;E = f(‘/ta)dt + ﬁg(Vf)th, VEJE = 9.
2.1.1. Large deviations. In the spirit of [3], we provide an LDP in C([0, 7] — R?) for {X¢,V¢};
usual assumptions involve non-degenerate and locally-Lipschitz diffusion though, which clearly

fails for square-root type stochastic volatility models. Hence, to derive LDP for the (log-)price
process, it is first necessary to derive LDP for the pair {V¢,Y¢} given by

d}/ts — /Vvtgthe,L ,
AV = £ (Vi) dt + g (Vi) dWy,
assuming an LDP for V. To be more exact we follow [36] and assume the following:

Assumption 2.1.1. {V¢}..q ~ LDP(1V,Cr) with a good rate function 1V with D(IV') C H:Y.
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Thus, to continue, we first need to show that Assumption ZZI1 holds in our setting and
check whether any further assumption on the coefficients are necessary. Many processes
arising from volatility models, where the classical Freidlin-Wentzell does not apply, have been
studied in the literature. For example Donati-Martin, Rouault, Yor and Zani [9] show that V¢
satisfies an LDP in the case of the Heston model (B4), then Chiarini and Fischer [5] show
existence of an LDP for class of models with uniformly continuous coefficients on compacts,
Conforti, De Marco and Deuschel [B] show an LDP for non-Lipschitz diffusion coefficient of
CEV type. Most notably, Baldi and Caramellino [i] cover the case of Assumption 271 with
f(0) > 0 and sub-linear growth when f,g — co. We now state their main result, which
requires a small additional assumption.

Assumption 2.1.2. Both f,g: R — R have at most linear growth at infinity and f(0) > 0.

Theorem 2.1.1 (Theorem 1.2 in [{l]). Let V¢ solve (2) on [0,T] with vo > 0. Then under
Assumptions [ and ZI3 the process V¢ satisfies an LDP with good rate function

T .
Wiy = L5 [ it e € B = £ + gt = w,

400, otherwise.
The process Y*© = fo VVE de’J‘ is simply the It0 integral of a square root diffusion against

a Brownian motion, which falls exactly into the setting of Garcia’s Theorem [I4]. Before
stating it (Theorem E12) though, we require the notion of uniform exponential tightness.

Definition 2.1.1 (Definition 1.2 in [i4]). Let U denote the space of simple, real-valued,
adapted processes H such that sup,~q |H;| < 1. A sequence of semi-martingales {M*®}__, is
uniformly exponentially tight (UET) if, for every c,t > 0, there exists K., > 0 such that

> Kc,t:|) < —c

Theorem 2.1.2 (Theorem 1.2 in [14]). Let {Z°}_ . be a sequence of adapted, cadlig stochas-
tic processes, and {M°®}_. a sequence of uniformly exponentially tight semi-martingales. If

H,_dM;
0

lim sup € log <sup P [sup
€10 Heu |s<t

the sequence {Z°, M®}_ . satisfies an LDP with rate function T, then the sequence of triples
{27, M*,Z% o M®}__ satisfies an LDP with the good rate function

I(z,m), ¢=zom, meBY,

I(z,m,p) = {

0, otherwise.

In particular, the sequence of stochastic integrals {Z° o M} . satisfies an LDP with rate
function
I(¢) :=1inf{I(z,m) : p = zom, m € BV}.

Theorem 2.1.3. Under Assumption 213, {V, W+ Y} ~ LDP(IV'W:Y C([0,T] — R®) with
VWY _ {Iv(w) + Iw(w) , p=VYow, we Ha

00, otherwise.

Moreover, we also have {V¢,Y*} ~ LDP (IV’Y,C ([O,T] — RQ)), where
0 ,0) = inf {1V () 417 () 0= [ Vaina}.
0

with TV (w) = %fOT widt if w € HY. and infinite otherwise.

Proof. Since the scaled Brownian motion W= is a uniformly exponentially tight martin-
gale [, Example 2.1], we only need the LDP for the pair {v/V¢, W1} to apply Theo-
rem 27172 in order to obtain an LDP for the stochastic integral Y. The LDP for v V¢ is im-
mediate from the Contraction principle [8, Theorem 4.2.1], where the corresponding rate func-
tion reads IVV (1) = 1V (¥?) and the joint {v/Ve, W1} ~ LDP (I\Fvvw,C([O, T — RQ)) is
thus a classical result, where the rate function is simply a sum of corresponding rate functions:
IVVW (4 w) = IV (42)+1W (w). Here, IV is nothing else than the usual energy function for the
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Brownian motion from Schilder’s theorem [38]. This allows us to apply Theorem 12 to ob-
tain {vV,W',Y*} ~ LDP (IWW’Y,C([O,T] = R3)) with IVV WY (4, w, ¢) = IVVW (3, w)

if @ = ¥ ow for w € BY and infinite otherwise. Let us now consider a continuous map
(v,9,2) — (2%,y, z) through which we recover the LDP for {VE, wet, YE}, where the rate

function IV'"W:Y (¢, w, ¢) = IW’W*Y(ﬂ,w,é) is granted by the Contraction principle. Fi-
nally, by projection, we have the LDP for the pair {V¢, Y} with the rate function

1Y (1, ¢) = inf {I"WY (¢, w,¢) : w € HY } = inf {IWaY(\/E, ¢): 6= /Dow, we ]HIOT}
- inf{IV(zp) TV (w): ¢ = Vhow, we HOT} ,

where in the second line, the fact that absolute continuity implies bounded variation was used
after application of Theorem 212. O

Remark 2.1.1. The form of the rate function is the same as in [36, Lemma 3.1], but now
holds for a general volatility process adhering to aforementioned Assumption EZ11.

We now continue similarly to [36, Section 3]: the LDP for X¢ and its corresponding price
process S€ are obtained from Theorem PZI=3 using the Contraction principle [R, Theorem
4.2.1], since both maps X¢ = X¢(V¢,Y®) and S¢ = S¢(V=,Y*) are continuous.

2.1.2. LDP-based importance sampling. We consider two changes of measure, with a deter-
ministic and a stochastic change of drift, and start with the former.

Deterministic change of drift. The drift is of the form
aQ { Wt L
— i=expihor W' ——|h|7¢,
P |, 2

with h € H%. The limit (I=8) then reads

1 . 1 .
L(h) =limsupelogE [exp {6 (2F(XE) —hop W' + 2||h|2T> H .
el0

We now follow the same approach as in the case of deterministic volatility in Section E-. Let
F : Cy — R* be continuous and bounded from above and h be of finite variation, then the
tail condition of Varadhan’s Lemma in Section BT is immediate from Lemma EZT1 and the
functional L in () reads

. 1/ .
D) = swp SGeh).  with S i 2F(er(x) ~hopx” + & (Il — [%]3)

xeHY,

where ¢(x) is the unique solution on [0, 7] to

sbt(X):—%%(X)Jr de(x)ex(t)",  with  u(x) = f(u(x)) + g(¥e(x)1(8),

with initial conditions ¢g(x) = 0 and g = vy, and 0 := (p,p). To solve the dual prob-
lem (ITT2), the inner optimisation reads

) 1, .
] . _ T, 1 2 el2
hlenH_HfOT £(x,h) = hlerﬁ-]IOT {2F((pT(X)) horx' + 5 (||hHT ||X||T)}

N VP
=2F f BT g -
(pr () + inf, { oL —hopx —

= 2F (¢r(x)) — %7,

and can then be solved as

(2.2) h* = arg max {F((pT(x)) - ”X2||T} )

0
x€Hy,

which is an asymptotically optimal change of drift in the sense of Definition 2.
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Stochastic change of drift. We now consider the stochastic change of measure

d . 11 2
Q 1= exp (h\/V) op WT — = Hh\/VH ,
dP |z, 2 T

with h a deterministic function of finite variation such that E[g%} = 1; this holds for ex-
ample under the Novikov condition E [exp fo Bt ||2tht)} < oo. We again consider
G :Cr — R" and let F := log |G|. The minimisation problem (IZ8) now reads

L(h) = limsupe log E [exp { ! (QF(XE) — (hVVe) o W 4 ;Ih\/ﬁll%) H

el0

1 . 1.
= limsupelogE [exp{ (ZF(Xg) hopr YE! + 2||h\/ﬁ||%) H .

el0

Since F' is continuous, the term inside the exponential is a continuous function of {V¢,Y*}.
Varadhan’s Lemma then yields L(h) = Supyepo, £(X, h), with

h h
£(x,h) = 2F (pp(x (h\/7> or x| + I \/7||T A ||T
where x = (21 75) " and {¢(x),%(x)} are unique solutions on [O,T] to

pr(x) = *%%(X) Ve (x)ex)T,  with  di(x) = f($(x)) + g(ve (%) (8),

with initial conditions (¢, %0) = (0,vg). For the dual problem, we search for a change of
measure with h such that:

* = argmax X 7%
< e {Flortn - B2 Y,
(2.3) P (x) Z—*wt() be(x)ex(t) ", ®o =0,
Ve (x) —f(¢t( ) + g(te(x)) 21 (2), Yo = o,
peo— [ X0 g,
Ye(x)

The maximisation problem is very similar to the one with deterministic change of drift (222).
However, as we will see in Section B, the stochastic version usually gives better results.

2.1.3. Application to options with path-dependent payoff. Consider a payoff G(Jor X)
with G : RT — R differentiable, ¥ a positive function of class C* and F := log|G|. We only
look at the deterministic case, namely the optimisation problem (2Z22) since the solutions
to (Z3) can be easily deduced from it. It reads

h* = argmax /19(,0 )dt ”X”T
xeHY,

i(x) = —%wt(x) + V(%) ex(t) " o =0,
Py (x) F(he(x)) + g(e(x)) a1 (1), o = vo.

The following lemma helps transforming the above optimisation problem.

