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Abstract. We provide a detailed importance sampling analysis for variance reduction in
stochastic volatility models. The optimal change of measure is obtained using a variety
of results from large and moderate deviations: small-time, large-time, small-noise. Spe-
cialising the results to the Heston model, we derive many closed-form solutions, making
the whole approach easy to implement. We support our theoretical results with a detailed
numerical analysis of the variance reduction gains.
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1. Introduction and general overview

1.1. Introduction. Monte Carlo simulation is the standard (if not the only) technique for
most numerical problems in stochastic modelling. It has a long history and has been success-
fully applied in many fields, such as biology [32], statistical Physics [4], Finance [17] among
others. The default order of magnitude for the variance of the estimator is O(N−1/2) with N
the number of sample paths. It has long been recognised though that several tricks achieve
lower variance with equivalent (hopefully zero) bias; among those antithetic variables and
importance sampling have become ubiquitous. We focus on the latter, for which large and
moderate deviations (LDP and MDP) provide closed-form formulae, making their applica-
tions pain-free and without additional computer costs.

The first attempt to reduce the variance of a Monte Carlo estimator based on asymptotics
originated, rather heuristically, in [40]. This was then made rigorous by Glasserman and
Wang [18], who also highlighted pitfalls of the method and by Dupuis and Wang [12], who
provided clear explanations on the trade-off between asymptotic approximations and the
restrictions they entail on the induced change of measure. Guasoni and Robertson [20] put
this into practice for out-the-money path-dependent options in the Black-Scholes model, and
Robertson [36] developed a thorough analysis for the Heston model using sample path large
deviations. This is our starting point, and the goal of our current enterprise is to analyse
different asymptotic regimes (small-time, large-time, small-noise), both in the large deviations
and in the moderate deviations regimes, in the Heston model and to show how these yield
closed-form formulae for an optimal change of measure for importance sampling purposes.

We propose, in particular, a specific form of adaptive drift, allowing for fast computation
and increase in variance reduction. For geometric Asian Call options in the Heston model,
MDP-based estimators with deterministic changes of drift turn out to be no better than
those computed with deterministic volatility approximation in the LDP approach. However,
MDP-based estimators with adaptive changes of drift perform much better than their LDP
counterparts with deterministic volatility approximation, and in fact show a performance
very close to the LDP-based estimators in Heston. These adaptive MDP-based estimators
therefore provide an efficient alternative in models where LDP is difficult to compute.

Setting and notations Throughout this paper we work on a filtered probability space
(Ω,F ,P,F) with a finite time horizon T > 0, where Ω = C([0, T ] → R2) is the space of
all continuous functions, F is the Borel-σ-algebra on Ω and F := (Ft)t∈[0,T ] is the natural
filtration of a given two-dimensional standard Brownian motion W := (W,W⊥). For a pair
of (possibly deterministic) process (X,Y ), with X predictable and Y a semi-martingale,
we write the stochastic integral X ◦ Y :=

∫ ·
0
XsdYs and X ◦t W := (X ◦ W )t for any

t ∈ [0, T ]. We denote any d-dimensional path by h := (h1, . . . , hd) for d ∈ N, and for
such a path, ‖h‖2T :=

∫ T
0

(
|h1(t)|2 + · · ·+ |hd(t)|2

)
dt. The Cameron-Martin space H0

T of
Brownian motion is isomorphic to the space of absolutely continuous functions AC([0, T ])
starting at zero and with square integrable first derivatives. We define a similar space
HxT := {φ ∈ C([0, T ] → Rd) : φt = x+

∫ t
0
φ̇sds, φ̇ ∈ L2

(
[0, T ];Rd

)
} for processes starting at

x ∈ Rd and a subspace Hx,+T ⊂ HxT where functions map to (R+)d instead of Rd. Whenever a
variable has an obvious time-dependence, we drop the explicit reference in the notation. We
also write CT := C([0, T ] → R) to simplify statements. Finally {Xε} ∼ LDP(IX , CT ) means
that the sequence {Xε} satisfies a large deviations principle as ε tends to zero on CT with
good rate function IX . For a given function f , we denote by D(f) its effective domain. We
finally write R+ := [0,∞) and BV for the space of paths with bounded variation.

1.2. Overview of the importance sampling methodology. We consider a given risk-
neutral probability measure P, so that the fundamental theorem of asset pricing implies that
the price of an option with attainable payoff G ∈ L2(Ω;R) is equal to EP[G]. While, strictly
speaking, we do not need L2(Ω;R) for pricing purposes, we require it to estimate the vari-
ance of payoff estimators. Monte-Carlo estimators rely on the (strong) law of large number,
whereby for iid samples {Gi}1≤i≤n from P ◦ G−1, the empirical mean Ĝn := 1

n

∑n
i=1Gi

converges to the true expectation P-almost surely:

lim
n↑∞

Ĝn = EP[G].
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Importance sampling is a method to reduce the variance of the estimator Ĝn, yielding a new
law Q such that EQ[G] = EP[G] and VQ[G] < VP[G] (and of course both the equality and
inequality remain true with G replaced by Ĝn). Let for example Z := dQ

dP denote the Radon-
Nikodym derivative of the change of measure, so that EP[G] = EQ[GZ−1]. The variance of
the Monte-Carlo estimator based on iid samples of ĜnZ−1 under Q is then

VQ
[
ĜnZ

−1
]
= EQ

[
Ĝ2
nZ
−2
]
− EQ

[
ĜnZ

−1
]2

= EP
[
Ĝ2
nZ
−1
]
− EP

[
Ĝn

]2
.

If Z is chosen such that EP[Ĝ2
nZ
−1] < EP[Ĝ2

n], the variance is thus reduced. Finding such Z
however is usually hard, and we shall instead consider the approximation

(1.1) EP
[
Ĝ2
nZ
−1
]
≈ ε logEP

[
exp

{
1

ε
log(G2

ε Z
−1
ε )

}]
,

for small ε > 0, for two random variables Gε and Zε whose choices will be discussed later.
The computation of this expression is then further simplified by the use of the Varadhan’s
lemma (Theorem B.0.1), which casts the problem into a deterministic optimisation over the
appropriate Cameron-Martin space.

1.3. Choosing an approximated random variable Gε. Consider an attainable payoff
G(X), where X is a unique strong solution to the stochastic differential equation
(1.2) dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,

where b, σ : R → R are sufficiently well-behaved deterministic functions and W is a standard
Brownian motion. The approximation of G is then defined as Gε := G(Xε), where the
following are possible approximations of X:

Definition 1.3.1. Let X be a unique strong solution to (1.2). The process Xε is called
i) Small-noise approximation if

(1.3) dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dWt, Xε
0 = x0.

ii) Small-time approximation if
(1.4) dXε

t = εb(Xε
t )dt+

√
εσ(Xε

t )dWt, Xε
0 = x0

iii) Large-time approximation if

(1.5) dXε
t =

1

ε
b(Xε

t )dt+
1√
ε
σ(Xε

t )dWt, Xε
0 = x0.

The terminology here is straightforward since (1.4) follows from (1.2) via the mapping
t 7→ εt and (1.5) follows from (1.2) via the mapping t 7→ t/ε. The small-noise (1.3) comes
from the early works on random perturbations of deterministic systems by Varadhan [41] and
Freidlin-Wentzell [13].

1.4. General approach. We consider an asset price S := {St}t∈[0,T ] and the corresponding
log-price process X := log(S) := {Xt}t∈[0,T ], with dynamics

(1.6) dXt = −1

2
Vtdt+

√
VtdBt, X0 = 0,

dVt = f(Vt)dt+ g(Vt)dWt, V0 = v0 > 0,

where W = (W,W⊥) is a standard two-dimensional Brownian motion and B := ρW + ρW⊥

with correlation coefficient ρ ∈ (−1, 1) and ρ :=
√
1− ρ2. The drift and diffusion coefficients

of the volatility process satisfy f : R+ → R and g : R+ → R+ and Assumption 1.4.1 if
not stated otherwise (e.g. in the case of large-time approximation in Section 3.3 additional
assumptions are required for ergodicity purposes).

Assumption 1.4.1.
(i) The function f : R+ → R is globally Lipschitz continuous;

(ii) The function g : R+ → R+ is increasing, strictly positive outside origin. Furthermore,
there exist K > 0 and p ≥ 1

2 such that, for all x, y ∈ R+,
|g(x)− g(y)| ≤ K|x− y|p.
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Remark 1.4.1. Condition (ii) in fact implies p-polynomial growth condition for p ≥ 1
2 , i.e.,

|g(x)| ≤ C(1+ |x|p) for all x ∈ R+. Indeed, let y = 0 and x ∈ R+, then |g(x)− g(0)| ≤ K|x|p
and by the triangle inequality |g(x)| ≤ |g(0)|+K|x|p.

Under this assumption, Yamada-Watanabe’s theorem [42, Theorem 1] ensures the existence
of a unique strong solution to (1.6). Consider now the continuous map G ∈ CT , yielding the
option price E[G(X)]. Finding the optimal Radon-Nikodym derivative encoding the change
of measure from P to Q is hard in general and we instead consider the particular class of
change of measure

(1.7) ZT :=
dQ
dP

∣∣∣∣
FT

= exp

{
−1

2
‖ḣ‖2T + ḣ ◦t W⊤

}
,

which is well defined and satisfies EP[ZT ] = 1 whenever h ∈ H0
T . Now let F := log |G|, so that

EP[Z−1T G(X)2] = EP[e2F (X)−log(ZT )]; the approximation (1.1) then yields for Wε :=
√
εW

the estimate

(1.8) L(h) := lim sup
ε↓0

ε logEP
[
exp

{
1

ε

{
2F (Xε)−

(
−1

2
‖ḣ‖2 + ḣ ◦T Wε⊤

)}}]
to compute, for some proxies Xε.

Definition 1.4.1. A path h ∈ H0
T minimising L(h) is called an asymptotically optimal change

of drift.

From this point onward, several approaches exist in the literature. In [11, 23, 10] fully
adaptive schemes are considered, where h is function of (t,Xt, Vt). These schemes effectively
reduce variance, but are expensive to compute. For that reason, we look at the case where h
is an absolutely continuous function with derivatives in L2([0, T ];R). The main advantage is
the fast computation in comparison to the fully adaptive schemes. Conserving this advantage,
we also look at paths h of the form

∫ .
0
ḣ(t)

√
Vtdt (yielding a stochastic change of measure)

for which computations are usually just as fast and variance reduction is higher. In the
case where h is a deterministic function (the approach is similar in other settings), the main
methodology we shall develop below then goes through the following steps:

i) We choose appropriate approximations Xε as in Section 1.3;
ii) We prove an LDP (MDP) with good rate function IX for {Xε}ε>0;
iii) We show that Varadhan’s Lemma applies, so that the function L(h) in (1.8) reads
(1.9) L(h) = sup

X∈D(IX)

L(X;h),

where

(1.10) L(X;h) := 2F (X)−
(
−1

2
‖ḣ‖2 + ḣ ◦T Wε⊤

)
− IX(X).

iv) We consider the dual problem of (1.9) in the sense of Definition 1.4.2. For more details
see the remark below.

Definition 1.4.2. The primal problem is defined as
(1.11) inf

h∈HT0
sup

X∈D(IX)

L(X;h),

while the dual consists in
(1.12) sup

X∈D(IX)

inf
h∈HT0

L(X;h).

Remark 1.4.2. In many cases the primal optimisation problem (1.11) may be difficult to
solve analytically, so we deal with the dual problem which turns out to be much simpler. With
further assumptions, it may be possible to prove strong duality, however this is outside the
scope of this paper. Note in particular that the functional L does not admit any obvious
convexity property, making classical duality results unusable (see for example [37, Section 4]).
Recent results about duality and optimality conditions in stochastic optimisation [3, 35] could
provide some hints though.
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Remark 1.4.3. Small-time approximations may induce important loss of information because
the drift term in Hε (the quadratic part in ḣ) can be negligible and can thus lead to a trivial
dual problem. In the Black-Scholes setting (Section 4.1), a small-time approximation leads
to the following problem: let F : CT → R+ be a smooth enough function so that Varadhan’s
Lemma (Theorem B.0.1) holds, then the small-noise approximation problem reads

L(x; h) = 2F (x)−
∫ T

0

ḣtẋtdt−
1

2

∫ T

0

ẋ2tdt+
1

2

∫ T

0

ḣ2tdt.

However, in the small-time case we actually have

L(x; h) = 2F (x)−
∫ T

0

ḣtẋtdt−
1

2

∫ T

0

ẋ2tdt.

In this small-time setting, the dual problem (1.12) then reads

sup
x∈D(IX)

inf
h∈H0

T

L(X; h) = sup
x∈D(IX)

inf
h∈H0

T

{
2F (x)−

∫ T

0

ḣtẋtdt−
1

2

∫ T

0

ẋ2tdt
}

= sup
x∈D(IX)

{
2F (x)− 1

2

∫ T

0

ẋ2tdt− sup
h∈H0

T

∫ T

0

ḣtẋtdt
}
.

Clearly the path h can be multiplied by any arbitrarily large positive constant to increase the
inner supremum, and therefore the optimisation does not admit a maximiser. In these cases,
we thus do not consider the small-time approximation.

Remark 1.4.4. Another drawback of the outlined method exists. In most cases, solving the
dual problem in step iv) involves numerical optimisation, which in turn means that the Novikov
conditions of the resulting optimal change of drift h cannot be rigorously verified. However,
practically we see notable reduction in variance, implying that the obtained Radon-Nikodym
derivative induces a change of measure and is indeed a martingale.

The paper’s structure is as follows. In Section 2 we look at stochastic volatility models
satisfying Assumption 1.4.1 and derive explicit solutions for large deviations approximations
for path-dependent payoffs of the form F

(
∫T0 ϑtdXt

)
for general deterministic paths ϑ ∈ CT .

