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Abstract. Universal approximation theorems are the foundations of classical neural

networks, providing theoretical guarantees that the latter are able to approximate maps
of interest. Recent results have shown that this can also be achieved in a quantum setting,

whereby classical functions can be approximated by parameterised quantum circuits.
We provide here precise error bounds for specific classes of functions and extend these

results to the interesting new setup of randomised quantum circuits, mimicking classical

reservoir neural networks. Our results show in particular that a quantum neural network
with O(ε−2) weights and O(⌈log2(ε−1)⌉) qubits suffices to achieve accuracy ε > 0 when

approximating functions with integrable Fourier transform.
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1. Introduction

Artificial neural networks were devised decades ago to approximate arbitrary functions
by some algorithmically generated composition of maps. With an increasing level of gen-
erality, Cybenko [9], Hornik [24], Hornik, Stinchcombe, White [25], Leshno, Lin, Pinkus,
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Schocken [31] proved that spaces of artificial neural networks (with arbitrary width) are in
fact dense within some spaces of functions, giving rise to the notion of universal approxima-
tions. The case of arbitrary depth and fixed width was studied later by Gripenberg [21] and
Kidger and Lyons [29] among many others. Bounds on the approximation errors have been
obtained by Barron [2, 3, 4], Mhaskar [35] and in many other works, for instance in [5, 22, 52]
and the review in [23]. These results—and many subsequent papers refining them—provide
theoretical grounds for the use of neural networks in various applications. While the gen-
erated function spaces are not constructive, they nevertheless guarantee that complicated
and seemingly intractable functions (possibly in non-Euclidean or even infinite-dimensional
spaces) can be well approximated by easy-to-implement neural networks, the simplest of
them being feedforward neural networks.

Over the past few years, the rise of quantum computing capabilities, while still in their
infancy, has open the gates to (small-scale) applications, in particular optimisation (through
quantum annealing, as developed by D-Wave) and machine learning. There has been wide
interest in searching for so-called quantum supremacy, or at least (and more realistically)
quantum advantage (a term coined by Preskill in [41]) and the many empirical results avail-
able at the moment, in biology [8] or in finance [48], for example, indicate that more research
is needed to provide clear benefits for real-life applications. In the context of machine learn-
ing specifically, quantum computing essentially replaces layers of feedforward neural net-
works by parameterised quantum circuits; the similarities end up here as the non-linearity
of classical activation functions (such as sigmoid, tanh, ReLu) find no specific equivalent
in quantum neural networks, and a different approach is thus required. The fundamental
difference of outputs (a vector on the real line for a classical neural network and a discrete
probability distribution for its quantum version) also requires a different thought process.

The present paper focuses on the theoretical aspects of quantum neural networks. In [39,
40] the authors proved a universal approximation theorem for quantum neural networks by
constructing a one-qubit quantum circuit able to arbitrarily approximate any continuous
complex-valued function. A similar approach was carried out in [46], who showed that data
encoding can be approximated by infinitely (akin to infinite-width classical neural networks)
repeating simple encoding schemes based on Pauli gates. Both papers rely on Fourier series
representations of the function to be approximated, a very natural path because of their
trigonometric interpretations, similar to the actions of (quantum) rotation matrices.

The goal of the present article is to move one step further and to prove precise error
bounds for these approximations. Our first result, in Section 2, consists of error bounds
for a universal approximation theorem for continuous functions, bounded in L1 with mild
constraints on their Fourier transforms. To do so, we explicitly build a parameterised
quantum circuit and prove that a set of hyperparameters (or rotation angles) can achieve
accurate estimation. More precisely, we show that a quantum neural network with O(ε−2)
weights and O(⌈log2(ε−1)⌉) qubits suffices to achieve accuracy ε > 0 when approximating
functions with integrable Fourier transform. One potential drawback—standard in classical
machine learning—is the obvious (very high) dimension of the hyperparameter space. To
palliate this, in Section 3, we prove a similar result where the original quantum circuit is
replaced by a reservoir quantum circuit, where all the unitary operators apart from the
last one, are randomised and frozen. This gives the advantage, similar to classical random
features [42, 43], extreme learning machines [26] and reservoir computing [27, 32, 50]),
of reducing the dimension of the optimisation problem, thereby being more amenable to
applications. In Section 4, we further improve the results of Section 2 to the L∞ case, thus
providing uniform bounds.
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Quantum reservoir computing [12] has been extensively studied in the past years from a
theoretical and from an empirical perspective, in [10, 33, 36, 49] and in the review papers [13,
37]. Universal approximation properties for quantum reservoir computing have been studied
in [6, 7, 38], analogous to universality results for classical reservoir computing [16, 17, 19, 20].
In quantum reservoir computing there is usually a dynamical aspect, whereby the inputs
that need to be processed are sequences. Here we work in a static setting, but still use
the term reservoir quantum circuit to emphasise that the parameters within the variational
quantum circuits are randomly generated and then fixed. Alternatively, we could also use
the terminology quantum extreme learning machine or quantum random feature network in
analogy to the classical terminology in the static case.