Lemma 2.1.1. Let x € H} x HY.. The function & : H) x H}. — HY x HY " such that
R(x) = (v, 1) is solution to

. 1 . ; ; .

2r(x) = —5un(x) +V(x)ex(t) T, with (%) = f(¥i(x) + g ()i (8),
with initial conditions g = 0 and ¥y = vy, is well defined and is a bijection.

Proof. Clearly ¢ € L? ([0, T]; R) and the unique solution t to the ODE v, = f (1) + g(t¢) 1
with ¥g = v > 0 is strictly positive under Assumption 41 by [, Proposition 3.11]. There-
fore ¢ € H%”+ and R(x) = (p, ) is well defined. Finally, £ is clearly a bijection and its
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inverse can be computed explicitly as

A (z) = ( / fa(t) = S(2(0) 4, 1 / {z'lu) +30(l) a0 = () } dt) .

9(z2 (1)) p 2o(t) 9(z2(t)

Using Lemma P11, we can substantially simplify the optimisation problem by writing it
in terms of £(x). To be more precise, we will make use of the following transformation:
v —f(®) _¢+3¢

(2.4) U®) = W) and  Z(p,9) = Jo

which stems from the two components of £(x). The optimisation problem becomes

T . 1 T Z(@talbt) — PU(l,/Jt) 2
*, * = F v d - — U 2 < - > 1 |
o {w,wiregﬂr;jg;w{ (/o g t) 2 /0 { (¥e)* + . .

by =U@W*),
by = 2@ —pUW)

D

This allows us to apply Euler-Lagrange to the problem seen as an optimisation over

{fo Vypedt, w}
L)
dt L vp*ve |
p(ZpU)} B U ZpU{ 1 Z p C}
—2 - )

(v (S T
dat Lg(v) »° 9() g*(¥) 2 2V 2 g3 ()

where ¢ := f'(¢)g(¢) + (1/1 — f(¥))g'(¢). This system of equations is still hard to solve for
general f and g, but can be solved for the Heston model, as done in Section &2 below.

(2.5)

2.2. Small-time LDP. Applying the mapping ¢ — et to (IH) yields

1
AXp = —Levidi+ VBT, XG0,

(2.6)
dVE  =ef(VE)dt + Veg(VE)AW,, Vo = vp.

Robertson [36, Proposition 3.2] showed that fo VEdt is in fact exponentially equivalent to
zero (Definition BT), so that the drift of V¢ can be ignored at the large deviations level.
In the case of a general drift f, the following lemma provides a similar statement:

Lemma 2.2.1. The process Ef(; f(ViE)dt is exponentially equivalent to zero.

Proof. Markov’s inequality implies that, for any § > 0,

P VOT FVE)s > 25‘5] < exp {35} E lexp {i /OT f(Vf)dsH |

and we are therefore left to show that limsup, ,elogE {exp {% fOT f(Vf)dsH is finite. To
that end we apply the integral Jensen inequality

exp {1 / Tf(Vf)dsH <1/ ' o { i)} as

and the linear growth condition from the global Lipschitz condition in Assumption [Z-1:

;/OTE[exp{fﬂVf)H s < ;/OTE{exp{f<1+|ng|>}] ds = Lot /OTE oo { T} as.

E
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Next, by the properties of the logarithm and the supremum

1 /7
expl = [ fv)ds
€Jo
: 1 _ T T
<limsup<elog — p + T + limsupe log E |expq —|V| | ds .
10 T €10 0 €

We can now apply Gronwall’s Lemma to the last term, which yields for some C > 0,

limsupelogE
el0

e T
limsup e log E exp{/ f(VSE)ds} < T +limsupelog {exp{CT—i—vo}} =T(1+wvp),
el0 €Jo €10 €
which is finite. ]

Following this lemma, the results from the previous section could simply be adapted so that
{Ve,We} satisfy the same LDP by simply setting f = 0 (or equivalently x = 0 in the case
of Heston (£4)). However, this violates the condition f(0) > 0 in Baldi and Caramellino [i].
Fortunately, Conforti, Deuschel and De Marco [G] removed the need for strict positivity on
the drift at the initial time by imposing more stringent conditions on the diffusion.

Assumption 2.2.1.

(i) There exists &€ > 0 such that g(y) = &|y|" for v € [1/2,1) for ally > 0;
(ii) The equality f(y) = 7(y) + Ky holds for all y > 0, where T is a Lipschitz continuous
and bounded function, and 7(y) > 0 in a neighbourhood of the origin.

Theorem 2.2.1 (Theorem 1.1 in [6]). Under Assumption B2, the solution V' to ()
satisfies {VE} ~ LDP(IV,C([0,T] — RY)) with

]. T th — Kg&t > 2
IV (¢) = — / < 1 dt.
(30) 262 o 902[ {p:#0}

Therefore by setting K = 0 we can use the methodology form the previous section since
the LDPs are the same. Similarly as before, we only consider the deterministic change of
drift, since the stochastic case is very similar. We therefore search for h such that

. _ I
h* = argmax { F(pr(x)) ,
xeHY, 2

where ¢, (x) is the unique solution on [0, 7] to

{mx) = Vir(x)ex(t)", ¢o(x) =0,
Yi(x) = g(e(x))21(t), o = vo.

2.3. Large-time LDP. Variance reduction for affine stochastic volatility processes via im-
portance sampling through the large-time approximation is extensively covered in [19], so we
do not repeat the study and refer the reader to the aforementioned work.

3. IMPORTANCE SAMPLING VIA MODERATE DEVIATIONS

In the previous sections, large deviations provided us with a way of computing the asymp-
totic change of measure for importance sampling, via an e-approximation of the log-price X¢.
While the large deviation rate function is a convenient quadratic function in the deterministic
volatility setting, it is in general rather cumbersome to compute numerically, unfortunately
offsetting any importance sampling gain. Moderate deviations act on a cruder scale, but
provide quadratic rate functions, easier to compute. Suppose that the sequence {X¢}.5q
converges in probability to X. Moderate deviations for {X¢}.~( are defined as large devia-

(iOIlS f( T ‘he rescale(l Sequellce
f&h(é) >0 ’
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where h(e) tends to infinity and +/2h(g) to zero as € tends to zero. A typical choice is h(e) =

g% for & € (0, 1), equivalently m =& for a € (0, 3). We shall stick to this choice of &
here in order to highlight rates of convergence. We now introduce the approximation
(3.1) X=X +4e® (XE—Y).

This process is centered around X and is a simple candidate. Furthermore, in stochastic
volatility models, and particularly in large-time setting, the moderate deviations rate function
is simply the second-order Taylor expansion of the large deviations rate function around its
minimum X [27, Remark 3.5]. We again consider the dynamics (IC8) with Assumption 2T
for the coefficients. We further assume the following conditions:

Assumption 3.0.1.

(i) For f € C})(RT — R), the equation vy = vy + fotf (¢s) ds admits a unique strictly
positive solution ¢ € C?([0,T] — R);

(ii) The small-noise approzimation (E) of V satisfies an LDP with the good rate func-
tion IV and speed € such that IV admits a unique minimum and is null there.

Remark 3.0.1. When a large deviations principle holds, then the infimum of the rate function
has to be zero, indeed, since P(X¢ € B) ~ exp{—% inf,ep I(x)}, then taking B to be the whole
space, the probability on the left-hand side has to be equal to one, and the infimum is thus
null. It may not be attained though. However it is in the case of good rate functions (see
for example Dembo-Zeitouni’s book, bottom of Page 5). As stated at the end of Section 1.1,
we are only concerned here with large deviations with good rate functions. The only gap
that could appear is the case of several points where zero is attained, but this does not seem
restrictive in our setup.

As it will be shown in Lemma BT, the sequence {V<e}eso converges in probability to
the function v as a consequence of Assumption BIl. This provides a natural choice for the
centered process X; = —% fot 1sds, so that the approximation (B) reads, for any t € [0, 7],

= [t [t
(3.2) X; = —f/ Psds +e7 ¢ (Xf + 7/ wsds) .
2 Jo 2 Jo
3.1. Small-noise moderate deviations. For the small-noise approximation (21), the pro-
cess X¢ in (B2) satisfies the SDE

~ 1 1 _
dXtE = (—2 =+ 25a> ’(/}tdt + E_ade
1

5 (1—e7) dudt -7 (—;Vfdt + ﬁ\/Vdet>

1- 1 -
= —gurdt — oe (V7 = ) dt 42 /VEdB,,

starting at )2’5 = 0, where the small-noise approximation () of the variance reads
AV = f(V)dt + Veg(Vi)dWy, Vg = vo.

This transformation creates a discrepancy between the decreasing speeds of X< and that
of V¢ (speed of convergence to zero of the diffusion part of the volatility process i.e. g3—@

versus E%). Since X¢ is our reference, we adjust the speed of the LDP via e Vve. With
Q B _
r= (1-2a) and  nf = P (VE =),
we obtain the system
~ 1_ 1 ~
dX; = —§wtdt — infdt + e/ ViEdBy, X5=0,
(3.3) i =P (F(VE) = F())dt + Veg(VE)AWe, f =0,

AVt = VPRt + e (VT )aw, V¥ = v,
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where the notation V% was used to emphasise the change of speed to £28 In the following,
we provide an LDP for {n°} (equivalently an MDP for {V5#}). We relegate more technical
proofs to Appendix Al

3.1.1. Theoretical results. The main moderate deviations result of this section is Theo-
rem BT, but we first start with the following three technical lemmata, useful for the theorem
but also of independent interest, proved in Appendices BI-A2A-A3:

Lemma 3.1.1. Let {Z°}.~0 be a family of random wvariables mapping to any metrisable
space X and satisfying an LDP with good rate function 1. If there exists a unique xg such
that I(xo) = 0, then for all 8 > 1, z" satisfies an LDP with the good rate function

I(2) = {O, for x = xy,

400, elsewhere.