This includes state-dependent payoffs of European type, i.e., functions of XT (for the choice
of ϑ = 1) and of Asian type 1

T ∫T0 Xtdt (for ϑt = T−t
T ). In contrast to [36] we consider a more

general approach using Garcia’s theorem [14], which includes small-time approximations and
studies stochastic changes of measure. Later in Section 3 we study moderate deviations,
where we derive small-noise, small-time and large-time MDPs, whose advantages, compared
to LDP, are simpler forms of rate functions. In Section 4, we provide examples of models used
in mathematical finance, which satisfy our setup, with a particular emphasis on the Heston
model. Finally, in Section 5 we highlight numerical results for the Heston model and compare
variance reduction results for different approximation types. Some of the technical proofs are
relegated to the Appendix A.

2. Importance sampling via large deviations

2.1. Small-noise LDP. We start with the small-noise approximation of (1.6):

(2.1)

{
dXε

t = −1

2
V εt dt+

√
ε
√
V εt dBt, Xε

0 = 0,

dV εt = f(V εt )dt+
√
εg(V εt )dWt, V ε0 = v0.

2.1.1. Large deviations. In the spirit of [13], we provide an LDP in C([0, T ] → R2) for {Xε, V ε};
usual assumptions involve non-degenerate and locally-Lipschitz diffusion though, which clearly
fails for square-root type stochastic volatility models. Hence, to derive LDP for the (log-)price
process, it is first necessary to derive LDP for the pair {V ε, Y ε} given by

dY εt =
√
V εt dW

ε,⊥
t ,

dV εt = f (V εt ) dt+ g (V εt ) dW
ε
t ,

assuming an LDP for V . To be more exact we follow [36] and assume the following:

Assumption 2.1.1. {V ε}ε>0 ∼ LDP(IV , CT ) with a good rate function IV with D(IV ) ⊂ Hv0T .
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Thus, to continue, we first need to show that Assumption 2.1.1 holds in our setting and
check whether any further assumption on the coefficients are necessary. Many processes
arising from volatility models, where the classical Freidlin-Wentzell does not apply, have been
studied in the literature. For example Donati-Martin, Rouault, Yor and Zani [9] show that V ε
satisfies an LDP in the case of the Heston model (4.4), then Chiarini and Fischer [5] show
existence of an LDP for class of models with uniformly continuous coefficients on compacts,
Conforti, De Marco and Deuschel [6] show an LDP for non-Lipschitz diffusion coefficient of
CEV type. Most notably, Baldi and Caramellino [1] cover the case of Assumption 1.4.1 with
f(0) > 0 and sub-linear growth when f, g → ∞. We now state their main result, which
requires a small additional assumption.

Assumption 2.1.2. Both f, g : R → R have at most linear growth at infinity and f(0) > 0.

Theorem 2.1.1 (Theorem 1.2 in [1]). Let V ε solve (2.1) on [0, T ] with v0 > 0. Then under
Assumptions 1.4.1 and 2.1.2 the process V ε satisfies an LDP with good rate function

IV (ψ) =


1

2

∫ T

0

ẇ2
t dt, if w ∈ H0

T , ψ̇t = f(ψt) + g(ψt)ẇt, ψ0 = v0,

+∞, otherwise.

The process Y ε =
∫ ·
0

√
V εt dW

ε,⊥
t is simply the Itô integral of a square root diffusion against

a Brownian motion, which falls exactly into the setting of Garcia’s Theorem [14]. Before
stating it (Theorem 2.1.2) though, we require the notion of uniform exponential tightness.

Definition 2.1.1 (Definition 1.2 in [14]). Let U denote the space of simple, real-valued,
adapted processes H such that supt≥0 |Ht| ≤ 1. A sequence of semi-martingales {Mε}ε>0 is
uniformly exponentially tight (UET) if, for every c, t > 0, there exists Kc,t > 0 such that

lim sup
ε↓0

ε log

(
sup
H∈U

P
[
sup
s≤t

∣∣∣∣∫ s

0

Hu−dM
ε
u

∣∣∣∣ ≥ Kc,t

])
≤ −c.

Theorem 2.1.2 (Theorem 1.2 in [14]). Let {Zε}ε>0 be a sequence of adapted, càdlàg stochas-
tic processes, and {Mε}ε>0 a sequence of uniformly exponentially tight semi-martingales. If
the sequence {Zε,Mε}ε>0 satisfies an LDP with rate function Î, then the sequence of triples
{Zε,Mε, Zε ◦Mε}ε>0 satisfies an LDP with the good rate function

I(z,m, φ) =

{
Î(z,m) , φ = z ◦m, m ∈ BV ,
∞ , otherwise.

In particular, the sequence of stochastic integrals {Zε ◦Mε}ε>0 satisfies an LDP with rate
function

Î(φ) := inf {I (z,m) : φ = z ◦m, m ∈ BV} .

Theorem 2.1.3. Under Assumption 2.1.1, {V,W⊥, Y ε} ∼ LDP(IV,W,Y , C([0, T ] → R3) with

IV,W,Y =

{
IV (ψ) + IW (w) , ϕ =

√
ψ ◦ w, w ∈ HT0 ,

∞ , otherwise.

Moreover, we also have {V ε, Y ε} ∼ LDP
(
IV,Y , C

(
[0, T ] → R2

))
, where

IV,Y (ψ, ϕ) = inf

{
IV (ψ) + IW (w) : ϕ =

∫ ·
0

√
ψtẇtdt

}
,

with IW (w) = 1
2

∫ T
0
ẇ2
t dt if w ∈ H0

T and infinite otherwise.

Proof. Since the scaled Brownian motion W ε,⊥ is a uniformly exponentially tight martin-
gale [14, Example 2.1], we only need the LDP for the pair {

√
V ε,W ε,⊥} to apply Theo-

rem 2.1.2 in order to obtain an LDP for the stochastic integral Y ε. The LDP for
√
V ε is im-

mediate from the Contraction principle [8, Theorem 4.2.1], where the corresponding rate func-
tion reads I

√
V (ψ) = IV

(
ψ2
)

and the joint {
√
V ε,W ε,⊥} ∼ LDP

(
I
√
V ,W , C([0, T ] → R2)

)
is

thus a classical result, where the rate function is simply a sum of corresponding rate functions:
I
√
V ,W (ψ,w) = IV (ψ2)+IW (w). Here, IW is nothing else than the usual energy function for the
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Brownian motion from Schilder’s theorem [38]. This allows us to apply Theorem 2.1.2 to ob-
tain {

√
V ,W⊥, Y ε} ∼ LDP

(
I
√
V ,W,Y , C([0, T ] → R3)

)
with I

√
V ,W,Y (ψ,w, ϕ) = I

√
V ,W (ψ,w)

if ϕ = ψ ◦ w for w ∈ BV and infinite otherwise. Let us now consider a continuous map
(x, y, z) 7→ (x2, y, z) through which we recover the LDP for

{
V ε,W ε,⊥, Y ε

}
, where the rate

function IV,W,Y (ψ,w, ϕ) = I
√
V ,W,Y (

√
ψ,w, ϕ) is granted by the Contraction principle. Fi-

nally, by projection, we have the LDP for the pair {V ε, Y ε} with the rate function

IV,Y (ψ, ϕ) = inf
{
IV,W,Y (ψ,w, ϕ) : w ∈ HT0

}
= inf

{
I
√
V ,Y (

√
ψ, ϕ) : ϕ =

√
ψ ◦ w, w ∈ HT0

}
= inf

{
IV (ψ) + IW (w) : ϕ =

√
ψ ◦ w, w ∈ HT0

}
,

where in the second line, the fact that absolute continuity implies bounded variation was used
after application of Theorem 2.1.2. □

Remark 2.1.1. The form of the rate function is the same as in [36, Lemma 3.1], but now
holds for a general volatility process adhering to aforementioned Assumption 2.1.1.

We now continue similarly to [36, Section 3]: the LDP for Xε and its corresponding price
process Sε are obtained from Theorem 2.1.3 using the Contraction principle [8, Theorem
4.2.1], since both maps Xε = Xε(V ε, Y ε) and Sε = Sε(V ε, Y ε) are continuous.

2.1.2. LDP-based importance sampling. We consider two changes of measure, with a deter-
ministic and a stochastic change of drift, and start with the former.

Deterministic change of drift. The drift is of the form
dQ
dP

∣∣∣∣
FT

:= exp

{
ḣ ◦T W⊤ − 1

2
‖ḣ‖2T

}
,

with h ∈ H0
T . The limit (1.8) then reads

L(h) = lim sup
ε↓0

ε logE
[
exp

{
1

ε

(
2F (Xε)− ḣ ◦T Wε⊤ +

1

2
‖ḣ‖2T

)}]
.

We now follow the same approach as in the case of deterministic volatility in Section 4.1. Let
F : CT → R+ be continuous and bounded from above and ḣ be of finite variation, then the
tail condition of Varadhan’s Lemma in Section B.0.1 is immediate from Lemma 4.1.1 and the
functional L in (1.9) reads

L(h) = sup
x∈H0

T

L(x,h), with L(x,h) := 2F (φT (x))− ḣ ◦T x⊤ +
1

2

(
‖ḣ‖2T − ‖ẋ‖2T

)
,

where φ(x) is the unique solution on [0, T ] to

φ̇t(x) = −1

2
ψt(x) +

√
ψt(x)ϱẋ(t)

⊤, with ψ̇t(x) = f(ψt(x)) + g(ψt(x))ẋ1(t),

with initial conditions φ0(x) = 0 and ψ0 = v0, and ϱ := (ρ, ρ). To solve the dual prob-
lem (1.12), the inner optimisation reads

inf
h∈H0

T

L(x,h) = inf
h∈H0

T

{
2F (φT (x))− ḣ ◦T x⊤ +

1

2

(
‖ḣ‖2T − ‖ẋ‖2T

)}
= 2F (φT (x)) + inf

h∈H0
T

{
‖ḣ‖2T
2

− ḣ ◦T x⊤ − ‖ẋ‖2T
2

}
= 2F (φT (x))− ‖ẋ‖2T ,

and can then be solved as

(2.2) h∗ = argmax
x∈H0

T

{
F (φT (x))−

‖ẋ‖2T
2

}
,

which is an asymptotically optimal change of drift in the sense of Definition 1.4.1.
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Stochastic change of drift. We now consider the stochastic change of measure

dQ
dP

∣∣∣∣
FT

:= exp

{(
ḣ
√
V
)
◦T W⊤ − 1

2

∥∥∥ḣ√V ∥∥∥2
T

}
,

with ḣ a deterministic function of finite variation such that E[dQdP ] = 1; this holds for ex-
ample under the Novikov condition E

[
exp( 12

∫ T
0
‖ḣ(t)‖2Vtdt)

]
< ∞. We again consider

G : CT → R+ and let F := log |G|. The minimisation problem (1.8) now reads

L(h) = lim sup
ε↓0

ε logE
[
exp

{
1

ε

(
2F (Xε)− (ḣ

√
V ε) ◦T Wε⊤ +

1

2
‖ḣ

√
V ε‖2T

)}]
= lim sup

ε↓0
ε logE

[
exp

{
1

ε

(
2F (Xε)− ḣ ◦T Yε⊤ +

1

2
‖ḣ

√
V ε‖2T

)}]
.

Since F is continuous, the term inside the exponential is a continuous function of {V ε,Yε}.
Varadhan’s Lemma then yields L(h) = supx∈H0

T
L(x,h), with

L(x,h) = 2F (φT (x))−
(
ḣ
√
ψ(x)

)
◦T x⊤ +

‖ḣ
√
ψ(x)‖2T
2

− ‖ḣ‖2T
2

,

where x = (x1 x2)
⊤ and {φ(x), ψ(x)} are unique solutions on [0, T ] to

φ̇t(x) = −1

2
ψt(x) +

√
ψt(x)ϱẋ(t)

⊤, with ψ̇t(x) = f(ψt(x)) + g(ψt(x))ẋ1(t),

with initial conditions (φ0, ψ0) = (0, v0). For the dual problem, we search for a change of
measure with h such that:

(2.3)



x∗ = argmax
x∈H0

T

{
F (φT (x))−

‖ẋ‖2T
2

}
,

φ̇t(x) = −1

2
ψt(x) +

√
ψt(x)ϱẋ(t)

⊤, φ0 = 0,

ψ̇t(x) = f(ψt(x)) + g(ψt(x))ẋ1(t), ψ0 = v0,

h∗ =

∫ ·
0

ẋ∗(t)√
ψt(x)

dt.

The maximisation problem is very similar to the one with deterministic change of drift (2.2).
However, as we will see in Section 5, the stochastic version usually gives better results.

2.1.3. Application to options with path-dependent payoff. Consider a payoff G(ϑ◦TX)
with G : R+ → R+ differentiable, ϑ a positive function of class C1 and F := log |G|. We only
look at the deterministic case, namely the optimisation problem (2.2) since the solutions
to (2.3) can be easily deduced from it. It reads

h∗ = argmax
x∈H0

T

{
F

(∫ T

0

ϑtφ̇t(x)dt

)
− ‖ẋ‖2T

2

}
,

φ̇t(x) = −1

2
ψt(x) +

√
ψt(x)ϱẋ(t)

⊤, φ0 = 0,

ψ̇t(x) = f(ψt(x)) + g(ψt(x))ẋ1(t), ψ0 = v0.

The following lemma helps transforming the above optimisation problem.

Lemma 2.1.1. Let x ∈ H0
T × H0

T . The function K : H0
T × H0

T → H0
T × Hv0,+T such that

K(x) = (φ,ψ) is solution to

φ̇t(x) = −1

2
ψt(x) +

√
ψt(x)ϱẋ(t)

⊤, with ψ̇t(x) = f(ψt(x)) + g(ψt(x))ẋ1(t),

with initial conditions φ0 = 0 and ψ0 = v0, is well defined and is a bijection.

Proof. Clearly ψ̇ ∈ L2 ([0, T ];R) and the unique solution ψ to the ODE ψ̇t = f(ψt)+ g(ψt)ẇt
with ψ0 = v0 > 0 is strictly positive under Assumption 1.4.1 by [1, Proposition 3.11]. There-
fore ψ ∈ Hv0,+T and K(x) = (φ,ψ) is well defined. Finally, K is clearly a bijection and its
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inverse can be computed explicitly as

K←(z) =

(∫ t

0

ż2(t)− f(z2(t))

g(z2(t))
dt,

1

ρ

∫ t

0

{
ż1(t) +

1
2z2(t)√

z2(t)
− ρ

ż2(t)− f(z2(t))

g(z2(t))

}
dt

)
.

□

Using Lemma 2.1.1, we can substantially simplify the optimisation problem by writing it
in terms of K(x). To be more precise, we will make use of the following transformation:

(2.4) U(ψ) =
ψ̇ − f(ψ)

g(ψ)
and Z(φ,ψ) =

φ̇+ 1
2ψ√
ψ

,

which stems from the two components of K(x). The optimisation problem becomes
φ∗, ψ∗ = argmax

{φ,ψ}∈H0
T×H

v0,+

T

{
F

(∫ T

0

ϑtφ̇tdt

)
− 1

2

∫ T

0

{
U(ψt)

2 +

(
Z(φt, ψt)− ρU(ψt)

ρ

)2
}
dt

}
,

ḣ∗1 = U(ψ∗),

ḣ∗2 =
Z(φ∗, ψ∗)− ρU(ψ∗)

ρ
.

This allows us to apply Euler-Lagrange to the problem seen as an optimisation over{∫ ·
0
ϑtφ̇tdt, ψ

}
:

(2.5)


d

dt

{
Z − ρU

ϑρ2
√
ψ

}
= 0,

d

dt

{
U

g(ψ)
− ρ

ρ2
(Z − ρU)

g(ψ)

}
= − U

g2(ψ)
ζ +

Z − ρU

ρ2

{
1

2
√
ψ

− Z

2ψ
+

ρ

g2(ψ)
ζ

}
,

where ζ := f ′(ψ)g(ψ) + (ψ̇ − f(ψ))g′(ψ). This system of equations is still hard to solve for
general f and g, but can be solved for the Heston model, as done in Section 4.4 below.

2.2. Small-time LDP. Applying the mapping t 7→ εt to (1.6) yields

(2.6) dXε
t = −1

2
εV εt dt+

√
ε
√
V εt dBt, Xε

0 = 0,

dV εt = εf(V εt )dt+
√
εg(V εt )dWt, V0 = v0.

Robertson [36, Proposition 3.2] showed that ε
∫ ·
0
V εt dt is in fact exponentially equivalent to

zero (Definition B.0.1), so that the drift of V ε can be ignored at the large deviations level.
In the case of a general drift f , the following lemma provides a similar statement:

Lemma 2.2.1. The process ε
∫ ·
0
f(V εt )dt is exponentially equivalent to zero.

Proof. Markov’s inequality implies that, for any δ > 0,

P

[∫ T

0

f(V εs )ds >
2δ

ε

]
≤ exp

{
−2δ

ε2

}
E

[
exp

{
1

ε

∫ T

0

f(V εs )ds

}]
,

and we are therefore left to show that lim supε↓0 ε logE
[
exp

{
1
ε

∫ T
0
f(V εs )ds

}]
is finite. To

that end we apply the integral Jensen inequality

E

[
exp

{
1

ε

∫ T

0

f(V εs )ds

}]
≤ 1

T

∫ T

0

E
[
exp

{
T

ε
f(V εs )

}]
ds,

and the linear growth condition from the global Lipschitz condition in Assumption 1.4.1:

1

T

∫ T

0

E
[
exp

{
T

ε
f(V εs )

}]
ds ≤ 1

T

∫ T

0

E
[
exp

{
T

ε
(1 + |V εs |)

}]
ds =

1

T
e
T
ε

∫ T

0

E
[
exp

{
T

ε
|V εs |

}]
ds.
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Next, by the properties of the logarithm and the supremum

lim sup
ε↓0

ε logE

[
exp

{
1

ε

∫ T

0

f(V εs )ds

}]

≤ lim sup
ε↓0

{
ε log

1

T

}
+ T + lim sup

ε↓0
ε log

{∫ T

0

E
[
exp

{
T

ε
|V εs |

}]
ds

}
.

We can now apply Gronwall’s Lemma to the last term, which yields for some C > 0,

lim sup
ε↓0

ε logE

[
exp

{
1

ε

∫ T

0

f(V εs )ds

}]
≤ T +lim sup

ε↓0
ε log

{
exp

{
CT +

T

ε
v0

}}
= T (1+ v0),

which is finite. □

Following this lemma, the results from the previous section could simply be adapted so that
{V ε,W ε} satisfy the same LDP by simply setting f = 0 (or equivalently κ = 0 in the case
of Heston (4.4)). However, this violates the condition f(0) > 0 in Baldi and Caramellino [1].
Fortunately, Conforti, Deuschel and De Marco [6] removed the need for strict positivity on
the drift at the initial time by imposing more stringent conditions on the diffusion.

Assumption 2.2.1.
(i) There exists ξ > 0 such that g(y) = ξ|y|γ for γ ∈ [1/2, 1) for all y ≥ 0;

(ii) The equality f(y) = τ(y) + Ky holds for all y ≥ 0, where τ is a Lipschitz continuous
and bounded function, and τ(y) ≥ 0 in a neighbourhood of the origin.

Theorem 2.2.1 (Theorem 1.1 in [6]). Under Assumption 2.2.1, the solution V ε to (2.1)
satisfies {V ε} ∼ LDP(IV , C([0, T ] → R+)) with

IV (φ) =
1

2ξ2

∫ T

0

(
φ̇t −Kφt

φγt

)2

11{φt ̸=0}dt.

Therefore by setting K = 0 we can use the methodology form the previous section since
the LDPs are the same. Similarly as before, we only consider the deterministic change of
drift, since the stochastic case is very similar. We therefore search for h such that

h∗ = argmax
x∈H0

T

{
F (φT (x))−

‖ẋ‖2T
2

}
,

where φt(x) is the unique solution on [0, T ] to{
φt(x) =

√
ψt(x)ϱẋ(t)

⊤, φ0(x) = 0,

ψ̇t(x) = g(ψt(x))ẋ1(t), ψ0 = v0.

2.3. Large-time LDP. Variance reduction for affine stochastic volatility processes via im-
portance sampling through the large-time approximation is extensively covered in [19], so we
do not repeat the study and refer the reader to the aforementioned work.

3. Importance sampling via moderate deviations

In the previous sections, large deviations provided us with a way of computing the asymp-
totic change of measure for importance sampling, via an ε-approximation of the log-price Xε.
While the large deviation rate function is a convenient quadratic function in the deterministic
volatility setting, it is in general rather cumbersome to compute numerically, unfortunately
offsetting any importance sampling gain. Moderate deviations act on a cruder scale, but
provide quadratic rate functions, easier to compute. Suppose that the sequence {Xε}ε>0

converges in probability to X. Moderate deviations for {Xε}ε>0 are defined as large devia-
tions for the rescaled sequence {

Xε −X√
εh(ε)

}
ε>0

,
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where h(ε) tends to infinity and
√
εh(ε) to zero as ε tends to zero. A typical choice is h(ε) =

ε−α̃ for α̃ ∈ (0, 12 ), equivalently 1√
εh(ε)

= ε−α for α ∈ (0, 12 ). We shall stick to this choice of h
here in order to highlight rates of convergence. We now introduce the approximation

(3.1) X̃ε := X + ε−α
(
Xε −X

)
.

This process is centered around X and is a simple candidate. Furthermore, in stochastic
volatility models, and particularly in large-time setting, the moderate deviations rate function
is simply the second-order Taylor expansion of the large deviations rate function around its
minimum X [27, Remark 3.5]. We again consider the dynamics (1.6) with Assumption 1.4.1
for the coefficients. We further assume the following conditions:

Assumption 3.0.1.
(i) For f ∈ C2(R+ → R), the equation ψ̄t = v0 +

∫ t
0
f
(
ψ̄s
)
ds admits a unique strictly

positive solution ψ̄ ∈ C2([0, T ] → R);
(ii) The small-noise approximation (2.1) of V satisfies an LDP with the good rate func-

tion IV and speed ε such that IV admits a unique minimum and is null there.

Remark 3.0.1. When a large deviations principle holds, then the infimum of the rate function
has to be zero, indeed, since P(Xε ∈ B) ∼ exp{− 1

ε infx∈B I(x)}, then taking B to be the whole
space, the probability on the left-hand side has to be equal to one, and the infimum is thus
null. It may not be attained though. However it is in the case of good rate functions (see
for example Dembo-Zeitouni’s book, bottom of Page 5). As stated at the end of Section 1.1,
we are only concerned here with large deviations with good rate functions. The only gap
that could appear is the case of several points where zero is attained, but this does not seem
restrictive in our setup.

As it will be shown in Lemma 3.1.3, the sequence {V ε}ε>0 converges in probability to
the function ψ̄ as a consequence of Assumption 3.0.1. This provides a natural choice for the
centered process Xt = − 1

2

∫ t
0
ψ̄sds, so that the approximation (3.1) reads, for any t ∈ [0, T ],

(3.2) X̃ε
t = −1

2

∫ t

0

ψ̄sds+ ε−α
(
Xε
t +

1

2

∫ t

0

ψ̄sds

)
.

3.1. Small-noise moderate deviations. For the small-noise approximation (2.1), the pro-
cess X̃ε in (3.2) satisfies the SDE

dX̃ε
t =

(
−1

2
+

1

2εα

)
ψ̄tdt+ ε−αdXε

t

= −1

2

(
1− ε−α

)
ψ̄tdt+ ε−α

(
−1

2
V εt dt+

√
ε
√
V εt dBt

)
= −1

2
ψ̄tdt−

1

2
ε−α

(
V εt − ψ̄t

)
dt+ ε

1
2−α

√
V εt dBt,

starting at X̃ε
0 = 0, where the small-noise approximation (2.1) of the variance reads

dV εt = f(V εt )dt+
√
εg(V εt )dWt, V ε0 = v0.

This transformation creates a discrepancy between the decreasing speeds of X̃ε and that
of V ε (speed of convergence to zero of the diffusion part of the volatility process i.e. ε 1

2−α

versus ε 1
2 ). Since X̃ε is our reference, we adjust the speed of the LDP via ε 1−2α

2 7→
√
ε. With

β :=
α

(1− 2α)
and ηεt := ε−β(V εt − ψ̄t),

we obtain the system

(3.3)
dX̃ε

t = −1

2
ψ̄tdt−

1

2
ηεtdt+

√
ε
√
V εt dBt, X̃ε

0 = 0,

dηεt = ε−β(f(V εt )− f(ψ̄t))dt+
√
εg(V εt )dWt, ηε0 = 0,

dV ε,βt = f(V ε,βt )dt+ ε
1
2+βg(V ε,βt )dWt, V ε,β0 = v0,
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where the notation V ε,β was used to emphasise the change of speed to ε 1
2+β . In the following,

we provide an LDP for {ηε} (equivalently an MDP for {V ε,β}). We relegate more technical
proofs to Appendix A.

3.1.1. Theoretical results. The main moderate deviations result of this section is Theo-
rem 3.1.1, but we first start with the following three technical lemmata, useful for the theorem
but also of independent interest, proved in Appendices A.1-A.2-A.3:

Lemma 3.1.1. Let {Zε}ε>0 be a family of random variables mapping to any metrisable
space X and satisfying an LDP with good rate function Ĩ. If there exists a unique x0 such
that Ĩ(x0) = 0, then for all β > 1, Zεβ satisfies an LDP with the good rate function

I(x) =

{
0, for x = x0,

+∞, elsewhere.

If for β > 1, Zε satisfies an LDP with speed εβ and the good rate function I, then Zε is
exponentially equivalent to x0 with speed ε.

As a consequence of this lemma, the sequence {Zε} converges in probability to x0.

Lemma 3.1.2. Let {Zε}ε>0 be a sequence of random variables mapping to any metrisable
space X and satisfying an LDP with good rate function I such that I(x) = 0 if and only if
x = x0 for some x0 ∈ X . If Zε is uniformly integrable, then limε↓0 E[Zε] = x0.

Lemma 3.1.3. Let V ε,β be given by (3.3) such that f, g ∈ C(R+ → R) satisfy Assump-
tion 1.4.1. Then {V ε,β} converges almost surely to the unique solution of ˙̄ψt = f(ψ̄t) on
[0, T ] with boundary condition ψ̄(0) = v0.

Theorem 3.1.1. Let β, v0 > 0 and let f, g ∈ C(R+ → R) be such that Assumption 1.4.1 is
satisfied and let W ε :=

√
εW and V ε,β , ηε as defined in (3.3), then under Assumption 3.0.1,

the triple {V ε,β , ηε,W ε} satisfies an LDP with speed ε and the good rate function

IV,η,W (v, η, w) =

{
1

2
‖ẇ‖2T , if w ∈ H0

T , v = ψ̄, η̇ = ḟ(ψ̄)η + g(ψ̄)ẇ,

+∞, otherwise.

3.1.2. MDP-based importance sampling. Consider the system (3.3), and let Wε :=
√
εW

and Yε :=
√
V ε,β ◦ Wε. First we apply Theorem 3.1.1, which in turn allows us the use of

Theorem 2.1.3. Next, the Contraction principle and [8, Exercise 4.2.7] imply that the triple
{ηε,Wε,Yε} satisfies an LDP with speed ε and good rate function

Iη,W,Y(η,w,y) =


1

2
‖ẇ‖2T , if w ∈ H0

T , η =

∫ ·
0

{
ḟ(ψ̄s)ηs + g(ψ̄s)ẇ1(s)

}
ds, y =

√
ψ̄ ◦w,

+∞, otherwise.

Remember that the exponential tightness condition necessary for [8, Exercise 4.2.7] is auto-
matically granted, given that the space we work on is Polish [31, Lemma 2.6].

Consider a payoff G ∈ CT → R+ and let F := log |G|. Recall that we are interested in
finding a measure change minimising E

[
e2F dP

dQ

]
.

Deterministic change of drift. We first consider a deterministic change of drift, via
dQ
dP

∣∣∣∣
FT

= exp

{
−1

2
‖ḣ‖2T + ḣ ◦T W⊤

}
,

for h ∈ H0
T with ḣ of finite variation. In the spirit of moderate deviations, we use the

approximation
dQ
dP

∣∣∣∣
FT

≈ exp

{
−1

2
‖ḣ‖2T + ḣ ◦T Wε⊤

}
,

and thus aim at minimising

L(h) = lim sup
ε↓0

ε logE
[
exp

{
1

ε

(
2F (X̃ε) +

1

2
‖ḣ‖2T − ḣ ◦T Wε⊤

)}]
.
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Under the conditions of Varadhan’s lemma B.0.2 (for example if F is bounded), then
L(h) = supx∈H0

T
L(x,h) where

L(x,h) = 2F

(
−1

2

∫ .