If for B > 1, Z¢ satisfies an LDP with speed € and the good rate function 1, then Z° is
exponentially equivalent to xy with speed €.

As a consequence of this lemma, the sequence {Z°} converges in probability to .

Lemma 3.1.2. Let {Z°}.50 be a sequence of random variables mapping to any metrisable
space X and satisfying an LDP with good rate function I such that I(x) = 0 if and only if
x = g for some xg € X. If Z¢ is uniformly integrable, then lim. o E[Z°] = x¢.

Lemma 3.1.3. Let V= be given by (83) such that f,g € C(RT — R) satisfy Assump-
tion TZ2. Then {V=F} converges almost surely to the unique solution of Py = f(i¢) on
[0, T] with boundary condition ¥ (0) = vy.

Theorem 3.1.1. Let B,v9 > 0 and let f,g € C(RT — R) be such that Assumption [4-] is
satisfied and let We := \JeW and V=P n° as defined in (83), then under Assumption BI1,
the triple {VE# n°, W<} satisfies an LDP with speed € and the good rate function

1. . o T T

IV’"’W(v,n,w) — §||’LU||§~, wa € Hg“7 v = ¢a n= f( )77 + g(d))w7
400, otherwise.

3.1.2. MDP-based importance sampling. Consider the system (B3), and let W* := /eW

and Y® := VVe8 o W*. First we apply Theorem BI, which in turn allows us the use of

Theorem Z13. Next, the Contraction principle and [B, Exercise 4.2.7] imply that the triple
{n®, W*®,Y*} satisfies an LDP with speed ¢ and good rate function

]- T . 0 ’ H - . —
- f H = s)Ms s ds, y = ow,
Il itw et n= [ {7 +o@in)}ds y = fGow

400, otherwise.

"WYY (n,w,y) =

Remember that the exponential tightness condition necessary for [R, Exercise 4.2.7] is auto-
matically granted, given that the space we work on is Polish [B1, Lemma 2.6].
Consider a payoff G € Cr — R* and let F := log|G|. Recall that we are interested in

2F di’]

finding a measure change minimising E [e 3G |-

Deterministic change of drift. We first consider a deterministic change of drift, via

d 1 . .
S —ep{ L rhorwT L
dP | - 2
T
for h € HY with h of finite variation. In the spirit of moderate deviations, we use the
approximation

40 L .
—| = —=||h hopr W¢
|, = oo {3l her W}

and thus aim at minimising

1 ~ 1, . .
L(h) = limsupelogE [exp {s (QF(XE) + §||h||§« —hoyp WET) H .
el0
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Under the conditions of Varadhan’s lemma B2 (for example if F' is bounded), then
L(h) = supycpg £(x,h) where

)7 [
2 2

£(x,h) =2F <; /0.(1/7,5 + m(x))dt + QYT(X)> —horx' +

with @ := (p 7) ',
B o= [ {fEne 4@ s ad Y6 = \fiex

Minimising L(h) is far from trivial, and hence, as before, we define the optimal change of
drift h™ as a solution to the dual problem inf0 £(x,h), so that, with n as in (B34),
heH?,

Y(x) = ﬁfx,

e = o+ /0 F(s)ds,

& w9 = [ {#hn0 + gt)in (o)} s,

h* — arg max {F (—1 /0'(@ ()t + QYT(X)> _ *2%} .

x€HY. 2

Stochastic change of drift. We now consider instead a stochastic change of drift in the form
%IIT = exp {—%Hh\/VHQT + (V) or WT}, for h € HY, h of finite variation and with

E [%] = 1. Again, we use the approximation

d 1. .
B meo |-GV + (T o (W
Fr

and aim at minimising

L(h) =limsupelogE {expi {2F()Z'E) + %Hhv Ves|Z — (hv Vf’ﬁ) or WETH .

el0

If Varadhan’s lemma conditions hold, then again L(h) = sup,cpo £(x,h) where

£(x,h) = 2F (; /0.(1/% + 0 (x))dt + QYT(X)> - <hﬁ) or xT + ”h\?”% - ”5‘2‘|2T7

with 7 defined as in (82). As minimising L(h) is a priori complicated, we define our optimal
change of drift h* as a solution to the dual problem

x* = arg max {F (—; / ('(Z)t + nt(X)) dt — QYT(X)) . ||X2||2T} 7

XGH% 0

t
B = o+ /0 F(a)ds,
t

mx) = [ {F0n0+ g0 (5)} ds,

b /Jgd

3.1.3. Application to options with path-dependent payoff. Consider an option with
payoff G(9 or X), where G : R — R™T is a differentiable function and 9 a positive (almost
everywhere) function of class C1([0,7] — RT). The payoff is then a continuous function of
the path. Now let F' = log|G| and F(z) = F(z — %fOT 1s¥.ds) and suppose that Assump-
tions 20 and BT hold.
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Deterministic change of drift. We proceed in a similar fashion as in Section B and consider
the transformations

o= \Jopin i) =3 and 0= f@n+ (@i,

so that the optimisation problem (B3) for a path-dependent payoff can then be written as

(3.6)
* n* a;ig;{aox{ </ 19t<ptdt>—/ {U(n) +'Z(<p77)ppU()‘ }dt},

S
3
[

B = (U(n*) = (2(e" ) = U ')
with .o
_a=fm _ gt
Un) = @) d  Z(p,n) Jo

Then, by applying Euler-Lagrange to the problem seen as an optimisation over { [; J:¢¢dt,n},
we obtain the system of ODEs

Z—pU = %)\ﬁzﬁ W,
20 VO (1 f)\ o f@)
dt{ @) Wg(@} wﬁ(aﬁ*”gw‘))) Ve

with boundary conditions A = —2F/T and Up = —piry/ zZTFIT, where F/T =F ( fOT ﬁtcptdt).

— Ap¥ \f—

9@ simplifies the problem to the linear ODE: A — fA = %)\19

Introducing A := g(w)

with Ar = 0, with solution

)\ t
At = Eeth </ eBSﬂst — ’YT) y for t € [OaT]a
0

where B := [ f(1¢)dt and v := [; eB*9;dt. We can now solve for U and Z:

U—A<u+2pﬂ\/5> and ZA(pu+2ﬁﬁ> ,

with u = %g(z/;)e_B(’y — 7). Our optimisation problem was posed over {fo D pedt, 77} SO we
require the solution in terms of this couple, and therefore

/ Vspsds = )\/ {gps — cps} ds + 1noTePT | where
P 7 7 .2 B ' —B, 1 — —
¢ = <U+ 219\/;) \/1; and  ¢"=e /O e (us+2193 ¥s | g(¥s)ds

y ‘ 1 - _
) = 2o [ e (w500 /5.) a()ds + e
0

Here, \,7m9 € R are parameters over which we perform our optimisation. Thus the original
optimisation objective (88) becomes

t 2 T —2
_ 1 A _
A*,mg = arg max F<)\/ Vs {gb;—gbg}ds—knoTeBT) ——/ {‘gbf|2—|—p ﬁfzﬁt}dt .
A mo€R 0 2 2 Jo 4

Stochastic change of drift. The stochastic change of drift objective is equivalent to the one
with deterministic drift, the difference being how h is calculated.

3.2. Small-time moderate deviations. We now mimic the results of the previous sec-
tion, but in the context of small-time moderate deviations. We again consider the log-price
dynamics (IT8) under Assumption [Z0 and Assumption BT, Let a € (0,1) and define

Xe = e~ *X¢, so that
~ 1 1 ~
dX; = —gsl_avfdt +e2 %/ VEdB,, X§ =0,
AV =ef(Vi)dt + Veg(Vi)dW, Ve = vo.
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As a consequence of Theorem B2 the results remain the same as in the case of small-noise
moderate deviations of the previous section with f = 0 and ¢ = vg. This being the case, we
do not repeat them here. Let us nevertheless note that in the case of change of measure with
deterministic drift, the problem is similar to the one, where V' is constant equal to vg.

3.2.1. Theoretical results. Analogously to Lemma B3 and Theorem BT, we have

Lemma 3.2.1. Let V¢ be given by (833) such that f,g € C(RT — R) satisfy Assumption TZ1.
Then {V€} converges in probability to vg.

Theorem 3.2.1. Let vg > 0 and let f,g € C(RT — R) be such that Assumption [[Z1 is
satisfied and let W€ := \/eW and V=8 n® defined as in (83), then, under Assumption BT,
the triple {VE# n°, W<} satisfies an LDP with speed € and the good rate function

1. , - .
IV’TI’W(1)7’I7, w) — 5”11)“%, wa € Hg“v v=1, 0= g(w)w7
400, otherwise.

3.3. Large-time moderate deviations. We now consider a rescaling of () defined as
VE =Ve and X{ = X, so that under Assumption 21 and Assumption B=XI,

dxe

1
fivtsdt + e/ VEdBy, X& =0,
1 1
dve = —f(Vadt+ —g(VS)dW,, VE =g > 0,
t €f(t) +\@g(t) t, Vo =0
which leads to Regime 2 in the slow-fast setting of [33, Theorem 2.1], by choosing the time-
scale separation parameter equal to . The following assumption is needed in order to conform
to the conditions in [33].

(3.7)

Assumption 3.3.1.
(i) [ is locally bounded and of the form f(y) = —ky + 7(y) with T globally Lipschitz with
Lipschitz constant Ly < k. In addition, the tail condition lim), ;o % = k holds.

(i) The function g is either uniformly continuous and bounded from above and away from
zero or takes the form g(y) = &|y|%9 for qq € [%, 1) with £ # 0.

Remark 3.3.1. Together with Assumption [Z-1, Condition (i), necessary to ensure er-
godicity of the wvolatility process, collapses g to the form g(y) = f\yﬁ (for details we refer
to [274, B3] ).