0

(ψ̄t + ηt(x))dt+ ϱY⊤(x)

)
− ḣ ◦T x⊤ +

‖ḣ‖2T
2

− ‖ẋ‖2T
2

,

with ϱ := (ρ ρ)
⊤,

(3.4) η(x) =

∫ ·
0

{
ḟ(ψ̄s)ηs(x) + g(ψ̄s)ẋ1(s)

}
ds and Y(x) =

√
ψ̄ ◦ x.

Minimising L(h) is far from trivial, and hence, as before, we define the optimal change of
drift h∗ as a solution to the dual problem inf

h∈H0
T

L(x,h), so that, with η as in (3.4),

(3.5)



Y(x) =

√
ψ̄ ◦ x,

ψ̄t = v0 +

∫ t

0

f(ψ̄s)ds,

ηt(x) =

∫ t

0

{
ḟ(ψ̄s)ηs(x) + g(ψ̄s)ẋ1(s)

}
ds,

h∗ = argmax
x∈H0

T

{
F

(
−1

2

∫ ·
0

(ψ̄t + ηt(x))dt+ ϱY⊤(x)

)
− ‖ẋ‖2T

2

}
.

Stochastic change of drift. We now consider instead a stochastic change of drift in the form
dQ
dP
∣∣
FT

= exp
{
− 1

2‖ḣ
√
V ‖2T + (ḣ

√
V ) ◦T W⊤

}
, for h ∈ H0

T , ḣ of finite variation and with
E
[
dQ
dP
]
= 1. Again, we use the approximation

dQ
dP

∣∣∣∣
FT

≈ exp

{
−1

2
‖ḣ

√
V ε,β‖2T +

(
ḣ
√
V ε,β

)
◦T (Wε)⊤

}
,

and aim at minimising

L(h) = lim sup
ε↓0

ε logE
[
exp

1

ε

{
2F (X̃ε) +

1

2
‖ḣ

√
V ε,β‖2T −

(
ḣ
√
V ε,β

)
◦T Wε⊤

}]
.

If Varadhan’s lemma conditions hold, then again L(h) = supx∈H0
T
L(x,h) where

L(x,h) = 2F

(
−1

2

∫ ·
0

(ψ̄t + ηt(x))dt+ ϱY⊤(x)

)
−
(
ḣ

√
ψ̄

)
◦T x⊤ +

‖ḣ
√
ψ̄‖2T
2

− ‖ẋ‖2T
2

,

with η defined as in (3.4). As minimising L(h) is a priori complicated, we define our optimal
change of drift h∗ as a solution to the dual problem

x∗ = argmax
x∈H0

T

{
F

(
−1

2

∫ ·
0

(
ψ̄t + ηt(x)

)
dt− ϱY⊤(x)

)
−

‖ẋ‖2T
2

}
,

ψ̄t = v0 +

∫ t

0

f(ψ̄s)ds,

ηt(x) =

∫ t

0

{
ḟ(ψ̄s)ηs(x) + g(ψ̄s)ẋ1(s)

}
ds,

h∗ =

∫ ·
0

ẋ∗(t)√
ψ̄t

dt.

3.1.3. Application to options with path-dependent payoff. Consider an option with
payoff G(ϑ ◦T X), where G : R → R+ is a differentiable function and ϑ a positive (almost
everywhere) function of class C1([0, T ] → R+). The payoff is then a continuous function of
the path. Now let F = log |G| and F (x) = F (x − 1

2

∫ T
0
ψ̄sϑsds) and suppose that Assump-

tions 1.4.1 and 3.0.1 hold.
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Deterministic change of drift. We proceed in a similar fashion as in Section 2 and consider
the transformations

φ̇ =

√
ψ̄ (ρẋ1 + ρẋ2)−

η

2
and η̇ = ḟ(ψ̄)η + g(ψ̄)ẋ1,

so that the optimisation problem (3.5) for a path-dependent payoff can then be written as
(3.6)

φ∗, η∗ = argmax
φ,η∈H0

T

{
F

(∫ T

0

ϑtφ̇tdt

)
− 1

2

∫ T

0

{
U(η)2 +

∣∣∣∣Z(φ, η)− ρU(η)

ρ

∣∣∣∣2
}
dt

}
,

ḣ
∗
=

(
U(η∗),

1

ρ
(Z(φ∗, η∗)− ρU(η∗))

)
,

with

U(η) =
η̇ − ḟ(ψ̄)η

g(ψ̄)
and Z(φ, η) =

φ̇+ 1
2η√
ψ̄

.

Then, by applying Euler-Lagrange to the problem seen as an optimisation over
{∫ ·

0
ϑtφ̇tdt, η

}
,

we obtain the system of ODEs
Z − ρU =

1

2
λρ2ϑ

√
ψ̄,

d

dt

{
2U

g(ψ̄)
− λρϑ

√
ψ̄

g(ψ̄)

}
= λϑ

√
ψ̄

(
1

2
√
ψ̄

+ ρ
ḟ(ψ̄)

g(ψ̄)

)
− 2U

ḟ(ψ̄)

g(ψ̄)
,

with boundary conditions λ = −2F
′
T and UT = −ρϑT

√
ψ̄TF

′
T , where F ′T := F

′ (∫ T
0
ϑtφ̇tdt

)
.

Introducing A := 2U
g(ψ̄)

− λρϑ

√
ψ̄

g(ψ̄)
simplifies the problem to the linear ODE: Ȧ − ḟA = 1

2λϑ

with AT = 0, with solution

At =
λ

2
e−Bt

(∫ t

0

eBsϑsds− γT

)
, for t ∈ [0, T ] ,

where B :=
∫ ·
0
f(ψ̄t)dt and γ :=

∫ ·
0
eBtϑtdt. We can now solve for U and Z:

U = λ

(
u+

1

2
ρϑ

√
ψ̄

)
and Z = λ

(
ρu+

1

2
ϑ

√
ψ̄

)
,

with u = 1
4g(ψ̄)e

−B(γ − γT ). Our optimisation problem was posed over
{∫ ·

0
ϑtφ̇tdt, η

}
so we

require the solution in terms of this couple, and therefore

(i)
∫ t

0

ϑsφ̇sds = λ

∫ t

0

ϑs

{
φ̇1
s −

1

2
φ̇2
s

}
ds+ η0T e

BT , where

φ̇1 =

(
u+

1

2
ϑ

√
ψ̄

)√
ψ̄ and φ̇2 = eB

∫ ·
0

e−Bs
(
us +

1

2
ϑs

√
ψ̄s

)
g(ψ̄s)ds;

(ii) ηt = λeBt
∫ t

0

e−Bs
(
us +

1

2
ρϑs

√
ψ̄s

)
g(ψ̄s)ds+ η0e

Bt .

Here, λ, η0 ∈ R are parameters over which we perform our optimisation. Thus the original
optimisation objective (3.6) becomes

λ∗, η∗0 = argmax
λ,η0∈R

{
F

(
λ

∫ t

0

ϑs

{
φ̇1
s −

1

2
φ̇2
s

}
ds+ η0T e

BT

)
− λ2

2

∫ T

0

{∣∣φ̇2
t

∣∣2 + ρ2

4
ϑ2t ψ̄t

}
dt

}
.

Stochastic change of drift. The stochastic change of drift objective is equivalent to the one
with deterministic drift, the difference being how h is calculated.

3.2. Small-time moderate deviations. We now mimic the results of the previous sec-
tion, but in the context of small-time moderate deviations. We again consider the log-price
dynamics (1.6) under Assumption 1.4.1 and Assumption 3.0.1. Let α ∈ (0, 12 ) and define
X̃ε := ε−αXε, so that

dX̃ε
t = −1

2
ε1−αV εt dt+ ε

1
2−α

√
V εt dBt, X̃ε

0 = 0,

dV εt = εf(V εt )dt+
√
εg(V εt )dWt, V ε0 = v0.
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As a consequence of Theorem 3.2.1 the results remain the same as in the case of small-noise
moderate deviations of the previous section with f = 0 and ψ̄ = v0. This being the case, we
do not repeat them here. Let us nevertheless note that in the case of change of measure with
deterministic drift, the problem is similar to the one, where V is constant equal to v0.

3.2.1. Theoretical results. Analogously to Lemma 3.1.3 and Theorem 3.1.1, we have
Lemma 3.2.1. Let V ε be given by (3.3) such that f, g ∈ C(R+ → R) satisfy Assumption 1.4.1.
Then {V ε} converges in probability to v0.
Theorem 3.2.1. Let v0 > 0 and let f, g ∈ C(R+ → R) be such that Assumption 1.4.1 is
satisfied and let W ε :=

√
εW and V ε,β , ηε defined as in (3.3), then, under Assumption 3.0.1,

the triple {V ε,β , ηε,W ε} satisfies an LDP with speed ε and the good rate function

IV,η,W (v, η, w) =

{
1

2
‖ẇ‖2T , if w ∈ H0

T , v = ψ̄, η̇ = g(ψ̄)ẇ,

+∞, otherwise.
3.3. Large-time moderate deviations. We now consider a rescaling of (1.6) defined as
V εt = V t

ε
and Xε

t = εX t
ε
, so that under Assumption 1.4.1 and Assumption 3.3.1,

(3.7)


dXε

t = −1

2
V εt dt+

√
ε
√
V εt dBt, Xε

0 = 0,

dV εt =
1

ε
f(V εt )dt+

1√
ε
g(V εt )dWt, V ε0 = v0 > 0,

which leads to Regime 2 in the slow-fast setting of [33, Theorem 2.1], by choosing the time-
scale separation parameter equal to ε. The following assumption is needed in order to conform
to the conditions in [33].
Assumption 3.3.1.

(i) f is locally bounded and of the form f(y) = −κy + τ(y) with τ globally Lipschitz with
Lipschitz constant Lτ < κ. In addition, the tail condition lim|y|↑∞

τ(y)y
|y|2 = κ holds.

(ii) The function g is either uniformly continuous and bounded from above and away from
zero or takes the form g(y) = ξ|y|qg for qg ∈ [ 12 , 1) with ξ 6= 0.

Remark 3.3.1. Together with Assumption 1.4.1, Condition (ii), necessary to ensure er-
godicity of the volatility process, collapses g to the form g(y) = ξ|y| 12 (for details we refer
to [27, 33]).
3.3.1. Theoretical results. In order to apply the methodology from the previous sections to
derive the desired changes of measure, we need a large-time MDP. More precisely, we need
an MDP for {Xε,

√
εW,

√
εW⊥} in the case of deterministic drift. We do not consider the

stochastic drift change here, since a rigorous treatment is out of scope of this paper. Similar
problem has been studied in [33, Theorem 2.1] and [27, Theorem 3.3], where authors propose
fewer conditions, although in a simpler setting (which happens to include the Heston model
as well). We now introduce a theorem, which is a direct application of [27, Theorem 3.3]
and [33, Theorem 2.1], that provides the desired MDP.
Theorem 3.3.1. Let LV denote the infinitesimal generator of V before rescaling, i.e.

LV h = fḣ+
1

2
g2ḧ.

Under Assumption 1.4.1 and Assumption 3.3.1 the following hold:
i) There exists a unique invariant measure µ corresponding to LV ;

ii) The process Xε converges in probability to − 1
2vt, where v =

∫∞
0
y µ(dy);

iii) There exists a unique solution ς with at most polynomial growth to the Poisson equation

LV (ς)(y) =
y − v̄

2
, with

∫ ∞
0

ς(y)µ(dy) = 0.

Furthermore, denote Q :=
∫∞
0

q(y)q⊤(y)µ(dy), where

q(y) =

ρ√y + ς̇(y)g(y) ρ
√
y

1 0
0 1

 .
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Then the triple {Xε,
√
εW,

√
εW⊥} follows an MDP with good rate function IQ, where

IQ(ϕ) := inf

{
1

2

∫ T

0

u⊤s usds : u ∈ L2
(
[0, T ];R3

)
, ϕ̇⊤Q−1ϕ̇ = u⊤u

}
,

if ϕ ∈ AC and infinite otherwise.

Lemma 3.3.1. The matrix Q is invertible.

Proof. Let Y a random variable with distribution µ, the invariant measure. Then

det(Q) = Eµ
[(
ρ
√
Y + ς̇(Y )g(Y )

)2
+ ρ2Y

]
− Eµ

[
ρ
√
Y + ς̇(Y )g(Y )

]2
− Eµ

[
ρ
√
Y
]2

= Eµ
[∣∣∣ρ√Y + ς̇(Y )g(Y )

∣∣∣2]− Eµ
[
ρ
√
Y + ς̇(Y )g(Y )

]2
+ ρ2

{
Eµ[Y ]− Eµ

[√
Y
]2}

≥ 0,

by Cauchy-Schwarz, where an equality would imply that V is constant µ-almost surely. This
implies f(v) = g(v) = 0, which is not possible due to Assumption 1.4.1 on f and g. □

3.3.2. Application to options with path-dependent payoff. Let us again consider an
option with a continuous payoff function G and let F = log |G|. Following the approach of
the previous sections and with similar notations, we search solutions to the dual problems for
deterministic change of drift. Let x :=

(
x1 x2 x3

)⊤ and x :=
(
x2 x3

)⊤. By considering
a deterministic change of drift similarly as before our problem becomes

L(h) = lim sup
ε↓0

ε logE
[
exp

1

ε

{
2F (Xε) +

1

2
‖ḣ‖2T − ḣ ◦T (Wε)⊤

}]
.

Applying the modified Varadhan lemma gives us the target functional

L(x,h) = 2F (x1) +
1

2
‖ḣ‖2T − ḣ ◦ x⊤ − 1

2

∫ T

0

ẋ⊤Q−1ẋdt.

Using the diagonal operator diag(x1, . . . , xn) =
∑n
i=1 xieie

⊤
i , where n ∈ N and {ei}ni=1 canon-

ical basis of Rn, we now write the problem in terms of x̃ := ẋ , x̃∗ = argmax
x̃∈L2([0,T ];R3)

{
F

(∫ ·
0

x̃1(t)dt

)
− 1

4

∫ T

0

x̃⊤(t)Ax̃(t)dt

}
,

ḣ = x̃∗,

where A := Q−1 + diag(0, 1, 1), which is equivalent to

(3.8) sup
x1∈L2([0,T ];R)

{
F

(∫ ·
0

x1(t)dt

)
− 1

4

∫ T

0

inf
x∈L2([0,T ];R2)

x⊤(t)Ax(t)dt

}
.

This substantially simplifies the main optimisation problem, which can now be solved ex-

plicitly, since A =

(
a11 a⊤21
a21 A22

)
, with a11 ∈ R, a21 ∈ R2, A22 ∈ R2×2, so that the

infimum in (3.8) yields1 x∗ = −A1
22a21x1 =: Bx1. The quadratic form in fact reduces to

x⊤Ax =
(
a11 − a⊤21A

−1
22 a21

)
x21 := ν x21, where both constants

(3.9)

ν = Eµ
[∣∣∣ρ√Y + ς̇(Y )g(Y )

∣∣∣2]+ ρ2Eµ[Y ]−
Eµ
[
ρ
√
Y + ς̇(Y )g(Y )

]2
2

− ρEµ[
√
Y ]2

2
,

B = −1

2

(
Eµ[ρ

√
Y + ς̇(Y )g(Y )]

ρEµ[
√
Y ],

)
,

are obtained from the definition of Q. Finally, we have

(3.10)

 x∗1 = argmax
x1∈L2([0,T ],R)

{
F

(∫ ·
0

x1dt

)
− ν

4

∫ T

0

x21dt

}
,

ḣ
∗
= Bx∗1.

1Since Q is positive-definite, both A and A22 are positive-definite and thus invertible.
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Remark 3.3.2. This problem is similar to the problem in Section 4.1, with deterministic
volatility.

Moderate deviations, though less studied than large deviations in mathematical finance,
have been applied to a wide variety of settings beyond Heston, predominantly in multiscale
systems [33, 34]. A unifying treatment of pathwise moderate deviations for Markovian models
commonly used in financial applications can be consulted in [27], and further developments
in the context of (rough) fractional volatility models were studied in [2] and in [26].

4. Examples

Our setting allows for a variety of stochastic volatility models. We show some exam-
ples below, and give special attention to the Heston model [24], the focus of our numerical
experiments.

4.1. Black-Scholes with deterministic volatility. We first consider the Black-Scholes
model with time-dependent deterministic volatility, namely

dXt = −1

2
σ2(t)dt+ σ(t)dWt, X0 = 0,

where σ ∈ CT is a deterministic function adhering to Assumption 1.4.1. We provide full
details of this specific case, which we will often refer to later on. We consider options with
payoffs that are continuous functions of X. Let G : CT → R+ and F := log |G|, which is then
a continuous function with values in [−∞,+∞). Our objective is to find an almost surely
positive random variable Z with E[Z] = 1 minimising E[G2(X)Z−1] = E

[
e2F (X)Z−1

]
.

4.1.1. Small-noise. The small-noise approximation (1.3) reads

dXε
t = −1

2
σ2(t)dt+

√
εσ(t)dWt, Xε

0 = 0.

Deterministic change of drift. With the change of measure

dQ
dP

∣∣∣∣
FT

:= exp

{
−1

2

∫ T

0

ḣ2tdt+

∫ T

0

ḣtdWt

}
,

with h ∈ H0
T , we can write

L(h) := lim sup
ε↓0

ε logE

[
exp

1

ε

{
2F (Xε) +

1

2

∫ T

0

ḣ2tdt− ḣ ◦T W ε

}]
.

To apply Varadhan’s lemma and estimate L(h), we assume there exists γ > 1 such that

(4.1) lim sup
ε↓0

ε logE
[
exp

{
4γ
F (Xε)

ε

}]
<∞.

This condition is satisfied if, for example, the following assumption holds (for details see the
proof of [20, Theorem 3.6]):

Assumption 4.1.1. Let F : CT → R such that F (x) ≤ K1 + K2 supt∈[0,T ] |xt|α for some
α ∈ (0, 2) and K1,K2 > 0.

Lemma 4.1.1. If ḣ is of finite variation, the function

L(·;h) : x ∈ CT 7→ 2F

(
−1

2

∫ ·
0

σ2(t)dt+

∫ ·
0

σ(t)dxt

)
+

1

2

(∫ T

0

ḣ2tdt−
∫ T

0

ẋ2tdt

)
− ḣ ◦T x

is well-defined and continuous and for every γ > 0,

lim sup
ε↓0

ε logE

[
exp

{
γ

ε

(
1

2

∫ T

0

ḣ2tdt− ḣ ◦T W ε

)}]
exists in R.
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Proof. If ḣ is of finite variation and x is continuous with x(0) = 0, then
∫ ·
0
ḣtdxt is well

defined as a Riemann-Stieltjes integral and∣∣∣ḣ ◦T x
∣∣∣ = ∣∣∣ḣ(T )x(T )− x ◦T ḣ

∣∣∣ ≤ ‖x‖∞
(
|ḣ(T )|+TV(ḣ)

)
,

where TV(·) denotes the total variation. Similarly,
∫ ·
0
σ(t)dxt is well defined and

|σ(·) ◦t x| ≤ ‖x‖∞ (‖σ‖∞ +TV(σ)) , for all t ∈ [0, T ].

Since F is continuous, the first statement on existence and continuity holds. The second one
follows from the computation of exponential Gaussian moments: for every γ > 0,

ε logE

[
exp

γ

ε

{
1

2

∫ T

0

ḣ2tdt− ḣ ◦T W ε

}]
=
γ(1 + γ)

2

∫ T

0

ḣ2tdt.

□

Lemma 4.1.2. If ḣ is of finite variation, then L(h) = supx∈H0
T
L(x;h).

Proof. Let γ > 1 such that (4.1) holds. Then by Cauchy-Schwarz and Lemma 4.1.1,

lim sup
ε↓0

ε logE

[
exp

γ

ε

{
2F

(
−1

2

∫ ·
0

σ2(t)dt+

∫ ·
0

σ(t)dW ε
t

)
+

1

2

∫ T

0

ḣ2tdt−
∫ T

0

ḣtdW
ε
t

}]
<∞,

so that the conditions of Theorem B.0.1 are verified. The continuity has already been shown.
□

Since G : W 7→ X is continuous by continuity of the Itô integral, we can introduce
F̃ = F ◦ G and the existence of a minimum to the dual version of inf

h∈H0
T

sup
x∈H0

T

L(x;h), namely

sup
x∈H0

T

inf
h∈H0

T

L(x;h), can be proved as in [20] under Assumption 4.1.1 by choosing M = 0 in [20,

Lemma 7.1]. The minimum is then attained for h = x and equal to

(4.2) sup
x∈H0

T

2F

(
−1

2

∫ ·
0

σ2(t)dt+

∫ ·
0

σ(t)ẋtdt

)
−
∫ T

0

ẋ2tdt .

Furthermore, it immediately follows from [20, Theorem 3.6] that, if h∗ ∈ H0
T is of finite

variation and is a solution to (4.2), then it is asymptotically optimal if

L(h∗) = 2F

(
−1

2

∫ ·
0

σ2(t)dt+

∫ ·
0

σ(t)ḣ∗tdt

)
−
∫ T

0

|ḣ∗t |2dt.

Therefore, in order to derive a change of measure, we search for h∗ ∈ H0
T such that

h∗ = argmax
x∈H0

T

F

(
−1

2

∫ ·
0

σ2(t)dt+

∫ ·
0

σ(t)ẋtdt

)
− 1

2

∫ T

0

ẋ2tdt.

Simplified deterministic change of drift. We consider a simplified version of the problem: since
ε
∫ ·
0
σ2(t)dt is exponentially equivalent to 0, the previous results remain valid when replacing

F (− 1
2

∫ ·
0
σ2(t)dt+

∫ ·
0
σ(t)ẋtdt) with F (

∫ ·
0
σ(t)ẋtdt). The problem then becomes

h∗ = argmax
x∈H0

T

F

(∫ ·
0

σ(t)ẋtdt

)
− 1

2

∫ T

0

ẋ2tdt.

4.1.2. Application to options with path-dependent payoff. Consider the payoff
G(ϑ ◦T X) with G : R+ → R+ differentiable and ϑ a positive continuous function of finite
variation. The optimisation problem reads

h∗ = argmax
x∈H0

T

F

(∫ T

0

ϑtσ(t)ẋtdt

)
− 1

2

∫ T

0

ẋ2tdt,

with F = log |G(·− 1
2

∫ T
0
ϑtσ

2(t)dt)| in the log-price small-noise approximation. The mapping
ẏt = ϑtσ(t)ẋt yields the Euler-Lagrange equation d

dt
ẏt

(ϑtσ(t))2
= 0, or in terms of the original
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problem d
dt

ẋt
ϑtσ(t)

= 0. We thus search for a solution ẋt = λϑtσ(t) for some λ ∈ R. The
optimisation problem becomes

λ∗ = argmax
λ∈R

{
F

(
λ

∫ T

0

|ϑtσ(t)|2dt

)
− 1

2
λ2
∫ T

0

|ϑtσ(t)|2dt

}
,

h∗ = λ∗
∫ ·
0

ϑtσ(t)dt.

For example, if F (x) = log(ex − ec)+ for x, c ∈ R, λ̃ will be the unique solution on (1,∞) of
vλ+ log(λ− 1)− log(λ)− c = 0. The following payoffs are standard and satisfy this setup:

• (European Call option): G(x) = (ex −K)+ and ϑt = 1 with x+ = max(0, x).
• (Geometric Asian Call option): G(x) = (ex −K)+ and ϑt = 1− t/T .

4.1.3. Small-time. The small-time approximation (1.4) reads

dXε
t = −1

2
εσ2(εt)dt+ σ(tε)dW ε

t ,

with Xε
0 = 0 and W ε =

√
εW . The couple {σ(tε),W ε

t } is exponentially equivalent to
{σ(0),W ε

t }. Since IW is the good rate function of the LDP verified by {W ε} by Schilder’s The-
orem [8, Theorem 5.2.3], {σ(tε),W ε

t } verifies an LDP with good rate function I(s, w) = IW (w)
if s = σ(0) and is infinite otherwise. By Theorem 2.1.3, {

∫ ·
0
σ(tε)dW ε

t ,W
ε} satisfies an LDP

with the same good rate function as {
∫ ·
0
σ(0)dW ε

t ,W
ε}. Noticing that

∫ ·
0
εσ(tε)2dt is expo-

nentially equivalent to zero, our method then leads to the same solution as the problem for
dXε

t = − 1
2εσ

2(0)dt+ σ(0)dW ε
t , which was treated above. In this small-time setting, we lose

all information on the path of σ, except for its initial value.

4.2. Ornstein-Uhlenbeck. Lognormal-based stochastic volatility models, such as [39], read

(4.3)
dXt = −1

2
Vt +

√
VtdBt, X0 = 0,

dVt = κ(θ − Vt)dt+ ξVtdWt, V0 = v0 > 0.

This model clearly satisfies all the assumptions in the previous sections (linear drift and
diffusion) and therefore the importance sampling results can be applied.

4.3. Rough volatility. Our setup above clearly does not include rough volatility models [15],
where the instantaneous variance process is driven by a continuous Gaussian process with
Hurst index in (0, 12 ). However, recent developments have proved, with various degrees of
generality, pathwise large and moderate deviations for this class of models [16, 21, 22, 25, 26],
and our general results above can definitely be tailored to them. We however leave this
model-specific analysis to future endeavours.

4.4. The Heston model. The Heston model is one of the most widely used stochastic
volatility model in Finance, first proposed in [24], in which the log stock price process satisfies

(4.4)
dXt = −1

2
Vt +

√
VtdBt, X0 = 0,

dVt = κ(θ − Vt)dt+ ξ
√
VtdWt, V0 = v0 > 0,

for two Brownian motions B and W such that d〈B,W 〉t = ρ dt. The coefficient κ > 0 is
the speed of mean reversion of the volatility process, while θ > 0 is the long-term mean
and ξ > 0 is the volatility of the volatility process. The variance process V admits a unique
strong solution by Yamada-Watanabe’s conditions [28, Proposition 2.13], and so does X. In
the setting of (1.6) the functions f and g take the form

f(v) = κ(θ − v) and g(v) = ξ
√
v,

and therefore Assumption 1.4.1 clearly holds.
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4.4.1. Small-noise LDP. From Section 2.1, Assumption 2.1.2 is clearly satisfied, and thus
Theorem 1.4.1 holds. In the Heston model, the system (2.5) becomes

d

dt

{
Z − ρU

ϑρ2
√
ψ

}
= 0,

d

dt

{
U

ξ
√
ψ

− ρ

ρ2
(Z − ρU)

ξ
√
ψ

}
= U

(
− U

2ψ
+

κ

ξ
√
ψ

)
+
Z − ρU

ρ2

(
−Z − ρU

2ψ
+

1
2 − ρκξ√

ψ

)
.

Solving the first ODE and plugging it into the second one gives for all t ∈ [0, T ]

(4.5)


Zt − ρUt

ρ2
=

1

2
λϑtψt,

Ȧt = −1

2
ξA2

t + κAt +
1

2
ξλϑt

(
1

2
− 1

4
ρ2λϑt − ρ

κ

ξ

)
+

1

2
ρλϑ̇t,

where λ > 0 is an arbitrary constant and At =
Ut√
ψt

is the solution to the Riccati equation.
The option payoff at the terminal time determines the boundary conditions through the
Euler-Lagrange equations so that

λ = − 2F ′T√
ψT

and AT = −ρ
ξ
F ′TϑT ,

with FT = F
(
∫T0 ϑt

(
Z
√
ψ − 1

2ψ
)
dt
)

. Since both conditions include the same optimising
variable, the resulting problem becomes an optimisation in R2 over λ and AT (or equiva-
lently A0) and is thus much simpler than the original optimisation. After solving for At for
all t ∈ [0, T ], we then solve for (φ,ψ) by writing U and Z in terms of it using (2.4).