3.3.1. Theoretical results. In order to apply the methodology from the previous sections to
derive the desired changes of measure, we need a large-time MDP. More precisely, we need
an MDP for {X¢ /eW,/eW} in the case of deterministic drift. We do not consider the
stochastic drift change here, since a rigorous treatment is out of scope of this paper. Similar
problem has been studied in [83, Theorem 2.1] and [27, Theorem 3.3], where authors propose
fewer conditions, although in a simpler setting (which happens to include the Heston model

as well). We now introduce a theorem, which is a direct application of [27, Theorem 3.3]
and [83, Theorem 2.1], that provides the desired MDP.

Theorem 3.3.1. Let Ly denote the infinitesimal generator of V' before rescaling, i.e.

.01
Lyvh=fh+ Egzh.
Under Assumption 21 and Assumption B3 the following hold:
1) There exists a unique invariant measure p corresponding to Ly ;

it) The process X¢ converges in probability to —%ﬁt, where T = fooo y u(dy);
iti) There exists a unique solution ¢ with at most polynomial growth to the Poisson equation

Ly (s)(y) = y%@ with /O h <(y)p(dy) = 0.

Furthermore, denote Q := [~ q(y)q" (y)u(dy), where
PV +<Waly) PvY
0

q(y) = 1
0 1
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Then the triple {X¢,\/eW,/eW} follows an MDP with good rate function Iq, where
1 T . .
Ig(¢) :=inf {2/ ujusds cu € L2 ([O,T];RB) L dTQ = uTu} ,
0

if € AC and infinite otherwise.
Lemma 3.3.1. The matriz Q is invertible.

Proof. Let Y a random variable with distribution y, the invariant measure. Then

A =5 [(” VF4009) pQY] B, [V +i0)a(v)] B, [T

=5, {[ov7 o[ | - B [VF cnna] 7 {1 -8, [V} 20,

by Cauchy-Schwarz, where an equality would imply that V is constant p-almost surely. This
implies f(v) = g(v) = 0, which is not possible due to Assumption 20 on f and g. O

3.3.2. Application to options with path-dependent payoff. Let us again consider an
option with a continuous payoff function G and let F' = log|G|. Following the approach of
the previous sections and with similar notations, we search solutions to the dual problems for

deterministic change of drift. Let x := (:L‘l To $3)T and x := (:172 {IJ3)T. By considering
a deterministic change of drift similarly as before our problem becomes

1 1 . .

L(h) = umsupglogE[exp g{QF(XE) + 5 B3 — hor (WE)TH.
el0

Applying the modified Varadhan lemma gives us the target functional

1. : 17
£0x,h) = 2 (1) + 3}~ hroxT - 5/ %7 Q xdt.
0

Using the diagonal operator diag(z1, ..., z,) = > i, z;e;e; , where n € Nand {e; }I_; canon-
ical basis of R", we now write the problem in terms of X := %,

. . 1T -

X = argmax F</ xl(t)dt> ff/ X (HAX(t)dt
%eL2([0,T);R?) 0 4 /o

h=x",

where A := Q' + diag(0, 1, 1), which is equivalent to

3.8 su F /xtdt)—/ inf x ! (1) Ax(H)dt 5 .
(3:8) meLz([op,T];R){ ( 0 1) 4 Jo xeL2([0,T];R?) ®) ®)

This substantially simplifies the main optimisation problem, which can now be solved ex-

=
plicitly, since A = (011 a21>7 with a1 € R, as1 € R%, Ay € R?*2) 50 that the

as; Aag
infimum in (B3) yields® x* = —A%Qaglxl =: Bz;. The quadratic form in fact reduces to
x'Ax = (a1 — aglA;;an) 2?2 := vz}, where both constants
(3.9)

Ey [P\/?JrC'(Y)g(Y)r PEVYP

2 2 ’

v= B |[oVT g + B -

LB VY +<(Y)g(Y)]
b= 2( PEL VY], )

are obtained from the definition of Q. Finally, we have

: T
v
z] = argmax F </ x dt> — 7/ zidtp
(3.10) ! zlem([o,T},R){ 0 ! 4 )y

h' = Ba?.

LSince Q is positive-definite, both A and Asgo are positive-definite and thus invertible.
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Remark 3.3.2. This problem is similar to the problem in Section G, with deterministic
volatility.

Moderate deviations, though less studied than large deviations in mathematical finance,
have been applied to a wide variety of settings beyond Heston, predominantly in multiscale
systems [33, B4]. A unifying treatment of pathwise moderate deviations for Markovian models
commonly used in financial applications can be consulted in [27], and further developments
in the context of (rough) fractional volatility models were studied in [2] and in [286].

4. EXAMPLES

Our setting allows for a variety of stochastic volatility models. We show some exam-
ples below, and give special attention to the Heston model [24], the focus of our numerical
experiments.

4.1. Black-Scholes with deterministic volatility. We first consider the Black-Scholes
model with time-dependent deterministic volatility, namely

1
dX; = —502(t)dt + o(t)dWr, Xo =0,

where o € Cr is a deterministic function adhering to Assumption 2. We provide full
details of this specific case, which we will often refer to later on. We consider options with
payoffs that are continuous functions of X. Let G : Cr — R* and F := log |G|, which is then
a continuous function with values in [—o0,400). Our objective is to find an almost surely
positive random variable Z with E[Z] = 1 minimising E[G?(X)Z~!] = E [e?/(X) Z-1].

4.1.1. Small-noise. The small-noise approximation (I=3) reads
1
dX? = 7502(15)(115 +Veo(t)dW,, X5 =0.
Deterministic change of drift. With the change of measure
dQ 1., T,
— = —= hidt hid
ap |, exp{ 2/0 7 +/0 AWy o,

with h € H}., we can write

1 1 /7. .
L(h) :=limsupelogE |exp — ¢ 2F(X®) 4+ = / hidt —hop We | .
€l0 £ 2 Jo

To apply Varadhan’s lemma and estimate L(h), we assume there exists v > 1 such that

F(Xe
(4.1) limsupelogE {exp {47 (X°) H < 00
0 €

This condition is satisfied if, for example, the following assumption holds (for details see the
proof of [20, Theorem 3.6]):

Assumption 4.1.1. Let F': Cr — R such that F(z) < K1 + Kasup,e(o 1) |[z¢|* for some
€ (0,2) and K1, K5 > 0.

Lemma 4.1.1. If h is of finite variation, the function

1 [ ’ 1 . T .
L(;h) :x € Cr— 2F (—2/ o?(t)dt —|—/ o(t)dxt) + 3 (/ hidt —/ j:?dt) —hopx
0 0 0 0

is well-defined and continuous and for every v > 0,

1 T, .
exp {Z (2 / hidt — hor WE> }1 exists in R.
0

limsupelogE
el0
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Proof. If I is of finite variation and z is continuous with z(0) = 0, then I hydz, is well
defined as a Riemann-Stieltjes integral and

‘h o x’ - ‘h(T)x(T) _zor h’ < ||/l (|h(T)\ n TV(h)) ,
where TV(-) denotes the total variation. Similarly, [; o (t)dz; is well defined and
lo(+) or 2| < ||z||oo (o ]loo + TV (0)), for all ¢t € [0,T].

Since F' is continuous, the first statement on existence and continuity holds. The second one
follows from the computation of exponential Gaussian moments: for every v > 0,

(1 .
exp { /tht—hoTWEH— (;’7)/ h2dt.
0

Lemma 4.1.2. If h is of finite variation, then L(h) = Sup,emo £(2; h).

clogE

Proof. Let v > 1 such that (&) holds. Then by Cauchy-Schwarz and Lemma B—T1,

. . T T
exp 2F 1/ Jz(t)dt+/ o(t)dWy¢ +1/ hfdtf/ hdWE 3 | < o0,
2 Jo 0 2 Jo 0

so that the conditions of Theorem B are verified. The continuity has already been shown.
d

limsupelogE
0

Since G : W — X is continuous by continuity of the It6 integral, we can introduce

F = F oG and the existence of a minimum to the dual version of inf sup £(x; h), namely
heHY zeHY,

sup inf £(z;h), can be proved as in [20] under Assumption B by choosing M = 0 in [20,
IEHO hEH

Lemma 7.1]. The minimum is then attained for h = z and equal to

1 . . T
(4.2) sup 2F (—/ 02(t)dt+/ a(t)a':tdt> —/ ipdt.
z€HY, 2 Jo 0 0

Furthermore, it immediately follows from [20, Theorem 3.6] that, if h* € HY is of finite
variation and is a solution to (E22), then it is asymptotically optimal if

L(h*) = 2F (-é/o 02(t)dt+/0‘a(t)hjdt> —/OTh:th.

Therefore, in order to derive a change of measure, we search for h* € HY, such that

1 [ ' 17
h* = argmax F (—/ 02(t)dt+/ a(t):btdt> — 7/ @2dt.
zEHY, 2 Jo 0 2 Jo

Sz'mpliﬁed deterministic change of drift. We consider a simplified version of the problem: since
€ fo dt is exponentlally equivalent to 0, the previous results remain valid when replacing

-2 fo t)dt + [, o(t)@,dt) with F(f; o(t)iydt). The problem then becomes

. 1 T
h* = argmax F’ (/ O’(t)(ttdt> — 7/ .@fdt.
zeHY, 0 2 0

4.1.2. Application to options with path-dependent payoff. Consider the payoff
G(Yor X) with G : Rt — R* differentiable and ¥ a positive continuous function of finite
variation. The optimisation problem reads

T 1 /7T
h* = argmax F / Yo (t)idt | — f/ @7dt,
weHY, 0 2.Jo

with F' = log |G(-—3 fo Y10 (t)dt)| in the log-price smal.l—noise approximation. The mapping
U¢ = V4o (t)d; yields the Euler-Lagrange equation %W = 0, or in terms of the original
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problem %#t(t) = 0. We thus search for a solution @; = AJ;o(t) for some A € R. The

optimisation problem becomes

T 1 T
% :argmax{F </\/ |19ta(t)|2dt> _ 42/ 9,0 (£)[2dlE 5,
XER 0 2 Jo

Bt o= A* / 9,0 (t)dt.
0
For example, if F(z) = log(e” — ¢°)* for 2, ¢ € R, X will be the unique solution on (1,00) of
v +log(A — 1) —log(A) — ¢ = 0. The following payoffs are standard and satisfy this setup:
e (European Call option): G(z) = (¢* — K)* and ¥; = 1 with 21 = max(0, z).
e (Geometric Asian Call option): G(z) = (e* — K)* and 9y =1 —¢/T.

4.1.3. Small-time. The small-time approximation (I) reads
1
dX; = —5502(5t)dt + o(te)dWy,

with X5 = 0 and W¢ = /eW. The couple {o(te), W§} is exponentially equivalent to
{o(0), W¢}. Since I is the good rate function of the LDP verified by {WW¢} by Schilder’s The-
orem [8, Theorem 5.2.3], {o(te), W} verifies an LDP with good rate function I(s,w) = I (w)
if s = ¢(0) and is infinite otherwise. By Theorem 213, { [, o(te)dWy, W} satisfies an LDP
with the same good rate function as { [, o(0)dWg, W¢}. Noticing that [jeo(te)?dt is expo-
nentially equivalent to zero, our method then leads to the same solution as the problem for
dX; = —1e0?(0)dt 4+ o(0)dWy, which was treated above. In this small-time setting, we lose
all information on the path of o, except for its initial value.

4.2. Ornstein-Uhlenbeck. Lognormal-based stochastic volatility models, such as [39], read

1
dX; = —§Vt + VVidB, Xo =0,
AV, = k(0 — V))dt + €VidW,, Vo =1 > 0.

(4.3)

This model clearly satisfies all the assumptions in the previous sections (linear drift and
diffusion) and therefore the importance sampling results can be applied.

4.3. Rough volatility. Our setup above clearly does not include rough volatility models [I5],
where the instantaneous variance process is driven by a continuous Gaussian process with
Hurst index in (0, %) However, recent developments have proved, with various degrees of
generality, pathwise large and moderate deviations for this class of models [, 21, 22, 25, 26),
and our general results above can definitely be tailored to them. We however leave this

model-specific analysis to future endeavours.

4.4. The Heston model. The Heston model is one of the most widely used stochastic
volatility model in Finance, first proposed in [24], in which the log stock price process satisfies

1
(4.4) dX; = —§Vt + v/ VidB, Xo =0,

AV, = 5(0 = Vi)dt + &/VidWy, Vo =0 > 0,

for two Brownian motions B and W such that d(B,W); = p dt. The coeflicient £ > 0 is
the speed of mean reversion of the volatility process, while 8 > 0 is the long-term mean
and & > 0 is the volatility of the volatility process. The variance process V' admits a unique
strong solution by Yamada-Watanabe’s conditions [28, Proposition 2.13], and so does X. In
the setting of () the functions f and g take the form

J@) = k(0 -v) and  g(v) = £V,
and therefore Assumption 271 clearly holds.
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4.4.1. Small-noise LDP. From Section B, Assumption E12 is clearly satisfied, and thus
Theorem 271 holds. In the Heston model, the system (EZZH) becomes

i Z — pU —0
dat \op*ve J 7
d{ U _p(Z—pU)} _U<_U+ . >+Z—pU _Z—pU+%—p§
dt L&V p° &V 2 &Y P 2¢ Vi)
Solving the first ODE and plugging it into the second one gives for all ¢ € [0, T

7 — pU, 1
t?’” = SN,

(45 | 2 | -
At *gA + KAt + f)\'ﬁt (2 — Zp )\ﬂt é_) + 5[))\’[915,

where X\ > 0 is an arbitrary constant and A4, = -%&

- is the solution to the Riccati equation.
The option payoff at the terminal time determines the boundary conditions through the
FEuler-Lagrange equations so that

2F%
Vir

with Fp = F (foT o (Z\/E— % )dt). Since both conditions include the same optimising

variable, the resulting problem becomes an optimisation in R? over A and Az (or equiva-
lently Ap) and is thus much simpler than the original optimisation. After solving for A; for
all ¢ € [0,T], we then solve for (¢,v) by writing U and Z in terms of it using (24).

A=—

and AT = —qulwﬁT,

Example 4.4.1. In the case ¥; = 9 > 0 constant, let C(\) := 25)\19( — PPN\ — p%) s0
that the Riccati equation (EH) reads

d4, & o
W = 7§At —+ K:At + O(A),

the solution to which is

_1 —2n—EM
&—5{ 20N “w'<2 %an—ﬁ>+mk

where D € R is determined from the initial condition on A. Since A, = Y= = Ye=r(6=vy)

Ve P ’
we are to solve Py + (k — As)y = K0, for t € [0,T], which is just a non-homogeneous linear
ODE with the solution

R TR P T Ry R

Then the optimisation problem for h reduces to

¢t(A0, A) = k(0 — ¥ (Ao, \))

h(t) = Z(d}’;) o Zgﬁﬁo G Ao )
h2(t) _ (QD 71/’ )pp (1/’ ) _ §Am1n /\1/%(1407)\)7

which is an optimisation over (Ag, \) € R2.

4.4.2. Small-time LDP. In the context of the small-time LDP, Assumption 2221 is clearly
satisfied and therefore Theorem P2 applies immediately. Consider for example an option
with path-dependent payoff G(¢ or X) as in Section EI3. In the deterministic case, we have

Z(pt,91) — pU ()
e Y* = argmax Dppedt | — = U (2 )? +‘ }dt}7
() €M, xH”O*{ </ w ) / { t P

ACH w*>p pU (Y )

*

h = <U<w*>
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where U(¢)) = ﬁ and Z(p, ) = \%. Similarly to Example B2, with A; = %,

Zy *,DUt

1
QﬁzAﬂtﬂ}ta
1, 1 1 1, 1.
§§At + 55)\1% (2 7P )\19t> + ip)ﬂ?t,
for all ¢ € [0, T], which is very similar to (£55), but for the s term.

Ay

4.4.3. Large-time moderate deviations. In the context of Section B33, the conditions of As-
sumption BT are clearly satisfied. In this case, the invariant measure p is a Gamma distribu-
tion F(Qf%e, %’;) as shown in [, Section 3.]. Therefore, in light of Theorem B=3, T = 6 and the
solution of the Poisson equation ¢(y) = —3- is constant, which means that <(y) = (0 —y)/(2x)
because of the constraint fooo ¢(y)u(dy) = 0. Therefore

r (%94— %) ¢
r (2»19) VoK

EY]=6 and  E, VY] =
e
From this, noting that <(y)g(y) = —£,/y/(2k) we can calculate the constants (89):

(- g) ) oo ma mo (1) e

4.4.4. Other. Results in Heston which are not mentioned in this section follow directly from
their corresponding optimisation problems in Sections B and B by choosing f and g as in (£4).

5. NUMERICAL RESULTS

In all the different settings we studied, the final form of the optimisation problem is

T
swp  F(e) =5 [ tenoodt
(ip,) EHY, X H 0

where F' was linked to the payoff, £ to the rate function of the (log-)price process and ¢ and ¢
are absolutely continuous paths that arise from Varadhan’s lemma of the (log-)price and
volatility processes respectively. In the tables below, we summarise all problems considered
so far. As one can see, in the deterministic drift setting, the MDP problem is usually as simple
as solving the problem under the Black-Scholes (BS) model or at least by approximating the
model with a Black-Scholes model. Furthermore, the variance reduction for geometric Asian
options are also similar under the MDP with deterministic drift change, meaning advantage
over a simple BS model is not significant. However, when it comes to the stochastic change of
drift of the form fo hiA/Vidt, the MDP problems are slightly harder than in BS approximation
and the variance reduction results are in fact significantly better. We study stochastic change
of drift in all cases except in the MDP large-time case, where the invariant distribution of
Jo he\/Vidt is not immediate and would require a careful study, which is outside the scope of

this paper.
Method used Optimisation with general payoff | Optimisation with payoff ¢ or X
Deterministic  volatility | Optimisation in HY, with £ a quadratic | Optimisation on R with simple func-
(BS) approximation function of the (log-)price process ¢ | tion to optimise

Optimisation in R? + solving a Ric-

LDP small-(noise/time) System of ODEs cati equation

Simple optimisation; the ODE can be

MDP small-noise Straightforward optimisation in R?

precomputed
MDP small-time Similar complexity to the BS case Similar complexity to the BS case
MDP large-time Similar complexity to the BS case Similar complexity to the BS case

TABLE 1. Summary of the optimisations with deterministic change of drift.
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Method used

Optimisation with general payoff

Optimisation with payoff Jo; X

Deterministic

approximation (BS) ®

volatility

Optimisation on HOT with ¢ a qua-
dratic function of ¢

Optimisation on R with simple func-
tion to optimise

LDP small-(noise/time)

Same as in the deterministic case with
a simple additional ODE

Optimisation in R? and solving a
Riccati equation

MDP small-(noise/time)

Similar as in the deterministic case
with an additional ODE

Straightforward optimisation in R?

%Here h¢ in the drift change [ he/Vidt is computed using the BS approximation at time ¢.

TABLE 2. Summary of the optimisations with stochastic change of drift.