Example 4.4.1. In the case ϑt = ϑ > 0 constant, let C(λ) := 1
2ξλϑ

(
1
2 − 1

4ρ
2λϑ− ρκξ

)
so

that the Riccati equation (4.5) reads
dAt
dt

= −ξ
2
A2
t + κAt + C(λ),

the solution to which is

At =
1

ξ

{√
2ξC(λ)− κ2 tan

(
−1

2

t−D(A0, λ)√
2ξC(λ)− κ2

)
+ κ

}
,

where D ∈ R is determined from the initial condition on A. Since At = Ut√
ψt

= ψ̇t−κ(θ−ψt)
ψt

,
we are to solve ψ̇t + (κ− At)ψt = κθ, for t ∈ [0, T ], which is just a non-homogeneous linear
ODE with the solution

ψt =

(
κθ

∫ t

0

exp

{∫ s

0

(κ−Au)du

}
ds+ v0

)
exp

{
−
∫ t

0

(κ−As)ds

}
.

Then the optimisation problem for h reduces to
h1(t) = U(ψ∗) = min

A0,λ>0

ψ̇t(A0, λ)− κ(θ − ψt(A0, λ))

ψt(A0, λ)

h2(t) =
Z(φ∗, ψ∗)− ρU(ψ∗)

ρ
=
ϑ

2
min

A0,λ>0
λψt(A0, λ),

which is an optimisation over (A0, λ) ∈ R2.

4.4.2. Small-time LDP. In the context of the small-time LDP, Assumption 2.2.1 is clearly
satisfied and therefore Theorem 2.2.1 applies immediately. Consider for example an option
with path-dependent payoff G(ϑ ◦T X) as in Section 2.1.3. In the deterministic case, we have

φ∗, ψ∗ = argmax
(φ,ψ)∈H0

T×H
v0,+

T

{
F

(∫ T

0

ϑtφ̇tdt

)
− 1

2

∫ T

0

{
U(ψt)

2 +

∣∣∣∣Z(φt, ψt)− ρU(ψt)

ρ

∣∣∣∣2
}
dt

}
,

ḣ
∗

=

(
U(ψ∗),

Z(φ∗, ψ∗)− ρU(ψ∗)

ρ

)
,
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where U(ψ) = ψ̇
ξ
√
ψ

and Z(φ,ψ) = φ̇√
ψ

. Similarly to Example 4.4.1, with At =
Ut√
ψt

,
Zt − ρUt =

1

2
ρ2λϑtψt,

Ȧt = −1

2
ξA2

t +
1

2
ξλϑt

(
1

2
− 1

4
ρ2λϑt

)
+

1

2
ρλϑ̇t,

for all t ∈ [0, T ], which is very similar to (4.5), but for the κ term.

4.4.3. Large-time moderate deviations. In the context of Section 3.3, the conditions of As-
sumption 3.0.1 are clearly satisfied. In this case, the invariant measure µ is a Gamma distribu-
tion Γ

(
2κθ
ξ2 ,

2κ
ξ2

)
as shown in [7, Section 3.]. Therefore, in light of Theorem 3.3.1, v = θ and the

solution of the Poisson equation ς̇(y) = − 1
2κ is constant, which means that ς(y) = (θ−y)/(2κ)

because of the constraint
∫∞
0
ς(y)µ(dy) = 0. Therefore

Eµ[Y ] = θ and Eµ
[√

Y
]
=

Γ
(

2κ
ξ2 θ +

1
2

)
Γ
(

2κθ
ξ2

) ξ√
2κ
.

From this, noting that ς̇(y)g(y) = −ξ√y/(2κ) we can calculate the constants (3.9):

ν =

((
ρ− ξ

2κ

)2

+ 1− ρ2

)(
θ − Eµ

[√
Y
])

and B = −1

2

(
ρ− ξ

2κ
ρ

)
Eµ
[√

Y
]
.

4.4.4. Other. Results in Heston which are not mentioned in this section follow directly from
their corresponding optimisation problems in Sections 2 and 3 by choosing f and g as in (4.4).

5. Numerical results

In all the different settings we studied, the final form of the optimisation problem is

sup
(φ,ϕ)∈H0

T×H
v0
T

F (φ)− 1

2

∫ T

0

ℓ(φt, ϕt)dt,

where F was linked to the payoff, ℓ to the rate function of the (log-)price process and φ and ϕ
are absolutely continuous paths that arise from Varadhan’s lemma of the (log-)price and
volatility processes respectively. In the tables below, we summarise all problems considered
so far. As one can see, in the deterministic drift setting, the MDP problem is usually as simple
as solving the problem under the Black-Scholes (BS) model or at least by approximating the
model with a Black-Scholes model. Furthermore, the variance reduction for geometric Asian
options are also similar under the MDP with deterministic drift change, meaning advantage
over a simple BS model is not significant. However, when it comes to the stochastic change of
drift of the form

∫ ·
0
ḣt
√
Vtdt, the MDP problems are slightly harder than in BS approximation

and the variance reduction results are in fact significantly better. We study stochastic change
of drift in all cases except in the MDP large-time case, where the invariant distribution of∫ ·
0
ḣt
√
Vtdt is not immediate and would require a careful study, which is outside the scope of

this paper.

Method used Optimisation with general payoff Optimisation with payoff ϑ◦T X
Deterministic volatility
(BS) approximation

Optimisation in H0
T with ℓ a quadratic

function of the (log-)price process φ
Optimisation on R with simple func-
tion to optimise

LDP small-(noise/time) System of ODEs Optimisation in R2 + solving a Ric-
cati equation

MDP small-noise Simple optimisation; the ODE can be
precomputed Straightforward optimisation in R2

MDP small-time Similar complexity to the BS case Similar complexity to the BS case
MDP large-time Similar complexity to the BS case Similar complexity to the BS case

Table 1. Summary of the optimisations with deterministic change of drift.
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Method used Optimisation with general payoff Optimisation with payoff ϑ◦T X
Deterministic volatility
approximation (BS) a

Optimisation on H0
T with ℓ a qua-

dratic function of φ
Optimisation on R with simple func-
tion to optimise

LDP small-(noise/time) Same as in the deterministic case with
a simple additional ODE

Optimisation in R2 and solving a
Riccati equation

MDP small-(noise/time) Similar as in the deterministic case
with an additional ODE Straightforward optimisation in R2

aHere ht in the drift change
∫
ḣt

√
Vtdt is computed using the BS approximation at time t.

Table 2. Summary of the optimisations with stochastic change of drift.

5.1. Numerical results for Black-Scholes. We first provide numerical evidence in the
Black-Scholes model (Section 4.1) with S0 = 50 in the log-price small-noise approxima-
tion. In order to compare estimators, we look at Asian Arithmetic Call options, with payoff
( 1
T

∫ T
0
exp{Xt}dt−K)+. The form of the solution of the optimisation problem studied pre-

viously can be found in [20]. We compare the naive Monte-Carlo estimator to:

• antithetic Monte-Carlo estimator;
• control estimator based on the price of Geometric Asian options with payoff(

exp
{

1
T

∫ T
0
Xtdt

}
−K

)+
, that can be computed explicitly;

• LDP-based importance sampling estimator above.

Instead of simulating
∫ T
0
exp(Xt)dt, we consider a discretised payoff on n = 252 dates and

draw 105 paths. For the LDP-based estimator, the law of W after the change of measure is
given by Girsanov theorem. In what follows, when we refer to variance reduction we mean
the ratio of variance of the classical Monte-Carlo estimator over the variance of estimator in
question. As we can see in Table 3 and in Figure 2, even in non-rare events, the estimator
derived using LDP provides good variance reduction. However, it is mainly in the context of
rare events that it performs best and outperforms the other estimators (Figure 1 and Table 3),
revealing the true power of LDP-based importance sampling estimators.

Figure 1. Left: Estimator with with the highest variance reduction among an-
tithetic, control and LDP estimators (Section 5.1) for different values of σ, K, T .
Right: Best performing estimator in terms of variance reduction among antithetic,
control and LDP estimators (Section 5.1) as a function of probability of a positive
payoff (estimated using Monte-Carlo). Clearly, the LDP estimator performs best
when probability of exercising an option is low.
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Figure 2. Variance reduction of the control (left) and the LDP (right) estimators

Strike K Antithetic Control LDP Probability of positive Payoff

30 64 769 53 0.95
35 59 775 21 0.95
40 31 744 10 0.9
45 10 575 7.9 0.75
50 3.8 336 8.6 0.5
60 2.2 69 22 0.11
70 2.0 16 123 0.013
80 2.3 6.9 1445 0.0011

Table 3. Variance reduction for several estimators for Arithmetic Call options
in Black-Scholes with S0 = 50, r = 0.05, σ = 0.25 and T = 1.

5.2. Numerical results for the Heston model.

5.2.1. Asian option in Heston. To compare variance reduction results in the Heston model, we look
at Asian Geometric Call options, with payoffs of the form(

exp

{
1

T

∫ T

0

Xtdt

}
−K

)+

=

(
S0 exp

{
rT

2

∫ T

0

T − t

T
dXt

}
−K

)+

,

where x+ = max{x, 0}. We consider the following model parameters (realistic on Equity markets)
for the Heston model recalled in Section 4.4:

S0 = 50; r = 0.05; v0 = 0.04; ρ = −0.5; κ = 2; θ = 0.09; ξ = 0.2.

To simulate the paths (X,V ) on [0, T ], we use a standard Euler-Maruyama scheme for X, but use
the scheme [30] for the CIR process in the volatility, which is upward biased2, however nevertheless
converges strongly in L1 to the true process V , which is enough for the purpose of pricing. For n ∈ N,
∆ = T

n
and the increments of the Brownian motion {∆Wn

i }n−1
i=0 the discretisation scheme over [0, T ]

for the variance process {V ni }ni=0 reads:
Ṽ n0 = v0 > 0,

Ṽ ni+1 = Ṽ ni + κ
(
θ − Ṽ n,+i

)
∆+ ξ

√
Ṽ n,+i ∆Wn

i , for all i ∈ {0, . . . , n− 1},
V ni = Ṽ n,+i .

In what follows, we compare different LDP and MDP, with n = 252 trading days per year. All
the results are computed for T = 1 using NMC = 500, 000 Monte-Carlo samples. We also consider
an antithetic estimator and an LDP estimator derived assuming a deterministic volatility (denoted
by BS). Furthermore, since LDP-based deterministic changes of drift in the BS setting (or in cases
where the final form of the optimisation problem is similar) are easy to compute, we also propose a
fully adaptive scheme based on the BS estimator:

ht =

n∑
i=1

hit 11[(i−1)∆,i∆](t),

2There are many discretisation schemes for the Heston model. Since the objective of this paper is not to
study the effects of different schemes we satisfy ourselves with [30].
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where hit is the best deterministic change of drift up to the i-th discretisation step.3 We shall refer
to deterministic schemes to mean changes of law with deterministic changes of drift and to adaptive
changes of drift for changes of law with drift of the form

∫ ·
0
ḣt
√
Vtdt.

5.2.2. LDP results in different settings. We now look at the results of LDP based estimators in small-
noise, small-time and large-time setting. Figure 3 indicates that the estimators derived in small-time
setting provide good results, but are outperformed by small-noise estimators. Although not apparent
in the figure, looking at Table 4, the adaptive estimators provide slightly better results, as a matter
of fact, they are notably better for small strikes. However, the computation time is also higher for
adaptive estimators, which balances out the slight increase in variance reduction for higher strikes.
It thus seems that LDP adaptive estimators (in this case) imply a higher computational cost (given
in Table 6) which is not justified by the variance reduction they can provide.

30 40 50 60 70 80
Strike

1.0

1.5

2.0

2.5

3.0

3.5

4.0 LDP small-noise
LDP small-time

30 40 50 60 70 80
Strike

1.0

1.5

2.0

2.5

3.0

3.5

4.0 LDP small-noise
LDP small-time
LDP large-time

Figure 3. Variance reduction for LDP based estimators in log-scale. Left:
deterministic change of drift. Right: adaptive changes of drift.

5.2.3. MDP results in different settings. In the deterministic case, all considered estimators have
similar variance reduction (see Figure 4). To be more precise, the BS estimator has a very similar
variance reduction or even even slightly outperforms the MDP based estimators (left plot of Figure 4,
where the lines are almost indistinguishable except for very high strikes, outside the ‘moderate’ do-
main, which hence cause numerical problems). Therefore, in that aspect, MDP based estimators
do not justify their higher computational cost compared to the simple LDP-BS estimator. In the
adaptive case, the BS estimator performs slightly better than before, whereas the MDP based estima-
tors significantly outperform their results from the deterministic case and those of the BS estimator.
Moreover, as it will be discussed in the next section, their variance reduction is in fact even close to
that of the LDP based estimators.

30 40 50 60 70 80
Strike

1.0

1.5

2.0

2.5

3.0
BS approximation
MDP small-noise
MDP small-time
MDP large-time

30 40 50 60 70 80
Strike

1.0

1.5

2.0

2.5

3.0

3.5

BS approximation
MDP small-noise
MDP small-time

Figure 4. Variance reduction for MDP based estimators for in log-scale.
Left: deterministic change of drift. Right: adaptive changes of drift. Because
of computational problems, the adaptive small-time MDP estimator was not
computed correctly for a strikes greater than 75. Nevertheless, it looks to be
outperformed significantly by other MDP estimators.