5.1. Numerical results for Black-Scholes. We first provide numerical evidence in the
Black-Scholes model (Section E) with Sy = 50 in the log-price small-noise approxima-
tion. In order to compare estimators, we look at Asian Arithmetic Call options, with payoff
(% fOT exp{X;}dt — K)T. The form of the solution of the optimisation problem studied pre-
viously can be found in [20]. We compare the naive Monte-Carlo estimator to:

e antithetic Monte-Carlo estimator;
e control estimator based on the price of Geometric Asian options with payoff

+
exp {% fOT Xtdt} - K) , that can be computed explicitly;

e LDP-based importance sampling estimator above.

Instead of simulating fOT exp(X;)dt, we consider a discretised payoff on n = 252 dates and
draw 10° paths. For the LDP-based estimator, the law of W after the change of measure is
given by Girsanov theorem. In what follows, when we refer to variance reduction we mean
the ratio of variance of the classical Monte-Carlo estimator over the variance of estimator in
question. As we can see in Table B and in Figure B, even in non-rare events, the estimator
derived using LDP provides good variance reduction. However, it is mainly in the context of
rare events that it performs best and outperforms the other estimators (Figure Il and Table B),
revealing the true power of LDP-based importance sampling estimators.

@ Control
LDP
= Control
LDP
5.0
45
;:2 £ »C fseses & & T ]
30 £
25 =
20
15
10
80
60
0 ]'% 2 2 T T T T T T
%253300_35,4 a0 0ot 0o 02 04 06 08 10
wfat’“?y q"45}-5‘1155 0 Probability of the event Payoff=0

FIGURE 1. Left: Estimator with with the highest variance reduction among an-
tithetic, control and LDP estimators (Section B) for different values of o, K, T
Right: Best performing estimator in terms of variance reduction among antithetic,
control and LDP estimators (Section Bl) as a function of probability of a positive
payoff (estimated using Monte-Carlo). Clearly, the LDP estimator performs best
when probability of exercising an option is low.
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FIGURE 2. Variance reduction of the control (left) and the LDP (right) estimators

Strike K Antithetic Control LDP Probability of positive Payoff

30 64 769 53 0.95
35 59 775 21 0.95
40 31 744 10 0.9
45 10 575 7.9 0.75
50 3.8 336 8.6 0.5
60 2.2 69 22 0.11
70 2.0 16 123 0.013
80 2.3 6.9 1445 0.0011

TABLE 3. Variance reduction for several estimators for Arithmetic Call options
in Black-Scholes with Sp = 50, r = 0.05, c = 0.25 and T' = 1.

5.2. Numerical results for the Heston model.

5.2.1. Asian option in Heston. To compare variance reduction results in the Heston model, we look
at Asian Geometric Call options, with payoffs of the form

1T * o7 (T T -t "
(exp{f/o Xtdt}—K> = <Sgexp{7/0 TdXt}—K> ,
= max{z,0}. We consider the following model parameters (realistic on Equity markets)

for the Heston model recalled in Section E:

So=50; r=0.05, v9=0.04; p=-05 k=2; 6=0.09 €&=0.2

where z

To simulate the paths (X, V) on [0,T], we use a standard Euler-Maruyama scheme for X, but use
the scheme [30] for the CIR process in the volatility, which is upward biased®, however nevertheless
converges strongly in L' to the true process V, which is enough for the purpose of pricing. For n € N,
A = T and the increments of the Brownian motion {AW/"}"_ the discretisation scheme over [0, T]
for the variance process {V;" }i_ reads:

‘7071 = vy >0,
Vn, = Vrik (9 - W’*) A+ &JVPTAWE, forall i€ {0,...,n— 1},
‘/in — "ZL_”IWF'

In what follows, we compare different LDP and MDP, with n = 252 trading days per year. All
the results are computed for 7' = 1 using Nuc = 500,000 Monte-Carlo samples. We also consider
an antithetic estimator and an LDP estimator derived assuming a deterministic volatility (denoted
by BS). Furthermore, since LDP-based deterministic changes of drift in the BS setting (or in cases
where the final form of the optimisation problem is similar) are easy to compute, we also propose a
fully adaptive scheme based on the BS estimator:

hy = Z Rillii—1ya,in (1),
=1

2There are many discretisation schemes for the Heston model. Since the objective of this paper is not to
study the effects of different schemes we satisfy ourselves with [B0].



24 MARC GEHA, ANTOINE JACQUIER, AND ZAN ZURIC

where h! is the best deterministic change of drift up to the i-th discretisation step.® We shall refer
to deterministic schemes to mean changes of law with deterministic changes of drift and to adaptive
changes of drift for changes of law with drift of the form fo hiV/Vidt.

5.2.2. LDP results in different settings. We now look at the results of LDP based estimators in small-
noise, small-time and large-time setting. Figure B indicates that the estimators derived in small-time
setting provide good results, but are outperformed by small-noise estimators. Although not apparent
in the figure, looking at Table B, the adaptive estimators provide slightly better results, as a matter
of fact, they are notably better for small strikes. However, the computation time is also higher for
adaptive estimators, which balances out the slight increase in variance reduction for higher strikes.
It thus seems that LDP adaptive estimators (in this case) imply a higher computational cost (given
in Table B) which is not justified by the variance reduction they can provide.

—— LDP small-noise 40{ —— LDP small-noise
LDP small-time LDP small-time
—— LDP large-time

30 40 50 60 70 80 30 40 50 60 70 80
Strike Strike

FIGURE 3. Variance reduction for LDP based estimators in log-scale. Left:
deterministic change of drift. Right: adaptive changes of drift.

5.2.3. MDP results in different settings. In the deterministic case, all considered estimators have
similar variance reduction (see Figure B). To be more precise, the BS estimator has a very similar
variance reduction or even even slightly outperforms the MDP based estimators (left plot of Figure @,
where the lines are almost indistinguishable except for very high strikes, outside the ‘moderate’ do-
main, which hence cause numerical problems). Therefore, in that aspect, MDP based estimators
do not justify their higher computational cost compared to the simple LDP-BS estimator. In the
adaptive case, the BS estimator performs slightly better than before, whereas the MDP based estima-
tors significantly outperform their results from the deterministic case and those of the BS estimator.
Moreover, as it will be discussed in the next section, their variance reduction is in fact even close to
that of the LDP based estimators.

—— BS approximation —— BS approximation
30 MDP small-noise 35 MDP small-noise
—— MDP small-time —— MDP small-time

—— MDP large-time

30 40 50 60 70 80 30 40 50 60 70 80
Strike Strike

FIGURE 4. Variance reduction for MDP based estimators for in log-scale.
Left: deterministic change of drift. Right: adaptive changes of drift. Because
of computational problems, the adaptive small-time MDP estimator was not
computed correctly for a strikes greater than 75. Nevertheless, it looks to be
outperformed significantly by other MDP estimators.

3Fully adaptive schemes are computationally very heavy, therefore we only consider it in the Black-Scholes
setting. The change of law is computed n X Ny times (252 x 5E5 = 1.26E8 in our case).
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5.2.4. Overall comparison. Looking at Figure B, as expected the LDP small-noise adaptive estimators

perform best, although MDP small-noise and large-time adaptive estimators are not far behind. As

for the computation times, Table B indicates MDP estimators are on average about 10% and LDP

estimators approximately 15% slower than the corresponding standard BS estimators. The fully

adaptive BS estimator provides interesting results, especially for near-the-money strikes, where it

performs much better than MDP and LDP estimators. Although the estimator is time-consuming,

it can still provide a good balance between variance reduction and computation time for certain

strikes (Tables B-6-B and Figure B). In the following three tables and plots, we use the following

short notations (with in brackets their precise meanings, used in the graphs):

- Prob: Probability of having a positive payoff.

- LDPsn (LDP small-noise): Deterministic estimator based on LDP in small-noise log-price setting.

- LDPsn A (LDP small-noise adaptive): Adaptive estimator based on LDP in small-noise log-price
setting.

- BS (BS approzimation): Deterministic BS estimator.

- BS A (BS approxzimation adaptive): Adaptive BS estimator.

- MDPsn A (MDP small-noise adaptive): Adaptive estimator based on MDP in small-noise log-
price setting.

- BS A2 (BS fully adaptive): Fully adaptive BS estimator.

- Ant (antithetic): Antithetic estimator.

- Classic: Classic Monte-Carlo estimator.

| — LDP small-noise

LDP small-noise (adaptive)
—— LDP large-time (adaptive)
3.5 —— BS approximation
—— BS approximation (adaptive)
—— MDP small-noise (adaptive)
3.09 BS fully adaptive
—— antithetic

Bb 4‘0 5‘0 Gb 7‘0 Bb
Strike

FIGURE 5. Variance reduction for different estimators in log-scale. The an-
tithetic estimator offers almost no variance reduction for OTM options, be-
cause with high strikes very few paths end up in-the-money, thus reducing
the effect of antithetic samples.

Strike Prob. LDPsn LDPsn A BS BSA MDPsn A BS A2 Ant

30 0.95 14 26 16 33 29 470 58
35 0.94 9.4 13 10 15 14 150 55
40 0.9 6.6 8.2 7.3 9.3 9.1 60 36
45 0.76 5.8 6.7 6.4 7.5 7.5 39 13
50 0.52 6.6 7.5 7.1 8.2 8.5 36 4.2
55 0.26 10 11 10 11 13 43 25
60 0.096 20 23 18 20 26 64 2.1
65 0.025 58 65 41 46 69 120 2.0
70 0.005 220 250 110 120 240 280 1.9
75 0.00078 1100 1200 310 350 960 750 1.9
80 0.0001 5700 6800 860 990 4000 2000 1.7
85 1.1e-05 35000 43000 2400 2800 18000 5900 2.7

TABLE 4. Variance reduction for different estimators and probability of positive payoff.
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1 —— LDP small-noise

LDP small-noise (adaptive)
3001 —— MDP large-time (adaptive)
—— BS fully adaptive

2.5

2.01

30 40 50 60 70 80
Strike

FI1GURE 6. Ratio of variance reduction over computation time for selected
estimators in log-scale.

Strike Prob. LDPsn LDPsn A BS BSA MDPsn A BS A2 Ant

30 0.95 3.3 4.0 3.2 5.6 4.6 19 145
35 0.94 2.3 20 22 2.9 2.4 5.0 13.8
40 0.9 1.5 1.3 14 1.5 1.4 2.7 9.0
45 0.76 1.4 1.1 1.2 1.4 1.3 1.9 3.25
50 0.52 1.6 1.1 1.3 1.2 1.2 1.7 1.1
55 0.26 2.3 1.5 2.0 1.9 1.8 2.1 041
60 0.096 4.7 3.6 3.5 3.7 4.2 3.2 035
65 0.025 11 9.8 7.2 7.4 11 6.0 0.33
70 0.005 48 33 16 21 31 16 0.32
75 0.00078 240 180 48 63 160 52 0.27
80 0.0001 1300 960 180 180 660 160 0.28
85 1.1e-05 7300 6600 490 500 3000 510 0.45

TABLE 5. Ratio of variance reduction over computation time for different estimators.

Strike Classic LDPsn LDPsn A BS BS A MDPsn A BS A2 Ant

30 11 12 14 12 13 14 31 11
35 11 11 14 12 13 13 36 11
40 11 12 13 13 14 14 30 11
45 11 11 13 13 13 13 28 11
50 11 11 14 13 14 15 28 11
55 11 12 15 12 13 15 28 11
60 11 12 14 12 13 13 28 11
65 11 12 14 13 13 13 27 11
70 11 12 15 14 13 15 24 11
75 11 12 14 14 13 13 21 11
80 11 12 14 12 13 13 20 11
85 11 12 14 12 13 13 19 11

TABLE 6. Computation time (in seconds) for different estimators.

5.2.5. Variance swaps in Heston. The methodology can also be applied to options with payoffs de-
pending on volatility, for example for options with payoffs of the form fOT Villys,>xydt. Consider
T =1 and different strikes K > 0 under the Heston model with the same parameters as above. The
results for different estimators are summarised in Table @. For small strikes, the LDP estimators
based on the BS approximation are not performing well, which is not surprising since in the BS
approximation the payoff of the option in question is almost constant for small strikes. On the other
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hand, LDP and MDP give good results. We also notice a clear difference in favour of non-adaptive
changes of drift. For high strikes, we have the same behaviour as before: adaptive MDP estimators
give intermediate results between LDP (performing best) and BS. At this stage though, we do not
have a clear explanation for the observed differences in the performance of non-adaptive and adap-
tive changes of drift for different strikes. Further research is required to understand the underlying
dynamics better.

Strike LDPsn LDPsn A MDPsn MDPsn A BS BS A Ant

10 220 43 190 44 1.0 1.0 45
20 160 38 140 38 1.0 1.0 46
30 8.2 6.3 8.6 6.5 1.0 1.0 14
40 1.1 1.1 1.1 1.1 1 1 2.5
45 0.86 0.85 0.88 0.87 1.0 1.0 2.9
50 0.96 0.96 0.86 0.76 1.0 1.0 12
55 2.4 2.5 2.6 24 18 19 6.8
60 3.1 3.3 4.4 3.0 3.8 4.1 3.2
70 8.4 9.1 7.4 6.9 6.4 7.0 2.1
80 16 19 15 22 11 11 2.0
90 56 68 26 54 17 19 1.9
100 200 240 36 190 42 54 2.3

TABLE 7. Variance reduction for different estimators.
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APPENDIX A. TECHNICAL PROOFS

A.l. Proof of Lemma BET. Let § > 1, (X,d) be a metric space and the random variable Z°¢ :
Q — X. We first show that Z°” is exponentially equivalent to g € X. For 6 > 0, let I's := {x € X :

d(z,z0) > 0 } and note that {w € Q: z’ (w) € T's} is measurable since T's is an open set. Since I is
a good rate function and hence lower semi-continuous, it achieves the infimum over a closed set. It
thus follows that inf I(z) > 0, since I(xz) = 0 if and only if x = xo. Recall also that Z° satisfies an

LDP with the good rate function I, then lim sup, o’ log IP’[ZeB € I's] < —inf 5, I(z) and therefore

x GF(;

(A1) linglisoupalogIP [Zsﬁ € Fa] = lirrslisoup g P (Eﬁ log P [Zaﬁ € Fé])

< —{ inf i(m)}limsupsl_ﬁ = —o0.
z€Ts €10

Thus proving the exponential equivalence. Next, we show that z¢o € X satisfies an LDP with
the good rate function I. Let I's C X such that 2o ¢ T's, then limsup, ,elogPlzo € T] = —o0
for the upper bound and thus —inf,cre = —oo. Now let I'y; C X be such that z¢o € X, then
—infzer; I(xz) = 0 for the upper bound and liminf. g elog Plxg € I'z,] = 0 for the lower bound. By
the exponential equivalence the stated result follows. The second statement is immediate: for any
d > 0, the inequality (BT) implies exponential equivalence (the term on the right-hand side) by the
large deviations assumption with 5 > 1, used in the inequality.

A.2. Proof of Lemma BT2. Let (X,d) be a metric space, Z° : @ — X and M > 0 and let
By :={x € X: |z| < M}. Since Z° is uniformly integrable, there exists § > 0 such that

supE [|Z°| i ze¢p,,y] <6,
e>0
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and hence

sgISEHZEH < sup]E [|Z |]1_{ZE€BM}] +supIE [|Z |]1{Ze¢BM}] < M +6.

Since zp is the (unique) zero of the rate function, then {Z¢}.sq clearly converges in probability to xo,
and so {|Z%|}.>0 converges to |zo| by continuity. There exists then a subsequence {Z”¢}.~¢ such
that {|Z%¢|}.~0 converges almost surely to |zo|. Fatou’s lemma then implies

On the other hand, for I's := {x € X' : d(z,x0) > ¢ } it holds by Bonferroni’s (in)equality

E Hzﬂs

|zo| = E[Jzo]] < liminf E Hzﬂs
eJl0

J <o

e>0

- Ve e Ve

| =& (|21 zoeerpmizenny] + B2 Waoecrpnizseenny] + 2127 Yo er ]
Since

o

]1{2195@6} < (d (Zﬂs,xo) + |370|>11{zﬂs¢r5}7

then E [| 27¢|] grs) SO0+ |zo| and finally

limsup E HZ“E
£l0

< [ ]+ g [ <1 5 b
]_hgljgpﬂz[‘z U g0 g1} ) + MUmP |27 € 5] + 8+ |ao]

Since Z% follows an LDP with rate function I and I(I's) > 0 by assumption, then
limgy o P [Zﬁf € Fg] = 0. This, together with Z”¢ being uniformly integrable, gives the result by
taking M to infinity.

A.3. Proof of Lemma BT3. A key step in proving Lemma B3 is the tightness of the rescaled
variance process with an unique strong solution

dVi = f(V9)dt + h(g)g(Vi)dWs,

adhering to Assumption [Z0, where h is such as defined in the beginning of Section B, i.e., h(e)
tends to infinity and y/eh(e) to zero as € goes to zero.

Lemma A.3.1. The family of random variables {V*}eso in (BR) is tight.

Proof of Lemma E=Z1. By Kolmogorov-Chentsov [29, Theorem 21.42] we need to show there exist
a, B, M > 0 such that for every e >0 and 0 < s <t <T

E(VE —VS[* ] < Mt —s'*7,

therefore using the obvious inequality |a + b|* < 2% (Ja|® + |b|*) for o > 1 we have

E{ Otf(Vi)du—/sf(Vi)dw/t )W, / ]
< (ef| [ s T [ D-

Consider for now only the drift term

| } <-o [ [ oora] < kie-90 [(Bpe i

where we used Jensen’s inequality for the first inequality. The second follows from the linear growth
condition in Assumption IZ70. For the diffusion term

[ o< (22 e
(= e
<nz{® (2”}( 98 [ B[ ve ] au

K]

v )du g(Vi)

(Vi)du

=3
2

| du

where the first line follows from the Burkholder-Davis-Gundy inequality (with a > 2) and the last
one from the H-polynomial growth (H > %) condition on the diffusion. Adding both terms together
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and applying the Gronwall lemma to the integrands yields
t

E[[VE - VE|"] < 2“*1(1{?(:& - s)afl/ E[1+ V7] du

+K§ {C“(“Q”} (t—s)8" /:IE [1 + |v;|aH} du)

t
< 9071 (Kla(t - s)("*l / 2771(1 + vg)em(“fs)du

— % o t a
+K2a {Ol(a2 1)} (t _ 5)5—1/ 25—1(1 +U8¢)62a(u—s)du)

<2t (2%*11({*(1 F o) T (= )™ + 27 RS (14 vg )P HT (1 — s)%)
< 9ot (clT% n 02) (t—s)% =M|t—s|%,
where the constants are
Cr =22 'K¥ (14 05)e® T, Cpi= 2%71K§‘(1 + o) T A= 2 max{C1T 2, Cs}.
Choosing any o > 2 and § = § — 1 completes the proof. a

Similarly as in [6], define the bounded map ®; : Cr — R for each t € [0,T] as

e — vo —/0 f(e)ds

It is also continuous. Indeed, let ¥ — % in Cr, then we have by the second triangle inequality

D, (¢) = A 1.

B0 (") — Bo()| < |67 — | + / F@™) — F@) ds.