3Fully adaptive schemes are computationally very heavy, therefore we only consider it in the Black-Scholes
setting. The change of law is computed n×NMC times (252× 5E5 = 1.26E8 in our case).
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5.2.4. Overall comparison. Looking at Figure 5, as expected the LDP small-noise adaptive estimators
perform best, although MDP small-noise and large-time adaptive estimators are not far behind. As
for the computation times, Table 6 indicates MDP estimators are on average about 10% and LDP
estimators approximately 15% slower than the corresponding standard BS estimators. The fully
adaptive BS estimator provides interesting results, especially for near-the-money strikes, where it
performs much better than MDP and LDP estimators. Although the estimator is time-consuming,
it can still provide a good balance between variance reduction and computation time for certain
strikes (Tables 4-5-6 and Figure 6). In the following three tables and plots, we use the following
short notations (with in brackets their precise meanings, used in the graphs):
- Prob: Probability of having a positive payoff.
- LDPsn (LDP small-noise): Deterministic estimator based on LDP in small-noise log-price setting.
- LDPsn A (LDP small-noise adaptive): Adaptive estimator based on LDP in small-noise log-price

setting.
- BS (BS approximation): Deterministic BS estimator.
- BS A (BS approximation adaptive): Adaptive BS estimator.
- MDPsn A (MDP small-noise adaptive): Adaptive estimator based on MDP in small-noise log-

price setting.
- BS A2 (BS fully adaptive): Fully adaptive BS estimator.
- Ant (antithetic): Antithetic estimator.
- Classic: Classic Monte-Carlo estimator.

30 40 50 60 70 80
Strike

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 LDP small-noise
LDP small-noise (adaptive)
LDP large-time (adaptive)
BS approximation
BS approximation (adaptive)
MDP small-noise (adaptive)
BS fully adaptive
antithetic

Figure 5. Variance reduction for different estimators in log-scale. The an-
tithetic estimator offers almost no variance reduction for OTM options, be-
cause with high strikes very few paths end up in-the-money, thus reducing
the effect of antithetic samples.

Strike Prob. LDPsn LDPsn A BS BS A MDPsn A BS A2 Ant

30 0.95 14 26 16 33 29 470 58
35 0.94 9.4 13 10 15 14 150 55
40 0.9 6.6 8.2 7.3 9.3 9.1 60 36
45 0.76 5.8 6.7 6.4 7.5 7.5 39 13
50 0.52 6.6 7.5 7.1 8.2 8.5 36 4.2
55 0.26 10 11 10 11 13 43 2.5
60 0.096 20 23 18 20 26 64 2.1
65 0.025 58 65 41 46 69 120 2.0
70 0.005 220 250 110 120 240 280 1.9
75 0.00078 1100 1200 310 350 960 750 1.9
80 0.0001 5700 6800 860 990 4000 2000 1.7
85 1.1e-05 35000 43000 2400 2800 18000 5900 2.7

Table 4. Variance reduction for different estimators and probability of positive payoff.
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30 40 50 60 70 80
Strike

0.5

1.0

1.5

2.0

2.5

3.0

3.5 LDP small-noise
LDP small-noise (adaptive)
MDP large-time (adaptive)
BS fully adaptive

Figure 6. Ratio of variance reduction over computation time for selected
estimators in log-scale.

Strike Prob. LDPsn LDPsn A BS BS A MDPsn A BS A2 Ant

30 0.95 3.3 4.0 3.2 5.6 4.6 19 14.5
35 0.94 2.3 2.0 2.2 2.9 2.4 5.0 13.8
40 0.9 1.5 1.3 1.4 1.5 1.4 2.7 9.0
45 0.76 1.4 1.1 1.2 1.4 1.3 1.9 3.25
50 0.52 1.6 1.1 1.3 1.2 1.2 1.7 1.1
55 0.26 2.3 1.5 2.0 1.9 1.8 2.1 0.41
60 0.096 4.7 3.6 3.5 3.7 4.2 3.2 0.35
65 0.025 11 9.8 7.2 7.4 11 6.0 0.33
70 0.005 48 33 16 21 31 16 0.32
75 0.00078 240 180 48 63 160 52 0.27
80 0.0001 1300 960 180 180 660 160 0.28
85 1.1e-05 7300 6600 490 500 3000 510 0.45

Table 5. Ratio of variance reduction over computation time for different estimators.

Strike Classic LDPsn LDPsn A BS BS A MDPsn A BS A2 Ant

30 11 12 14 12 13 14 31 11
35 11 11 14 12 13 13 36 11
40 11 12 13 13 14 14 30 11
45 11 11 13 13 13 13 28 11
50 11 11 14 13 14 15 28 11
55 11 12 15 12 13 15 28 11
60 11 12 14 12 13 13 28 11
65 11 12 14 13 13 13 27 11
70 11 12 15 14 13 15 24 11
75 11 12 14 14 13 13 21 11
80 11 12 14 12 13 13 20 11
85 11 12 14 12 13 13 19 11

Table 6. Computation time (in seconds) for different estimators.

5.2.5. Variance swaps in Heston. The methodology can also be applied to options with payoffs de-
pending on volatility, for example for options with payoffs of the form

∫ T
0
Vt11{St≥K}dt. Consider

T = 1 and different strikes K > 0 under the Heston model with the same parameters as above. The
results for different estimators are summarised in Table 7. For small strikes, the LDP estimators
based on the BS approximation are not performing well, which is not surprising since in the BS
approximation the payoff of the option in question is almost constant for small strikes. On the other
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hand, LDP and MDP give good results. We also notice a clear difference in favour of non-adaptive
changes of drift. For high strikes, we have the same behaviour as before: adaptive MDP estimators
give intermediate results between LDP (performing best) and BS. At this stage though, we do not
have a clear explanation for the observed differences in the performance of non-adaptive and adap-
tive changes of drift for different strikes. Further research is required to understand the underlying
dynamics better.

Strike LDPsn LDPsn A MDPsn MDPsn A BS BS A Ant

10 220 43 190 44 1.0 1.0 45
20 160 38 140 38 1.0 1.0 46
30 8.2 6.3 8.6 6.5 1.0 1.0 14
40 1.1 1.1 1.1 1.1 1 1 2.5
45 0.86 0.85 0.88 0.87 1.0 1.0 2.9
50 0.96 0.96 0.86 0.76 1.0 1.0 12
55 2.4 2.5 2.6 2.4 1.8 1.9 6.8
60 3.1 3.3 4.4 3.0 3.8 4.1 3.2
70 8.4 9.1 7.4 6.9 6.4 7.0 2.1
80 16 19 15 22 11 11 2.0
90 56 68 26 54 17 19 1.9
100 200 240 36 190 42 54 2.3

Table 7. Variance reduction for different estimators.
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Appendix A. Technical proofs

A.1. Proof of Lemma 3.1.1. Let β > 1, (X , d) be a metric space and the random variable Zε :

Ω → X . We first show that Zε
β

is exponentially equivalent to x0 ∈ X . For δ > 0, let Γδ := {x ∈ X :

d(x, x0) > δ } and note that {ω ∈ Ω : Zε
β

(ω) ∈ Γδ} is measurable since Γδ is an open set. Since Ĩ is
a good rate function and hence lower semi-continuous, it achieves the infimum over a closed set. It
thus follows that infx∈Γδ

Ĩ(x) > 0, since Ĩ(x) = 0 if and only if x = x0. Recall also that Zε satisfies an
LDP with the good rate function Ĩ, then lim supε↓0 ε

β log P[Zε
β

∈ Γδ] ≤ − infx∈Γδ
Ĩ(x) and therefore

lim sup
ε↓0

ε log P
[
Zε

β

∈ Γδ
]
= lim sup

ε↓0
ε1−β

(
εβ log P

[
Zε

β

∈ Γδ
])

(A.1)

≤ −
{

inf
x∈Γδ

Ĩ(x)

}
lim sup
ε↓0

ε1−β = −∞.

Thus proving the exponential equivalence. Next, we show that x0 ∈ X satisfies an LDP with
the good rate function I. Let Γδ ⊂ X such that x0 /∈ Γδ, then lim supε↓0 ε log P[x0 ∈ Γ] = −∞
for the upper bound and thus − infx∈Γ◦ = −∞. Now let Γx0 ⊂ X be such that x0 ∈ X , then
− infx∈Γδ I(x) = 0 for the upper bound and lim infε↓0 ε log P[x0 ∈ Γx0 ] = 0 for the lower bound. By
the exponential equivalence the stated result follows. The second statement is immediate: for any
δ > 0, the inequality (A.1) implies exponential equivalence (the term on the right-hand side) by the
large deviations assumption with β > 1, used in the inequality.

A.2. Proof of Lemma 3.1.2. Let (X , d) be a metric space, Zε : Ω → X and M > 0 and let
BM := {x ∈ X : |x| ≤M }. Since Zε is uniformly integrable, there exists δ > 0 such that

sup
ε>0

E
[
|Zε| 11{Zε /∈BM}

]
< δ,
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and hence
sup
ε>0

E [|Zε|] ≤ sup
ε>0

E
[
|Zε| 11{Zε∈BM}

]
+ sup
ε>0

E
[
|Zε| 11{Zε /∈BM}

]
≤M + δ.

Since x0 is the (unique) zero of the rate function, then {Zε}ε>0 clearly converges in probability to x0,
and so {|Zε|}ε>0 converges to |x0| by continuity. There exists then a subsequence {Zϑε}ε>0 such
that {|Zϑε |}ε>0 converges almost surely to |x0|. Fatou’s lemma then implies

|x0| = E[|x0|] ≤ lim inf
ε↓0

E
[∣∣∣Zϑε ∣∣∣] < sup

ε>0

[∣∣∣Zϑε ∣∣∣] .
On the other hand, for Γδ := {x ∈ X : d(x, x0) > δ } it holds by Bonferroni’s (in)equality

E
[∣∣∣Zϑε ∣∣∣] = E

[∣∣∣Zϑε ∣∣∣ 11{(Zϑε∈Γδ)∩(Zϑε /∈BM )}
]
+ E

[∣∣∣Zϑε ∣∣∣ 11{(Zϑε∈Γδ)∩(Zϑε∈BM )}
]
+ E

[∣∣∣Zϑε ∣∣∣ 11{Zϑε /∈Γδ}
]
.

Since ∣∣∣Zϑε ∣∣∣ 11{Zϑε /∈Γδ} ≤
(
d
(
Zϑε , x0

)
+ |x0|

)
11{Zϑε /∈Γδ},

then E
[∣∣Zϑε ∣∣] 11{Zϑε /∈Γδ} ≤ δ + |x0| and finally

lim sup
ε↓0

E
[∣∣∣Zϑε ∣∣∣] ≤ lim sup

ϑε↓0
E
[∣∣∣Zϑε ∣∣∣ 11{Zϑε /∈BM}

]
+M lim

ε↓0
P
[
Zϑε ∈ Γδ

]
+ δ + |x0|.

Since Zϑε follows an LDP with rate function I and I(Γδ) > 0 by assumption, then
limε↓0 P

[
Zϑε ∈ Γδ

]
= 0. This, together with Zϑε being uniformly integrable, gives the result by

taking M to infinity.

A.3. Proof of Lemma 3.1.3. A key step in proving Lemma 3.1.3 is the tightness of the rescaled
variance process with an unique strong solution

dV εt = f(V εt )dt+ h(ε)g(V εt )dWt,

adhering to Assumption 1.4.1, where h is such as defined in the beginning of Section 3, i.e., h(ε)
tends to infinity and

√
εh(ε) to zero as ε goes to zero.

Lemma A.3.1. The family of random variables {V ε}ε>0 in (3.3) is tight.

Proof of Lemma A.3.1. By Kolmogorov-Chentsov [29, Theorem 21.42] we need to show there exist
α, β,M > 0 such that for every ε > 0 and 0 ≤ s < t ≤ T

E [|V εt − V εs |α] ≤M |t− s|1+β ,

therefore using the obvious inequality |a+ b|α ≤ 2α−1 (|a|α + |b|α) for α ≥ 1 we have

E
[∣∣∣∣∫ t

0

f(V εu )du−
∫ s

0

f(V εu )du+

∫ t

0

g(V εu )dWu −
∫ s

0

g(V εu )dWu

∣∣∣∣α]
≤ 2α−1

(
E
[∣∣∣∣∫ t

s

f(V εu )du

∣∣∣∣α]+ E
[∣∣∣∣∫ t

s

g(V εu )dWu

∣∣∣∣α]) .
Consider for now only the drift term

E
[∣∣∣∣∫ t

s

f(V εu )du

∣∣∣∣α] ≤ (t− s)α−1E
[∫ t

s

|f(V εu )|α du

]
≤ Kα

1 (t− s)α−1

∫ t

s

E [1 + |V εu |α] du,

where we used Jensen’s inequality for the first inequality. The second follows from the linear growth
condition in Assumption 1.4.1. For the diffusion term

E
[∣∣∣∣∫ t

s

g(V εu )dWu

∣∣∣∣α] ≤ {α(α− 1)

2

}α
2

E

[∣∣∣∣∫ t

s

|g(V εu )|2 du
∣∣∣∣α2
]

≤
{
α(α− 1)

2

}α
2

(t− s)
α
2
−1E

[∫ t

s

|g(V εu )|α du

]
≤ Kα

2

{
α(α− 1)

2

}α
2

(t− s)
α
2
−1

∫ t

s

E
[
1 + |V εu |αH

]
du,

where the first line follows from the Burkholder-Davis-Gundy inequality (with α ≥ 2) and the last
one from the H-polynomial growth (H ≥ 1

2
) condition on the diffusion. Adding both terms together
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and applying the Gronwall lemma to the integrands yields

E [|V εt − V εs |α] ≤ 2α−1
(
Kα

1 (t− s)α−1

∫ t

s

E [1 + |V εu |α] du

+Kα
2

{
α(α− 1)

2

}α
2

(t− s)
α
2
−1

∫ t

s

E
[
1 + |V εu |αH

]
du
)

≤ 2α−1
(
Kα

1 (t− s)α−1

∫ t

s

2
α
2
−1(1 + vα0 )e

2α(u−s)du

+Kα
2

{
α(α− 1)

2

}α
2

(t− s)
α
2
−1

∫ t

s

2
α
2
−1(1 + vα0 )e

2α(u−s)du
)

≤ 2α−1
(
2
α
2
−1Kα

1 (1 + vα0 )e
2αHT (t− s)α + 2

αH
2

−1Kα
2 (1 + vαH0 )e2αHT (t− s)

α
2

)
≤ 2α−1

(
C1T

α
2 + C2

)
(t− s)

α
2 =M |t− s|

α
2 ,

where the constants are

C1 := 2
α
2
−1Kα

1 (1 + vα0 )e
2αT , C2 := 2

αH
2

−1Kα
2 (1 + vαH0 )e2αHT , M := 2α−1 max{C1T

α
2 , C2}.

Choosing any α > 2 and β = α
2
− 1 completes the proof. □

Similarly as in [5], define the bounded map Φt : CT → R for each t ∈ [0, T ] as

Φt(ψ) =

∣∣∣∣ψt − v0 −
∫ t

0

f(ψt)ds

∣∣∣∣ ∧ 1.

It is also continuous. Indeed, let ψn → ψ in CT , then we have by the second triangle inequality

|Φt(ψn)− Φt(ψ)| ≤ |ψn − ψ|+
∫ t

0

|f(ψn)− f(ψ)|ds.

Since A := {ψn ∈ CT : n ∈ N} ∪ {ψ} is a compact subset of CT and f is Lipschitz continuous on A
by Assumption 1.4.1, there exists a Lipschitz constant L, such that

|f(φt)− f(ϕt)| ≤ L sup
t∈[0,T ]

|φt − ϕt|,

for all t ∈ [0, T ] and φ, ϕ ∈ A. Therefore, since

|Φt(ψn)− Φt(ψ)| ≤ sup
t∈[0,T ]

|ψnt − ψt|+ tL sup
t∈[0,T ]

|ψnt − ψt| ,

then Φt is continuous. Since {V ε}ε>0 is tight as a family of random variables by Lemma A.3.1, we
know that by taking a subsequence, {V ε}ε>0 converges in distribution to some random variable, call
it ψ̄, on the same probability space. Then, observing that Φt is continuous and bounded, we have
by the Continuous mapping theorem that limε↓0 E[Φt(V ε)] = E

[
Φ
(
ψ̄
)]

. Next, by definition of Φt,
ψ̄ = v0 +

∫ ·
0
f
(
ψ̄s
)
ds will be the limiting function if we are able to show the above limit is zero for

that particular choice of ψ̄. Indeed, by Hölder’s inequality

E[Φt(V ε)] = E
[∣∣∣∣h(ε) ∫ t

0

g(V εs )dWs

∣∣∣∣] ≤
(
|h(ε)|2 E

[∣∣∣∣∫ t

0

g(V εs )dWs

∣∣∣∣2
]) 1

2

≤ h(ε)M,

since the integral can be shown to bounded by M > 0 by the same arguments as in the proof of
Lemma A.3.1. Therefore limε↓0 E[Φt(V ε)] = 0 and the limiting function indeed solves the ODE
ψ̄ = v0 +

∫ ·
0
f(ψ̄s)ds almost surely for all t ∈ [0, T ].

A.4. Proof of Theorem 3.1.1. We first prove the following version of Gronwall’s lemma:

Lemma A.4.1. Let 0 ≤ a < b and φ : [a, b] → R+ continuous with φ(t) ≤M +
∫ t
a
f(s)g(φ(s))ds

on [a, b] for some M > 0. If f : [a, b] → R and g : R+ → R+ satisfy Assumption 1.4.1, then
G(φ(t)) ≤ G(M) +

∫ t
a
f(s)ds for all t ∈ [a, b], where G(u) =

∫ u
1
g−1(s)ds and G(0) = −∞.

Proof. Let ϑ(t) :=
∫ t
a
g(φ(s))f(s)ds, so that ϑ̇(t) = g(φ(t))f(t) ≤ g(M + ϑ(t))f(t) on [a, b], since g

is increasing. By integration,∫ t

a

f(s)ds ≥
∫ t

a

ϑ̇(s)

g(M + ϑ(s))
ds =

∫ M+ϑ(t)

M+ϑ(a)

du

g(u)
=

∫ ϑ(t)+M

M

du

g(u)
,

with u :=M + ϑ(s), since ϑ(a) = 0 by definition. The function G can be decomposed into:

G(u) =

∫ u

1

g−1(s)ds = −11{u∈(0,1)}

∫ 1

u

g−1(s)ds+ 11{u∈[1,∞)}

∫ u

1

g−1(s)ds.



LARGE AND MODERATE DEVIATIONS FOR IMPORTANCE SAMPLING IN THE HESTON MODEL 31

Second term is clearly increasing, since the inverse of an increasing function is an increasing function.
Similarly, for the first term, since g−1 is increasing and positive for u > 0, the map u 7→

∫ 1

u
g−1(s)ds

is decreasing and the term is increasing. Therefore, since G is increasing, then, for any t ∈ [a, b],

G(φ(t)) ≤ G(ϑ(t) +M) ≤
∫ M+ϑ(z)

1

ds

g(s)
≤

(∫ M

1

+

∫ M+ϑ(t)

M

)
ds

g(s)
≤ G(M) +

∫ t

a

f(s)ds.

□

Let Y ε =
∫ ·
0
g(V εt )dW

ε
t . By Lemma 3.1.1 and Lemma 3.1.3, the process V ε is exponentially

equivalent to ψ (with speed ε), so that {V ε,W ε} is exponentially equivalent to {ψ,W ε}. Therefore,
by Theorem 2.1.3, the triple {V ε,W ε, Y ε} satisfies an LDP with good rate function

IV,W,Y (v, w, y) =
1

2

∫ T

0

ẇ2
t dt, if w ∈ H0

T , ẏ = g(ψ)ẇ and v = ψ,

and is infinite otherwise. Now let

(A.2) η̃ε := ηε −
∫ ·

0

f ′(ψt)η
ε(t)dt =

∫ ·

0

{
f(V εt )− f(ψt)− f ′(ψt)(V

ε
t − ψt)

}
ε−βdt+ Y ε.

and suppose the first term is exponentially equivalent to 0. Then, by the Contraction principle [8,
Theorem 4.2.1] we deduce an LDP for {V ε,W ε, η̃ε}. Moreover, since η̃ε 7→ ηε is a continuous
function4, the good rate function given in the statement is obtained using the Contraction principle
once more. Therefore the rest of the proof relies on proving that{

f(V ε)−
(
f(ψ)− f ′(ψ)(V ε − ψ)

)}
ε−β

is exponentially equivalent to 0. We start by showing ηε is bounded. To that end we consider a
Taylor expansion of ℓ(u) := f(ψ + u(V ε − ψ)) for u ∈ R around zero evaluated at u = 1:

ℓ(1) = ℓ(0) + ℓ′(0) +

∫ 1

0

ℓ′′(u)(1− u)du,

so that, since ℓ(0) = f(ψ) and ℓ(1) = f(V ε), we have{
f(V ε)− f(ψ)− f ′(ψ)(V ε − ψ)

}
ε−β = εβ |ηε|2

∫ 1

0

(1− u)f ′′(ψu + u(V εu − ψu))du.

Now let R > 0 and ω ∈ Ω such that

sup
t∈[0,T ]

|V εt (ω)− ψt| ≤ R and sup
t∈[0,T ]

|Y εt (ω)| ≤ ε−
β
4 .

Then for all t ∈ [0, T ] we have

|ηεt (ω)| =
∣∣∣∣∫ t

0

{
f(V εs (ω))−

(
f(ψs)− f ′(ψs)(V

ε
s (ω)− ψs)

)}
ε−βds+ Y εt (ω)

∣∣∣∣
=

∣∣∣∣∫ t

0

f ′(ψs)η
ε
sds+

∫ t

0

|ηεs |2εβ
∫ 1

0

(1− u)f ′′(ψu + u(V εu (ω)− ψu))du ds+ Y εt (ω)

∣∣∣∣
≤
∫ t

0

∣∣f ′(ψs)
∣∣|ηεs |ds+ ∫ t

0

|ηεs |2εβ
∫ 1

0

(1− u)
∣∣f ′′ (ψu + u(V εu − ψu))

∣∣ du ds+ |Y εt (ω)|

≤ α

∫ t

0

(
|ηεs |+ |ηεs |2εβ

)
ds+ ε−

β
4 ,

where
α := 1+max

{
sup
x∈Iψ

∣∣f ′(x)
∣∣, sup
x∈Iψ

∣∣f ′′(x)
∣∣} > 0 and Iψ :=

[
− sup
u∈[0,1]

{|ψu|+R} , sup
u∈[0,1]

{|ψu|+R}
]
.

It is clear that α is finite, since continuous functions admit a maximizer on compact sets. Then by
Lemma A.4.1 G(|ηεt (ω)|) ≤ G(ε−

β
4 ) + αt for all t ∈ [0, T ] and u > 0 with

G(u) =

∫ u

1

1

x+ εβx2
dx = log

(
u

1 + εβ

1 + εβu

)
,

we have

G(|ηεt (ω)|) ≤ log

(
ε

−β
4

1 + εβ

1 + ε
3
4
β

)
+ αT, and |ηεt | ≤ ε−β

{
1

1− C(ε) εβ

1+εβ

− 1

}
,

where
C(ε) = eαT ε

−β
4

(1 + εβ)

1 + ε
3
4
β
< eαT ε

−β
4 , for all 0 < ε < 1.

4It is easy to show that ηε = e
∫ ·
0 f(ψs)ds

∫ ·
0 e−

∫ t
0 f(ψs)dsη̃ε(t)dt solves the ODE in (A.2).
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Therefore there exists 0 < ε0 < 1 such that

sup
t∈[0,T ]

|ηεt (ω)| ≤ 2eαT ε−
β
4 , for all 0 < ε < ε0.

We now finally prove that εβ |ηε|2
∫ 1

0
(1− u)f ′′(ψ+ u(V ε −ψ))du is exponentially equivalent to zero.

Let δ > 0 and 0 < ε < ε0, and define

Γε :=
{
ω ∈ Ω : sup

t∈[0,T ]

εβ |ηεt |2
∣∣∣ ∫ 1

0

(1− u)f ′′(ψt + u (V εt − ψt))du
∣∣∣ ≥ δ

}
,

Aε :=
{
ω ∈ Ω : sup

t∈[0,T ]

|V εt − ψt| ≤ R
}
, Bε :=

{
ω ∈ Ω : sup

t∈[0,T ]

|Y εt | ≤ ε−
β
4

}
,

then

ε log P
[
Γε
]
≤ ε log

{
P
[
Γε ∩Aε ∩Bε

]
+ P

[
Acε

]
+ P

[
Bcε

]}
≤ ε log 3 + max

{
ε log P

[
Γε ∩Aε ∩Bε

]
, ε log P

[
Acε

]
, ε log P

[
Bcε

]}
.

Using the previous bound on ηε, which holds under condition {Aε ∩Bε}, we have that

ε log P
[
Γε ∩Aε ∩Bε

]
≤ ε log P

[{
ω ∈ Ω : sup

t∈[0,T ]

εβ |ηεt |2 ≥ 1

α
δ
}
∩Aε ∩Bε

]
≤ ε log P

[
ε
β
2 ≥ 1

4α
e−2αT δ

]
ε↓0−−→ −∞.

Next, since V ε is exponentially equivalent to ψ with speed ε, then limε↓0 ε log P[Acε] = −∞. Finally,
looking at the LDP with speed ε1+

β
2 , V ε is still exponentially equivalent to ψ by the same argument

as before, thus similarly ε
1
2
+ β

4
∫ ·
0
g(V εt )dWt = ε

β
4 Y ε satisfies an LDP with good rate function having

a unique minimum at zero and with speed ε1+
β
2 . Therefore, ε

β
4 Y ε is exponentially equivalent to zero

and lim
ε↓0

ε log P[Bcε ] = −∞, which completes the proof.

Appendix B. Variations around Varadhan’s Lemma and Exponential Equivalence

Varadhan’s integral lemma is a generalisation of Laplace’s method. It gives the asymptotic be-
haviour of E[e

φ(Zε)
ε ] on a log scale for a family of random variables Zε and a continuous function φ.

The Laplace’s method states that under some conditions the following relation holds

lim
n→∞

1

n
log

∫ b

a

enf(x)dx = sup
x∈[a,b]

f(x).

One notable application of Varadhan’s integral lemma is finding a good change of measure in impor-
tance sampling, as we will see it in the following sections. For theses applications, we need a slightly
more general formulation of the lemma than the one found in [8, Theorem 4.3.1]. Nevertheless, the
proof in [8, Theorem 4.3.1] can be easily adapted as done in [36, Lemma 4.4.].

Theorem B.0.1. (Varadhan’s Integral Lemma) Let X be a metric space, Zε a family of X -valued
random variables satisfying an LDP with good rate function I : X → [0,+∞] and φ : X → R a
continuous function. Assume further either the tail condition

lim
M↑∞

lim sup
ε↓0

ε logE
[
exp

{
φ(Zε)

ε

}
11{φ(Zε)≥M}

]
= −∞,

or the moment condition for some γ > 1 (because it implies the previous tail condition)

lim sup
ε↓0

ε logE
[
exp

{
γ
φ(Zε)

ε

}]
<∞.

Then

lim
ε↓0

ε logE
[
exp

{
φ(Zε)

ε

}]
= sup
x∈X

{φ(x)− I(x)}.

The below-modified theorem was proven in [36] and allows the above function φ to reach −∞ and
accounts for cases where the problem is written in term of a family of functions {φε}ε>0.

Theorem B.0.2. (Modified Varadhan’s Integral Lemma) Let X and Y be two metric spaces, Zε a
family of X -valued random variables that satisfies an LDP with good rate function I : X → [0,+∞]
and let φ : Y → [−∞,+∞) and ψ : X → R be two continuous functions. Let Λ : X → Y be
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a continuous map and {Λε : X → Y} be a family of measurable functions such that Λε(Z
ε) is

exponentially equivalent to Λ(Zε). Suppose that there exists γ > 1 such that

lim sup
ε↓0

ε logE
[
exp

{
γ
φ(Λε(Z

ε)) + ψ(Zε)

ε

}]
<∞.

Then
lim
ε↓0

ε logE
[
exp

{
φ(Λε(Z

ε)) + ψ(Zε)

ε

}]
= sup
x∈X

{
φ(Λ(x)) + ψ(x)− I(x)

}
.

Definition B.0.1. (Exponential equivalence) Let (X , d) be a metric space, Zε and Z̃ε two fam-
ilies of X -valued random variables defined on some probability spaces {(Ω, Bε, Pε)}. Zε and Z̃ε

are called exponentially equivalent if for every δ > 0, {w : d(Zε, Z̃ε) > δ} is Bε measurable and
lim sup
ε↓0

ε log Pε(d(Zε, Z̃ε) > δ) = −∞.
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