Since A := {¢" € Cr : n € N} U {9} is a compact subset of Cr and f is Lipschitz continuous on A
by Assumption 2, there exists a Lipschitz constant L, such that

[f(pr) = f(@e)| S L sup | — ¢,
t€[0,T)

for all ¢ € [0,7] and ¢, ¢ € A. Therefore, since
[@:(¢") = P(¥)] < sup [ohy’ — | +tL sup [o;" — ],
t€[0,T] t€[0,T]

then ®; is continuous. Since {V*®}.5¢ is tight as a family of random variables by Lemma B3, we
know that by taking a subsequence, {V*}.~0 converges in distribution to some random variable, call
it 1), on the same probability space. Then, observing that ®; is continuous and bounded, we have
by the Continuous mapping theorem that lim. o E[®:(V*)] = E [® (¢)]. Next, by definition of @,
Y = v + fo I (JJS) ds will be the limiting function if we are able to show the above limit is zero for
that particular choice of . Indeed, by Holder’s inequality

27\ 2

) <nm

E (h(z—:)ﬁE[

since the integral can be shown to bounded by M > 0 by the same arguments as in the proof of
Lemma A=, Therefore lime o E[®:(V®)] = 0 and the limiting function indeed solves the ODE
P =g + fo f(s)ds almost surely for all ¢ € [0, T7.

E[®:(V°)] = E Hh(e) / g(vE)aw, / gvEyaw,

A.4. Proof of Theorem BI. We first prove the following version of Gronwall’s lemma:

Lemma A.4.1. Let 0 < a < b and ¢ : [a,b] = RY continuous with ¢(t) < M + f: f(s)g(p(s))ds
on [a,b] for some M > 0. If f : [a,b] — R and g : Rt — R" satisfy Assumption [Z1, then
Glp() <G(M) + f: f(s)ds for all t € [a,b], where G(u) = [}" g~ " (s)ds and G(0) = —oc.

Proof. Let ¥(t) := fat g((s))f(s)ds, so that 9(t) = g(o(t))f(t) < g(M + 9(t))f(t) on [a,b], since g
is increasing. By integration,

t s)ds t& s = M"Lﬂ(t)diu_ 0(t)+Md7u
/(;f( )d 2/@ g(M-‘,—ﬁ(s))d _/MJrﬂ(a) g(u)_/M g(u)’

with u := M + 9(s), since 9(a) = 0 by definition. The function G can be decomposed into:

G = [ (65 = ey | "o (6 + e o [ oo

u 1
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Second term is clearly increasing, since the inverse of an increasing function is an increasing function.

.. . -1 . . . g 1
Similarly, for the first term, since g~ is increasing and positive for « > 0, the map u fu g t(s)ds
is decreasing and the term is increasing. Therefore, since G is increasing, then, for any ¢ € [a, b],

M49(z) 44 M9 (t) t
Gew <com+ans [ I ( / [ ) <GON+ [ feas

Let Y° = fo (VE)dWs. By Lemma BT and Lemma B3, the process V*© is exponentially
equivalent to ¢ (with speed ¢), so that {V, W*¢} is exponentially equivalent to {¢), W*¢}. Therefore,
by Theorem P13, the triple {V°, W* Y*} satisfies an LDP with good rate function

O

T
Y (0, w,y) = / Wldt,  ifw € B, j = g()w and v = 1,
0
and is infinite otherwise. Now let
(A2 T - [ Son = [ {50F) = 10 - F@F — e e v
0 0

and suppose the first term is exponentially equivalent to 0. Then, by the Contraction principle [R,
Theorem 4.2.1] we deduce an LDP for {V®, W¢,7.}. Moreover, since 7° — 7° is a continuous
function®, the good rate function given in the statement is obtained using the Contraction principle
once more. Therefore the rest of the proof relies on proving that

{FV) = (F@) = F@)(V = 9))}e”
is exponentially equivalent to 0. We start by showing n° is bounded. To that end we consider a
Taylor expansion of £(u) := f(¢ + u(V® — 1)) for u € R around zero evaluated at u = 1:

(1) = £(0) + £'(0) + /01 0" (u)(1 — w)du

so that, since £(0) = f(¥) and £(1) = f(V*®), we have

{109 = 1) = PO =0} =l [ (=0 G+ u(0 — )i
Now let R > 0 and w €  such that
sup Vi) — el <R and  sup |Vi(w)| <e 7.
t€[0,7] t€[0,7]
Then for all ¢ € [0, T] we have
i (w)| = ‘/ {F(VE@) = (F(@s) = f' () (Vi (@) = 95)) } e~ Pds + Yf(w)‘

=| [ wangas+ / [ (1= V@)~ ))duds + Y|

t t
g/ If’(ws)llni\ds+/ |n§|%"/ (1= ) |£” (o + u(VE — )| duds + Y5 (w)]
(0] (0]
t
<a [ (il + i) as et
0

where

o= 1+max{ sup |f'(z)|, sup |f" (= }>0 and Zy := [— sup {|vu|+ R}, sup {|¢u|+R}]
T €Ly,

TE€Ly, u€[0,1] u€(0,1
It is clear that « is finite, since continuous functions admit a maximizer on compact sets. Then by
8
Lemma B=21 G(|n; (w)]) < G(e™ 1) + at for all t € [0,T] and u > 0 with

v 1+¢€°
G(u) = ———dz =1
() /1 wtehgz T T %8 (ul—l—sﬁu) ’
we have

. =8 14¢&° . _ 1
G <tog (¥ L5 ) ar, and |nt|§€ﬁ{l—08‘3_1}’

3
+€4B (5) 1+eB
where 5
-8 (1 -8
Ce) = e"TgT(—i_ig) <eTed | forall 0<e<l.
1+¢e1b

41t is casy to show that n° = efo f(¥s)ds Joe~ Jo Fs)dsy (4)dt solves the ODE in (B).
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Therefore there exists 0 < €9 < 1 such that

8
sup |nf(w)] < 2e*Te” 1, forall 0<e<eo.
te[0,T]

We now finally prove that °|n°|? fol(l —u)f" (¥ +u(V® —1))du is exponentially equivalent to zero.
Let 6 > 0 and 0 < € < g9, and define

FE::{wGQ sup Eﬁlm\’/ (1—-u)f wt+u(t5*1/’t))d“‘25}’

te[0,T]

8
A, = {wGQ: sup |Vt‘5—wt|§R}, B. = {weQ: sup |Yﬂ§€_z},
te[0,T] te[0,T]

then
ElogP[Fe] < elog {P[rg N A. mBE} +P[Ag] +1P>[Bg]}
<€log3—|—max{slogP[F N A ﬂBE], slogIP’[As], slogP[B ]}

Using the previous bound on 1, which holds under condition {A. N B:}, we have that

alogIF’[F5 N A ﬂBs] < Elog]}”[{w €Q: sup Eﬂ\nﬂg > éé} ﬂAsﬂBg]

te[0,7]
s 1 _oar ] elo
Sslog]P’[sﬂ > —e o = —oc.
4o
Next, since V*® is exponentially equivalent to ¢ with speed ¢, then lim. o ¢ log P[AZ] = —oco. Finally,

8
looking at the LDP with speed e' 72, V¢ is still exponentially equivalent to v by the same argument
B . 58
as before, thus similarly eot fo g(VE)dW: = e 1Y satisfies an LDP with good rate function having
8 8
a unique minimum at zero and with speed e' T2 . Therefore, € 1Y is exponentially equivalent to zero
and liﬁ)lelog P[B¢] = —oo, which completes the proof.

APPENDIX B. VARIATIONS AROUND VARADHAN’S LEMMA AND EXPONENTIAL EQUIVALENCE

Varadhan’s integral lemma is a generalisation of Laplace’s method. It gives the asymptotic be-

(Ze)
haviour of E[ew = ] on a log scale for a family of random variables Z. and a continuous function ¢.
The Laplace’s method states that under some conditions the following relation holds

b

lim 1 log/ @y = sup f(x).
n—oo M a z€[a,b]

One notable application of Varadhan’s integral lemma is finding a good change of measure in impor-

tance sampling, as we will see it in the following sections. For theses applications, we need a slightly

more general formulation of the lemma than the one found in [R, Theorem 4.3.1]. Nevertheless, the

proof in [R, Theorem 4.3.1] can be easily adapted as done in [BA, Lemma 4.4.].

Theorem B.0.1. (Varadhan’s Integral Lemma) Let X be a metric space, Z° a family of X-valued
random variables satisfying an LDP with good rate function I : X — [0,400] and ¢ : X — R a
continuous function. Assume further either the tail condition

ZE
lim limsupelogE [exp { M}ﬂ{¢<zs)>M}:| = —o0,
Mtoo <o € =
or the moment condition for some v > 1 (because it implies the previous tail condition)

ZE
limsupelogE [exp {VM}] < o0
el0 €

Then
lim < log & [exp {%Z)H = sup{p(z) — I()}.

zeX
The below-modified theorem was proven in [36] and allows the above function ¢ to reach —oco and
accounts for cases where the problem is written in term of a family of functions {¢e}e>0.

Theorem B.0.2. (Modified Varadhan’s Integral Lemma) Let X and Y be two metric spaces, Z° a
family of X-valued random variables that satisfies an LDP with good rate function I : X — [0, +00]
and let ¢ : Y — [—00,400) and ¥ : X — R be two continuous functions. Let A : X — Y be
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a continuous map and {A: : X — Y} be a family of measurable functions such that A.(Z¢) is
exponentially equivalent to A(Z°). Suppose that there exists v > 1 such that

oL LU

£

limsupelogE [exp {7
el0

Then

lim < log E {exp { “O(AE(ZE)E) +¥(Z7) H = sup {o(A(x)) +(2) — I(2)}.

TEX

Definition B.0.1. (Ezponential equivalence) Let (X,d) be a metric space, Z° and 7 two fam-
ilies of X-valued random wvariables defined on some probability spaces {(Q, Bs, P-)}. Z° and Z¢
are called exponentially equivalent if for every § > 0, {w : d(ZE,ZE) > 0} is B. measurable and
limsupelogP. (d(Z°, Z¢) > §) = —ooc.

el0
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