The approximation bounds we obtain for these quantum reservoirs are akin to the ap-
proximation bounds available for classical random feature neural networks in [14, 15]. As
in these, we consider here functions whose Fourier transforms satisfy certain integrability
conditions. We prove that these functions can be approximated by quantum reservoir net-
works up to an approximation error of order n−

1
2 , where n is a parameter we may choose,

proportional to the number of randomly generated weights. Put differently, our result shows
that an approximation accuracy ε > 0 can be achieved by using O(ε−2) randomly generated
weights and a circuit with O(⌈log2(ε−1)⌉) qubits.

In classical machine learning, random feature methods are closely linked to kernel meth-
ods, as in [42, 43] and in the more recent works [34, 44]. Similarly, quantum reservoir
networks are related to quantum feature maps as studied for example in [18]. There, the
authors prove a universal approximation result for quantum feature maps. A collection of
basis functions is built by applying multiple observables to a quantum circuit. Linear com-
binations of these basis functions are then shown to be universal approximators. The proof
is based on polynomial approximations, which also yields error bounds for these quantum
feature maps. These results are valid for all Lipschitz functions and require O(ε−1) qubits
and O(ε−d) measurement basis functions (where d is the data dimension) to achieve accu-
racy ε > 0. In contrast, here we consider a single quantum circuit and linearly combine
probabilities obtained from a single measurement of this circuit.

2. Approximation error bounds for variational quantum circuits

2.1. Construction of a universal variational quantum circuit. For n ∈ N, weights
a = (a1, . . . ,an) ∈ (Rd)n, b = (b1, . . . , bn) ∈ Rn, γ = (γ1, . . . , γn) ∈ [0, 2π]n and an input
x = (x1, . . . , xd) ∈ Rd define the following gates acting on a single qubit:

U
(i)
1 := U

(i)
1

(
ai, bi,x

)
:= H Rz

(
−bi
)
Rz
(
−aidxd

)
· · · Rz

(
−ai1x1

)
H,

U
(i)
2 := U

(i)
2

(
γi
)

:= Ry
(
γi
)
,

with H the Hadamard gate and Ry, Rz the rotations around the Y-and the Z-axis respectively:

Ry(γ) :=

(
cos
(
γ
2

)
− sin

(
γ
2

)
sin
(
γ
2

)
cos
(
γ
2

) ) and Rz(α) :=

(
e−iα2 0
0 ei

α
2

)
,

for α ∈ R and γ ∈ [0, 2π]. Now write θ = (a(i), b(i), γ(i))i=1,...,n ∈ Θ := (Rd × R× [0, 2π])n

and define the block matrix
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U := U(θ,x) :=



U
(1)
1 ⊗ U

(1)
2 04×4 04×4 · · · 04×4 04×n0

04×4 U
(2)
1 ⊗ U

(2)
2 04×4 · · · 04×4

...
...

. . .
...

...

04×4 · · · 04×4 U
(n−1)
1 ⊗ U

(n−1)
2 04×4

...

04×4 · · · · · · 04×4 U
(n)
1 ⊗ U

(n)
2 04×n0

0n0×4 · · · · · · · · · 0n0×4 1n0×n0


,

with n0 the integer in N0 such that log2(4n+n0) ∈ N. Then U ∈ C(4n+n0)×(4n+n0) is unitary
and can be viewed as a gate operating on n := ⌈log2(4n)⌉ qubits. Let N = 4n + n0 = 2n

and V ∈ CN×N any unitary matrix that maps |0⟩⊗n
to the state |ψ⟩ = 1√

n

∑n−1
i=0 |4i⟩.

Example 2.1. To clarify the somewhat abstract construction above, we provide some ex-
amples to make it more explicit. It is indeed trivial to generate all the columns for any
integer n ∈ N:

n n0 n |ψ⟩
1 0 2 |00⟩
2 0 3

1√
2
(|000⟩+ |100⟩)

3 4 4
1√
3
(|0000⟩+ |0100⟩+ |1000⟩)

4 0 4
1√
4
(|0000⟩+ |0100⟩+ |1000⟩+ |1100⟩)

5 12 5
1√
5
(|00000⟩+ |00100⟩+ |01000⟩+ |01100⟩+ |10000⟩)

Remark 2.2. Since V |0⟩⊗n
= |ψ⟩, then the first column of V (seen as a matrix in CN×N )

corresponds exactly to |ψ⟩ (seen as a vector in CN ). We can in fact give an explicit (but
not necessarily unique) construction for such a unitary matrix V given this constraint on the
first column. Indeed, set V := 2 |φ⟩ ⟨φ| − I, with

|φ⟩ := |0⟩+ |ψ⟩√
2 (1 + ⟨0|ψ⟩)

,

where we write |0⟩ in place of |0⟩⊗n
for brevity here. In this case, immediate computations

show that V is unitary since V† := 2 |φ⟩ ⟨φ| − I = V and VV† = V†V = I. Furthermore,

V |0⟩ = (2 |φ⟩ ⟨φ| − I) |0⟩

=

(
2

|0⟩+ |ψ⟩√
2 (1 + ⟨0|ψ⟩)

⟨0|+ ⟨ψ|√
2 (1 + ⟨0|ψ⟩)

− I

)
|0⟩

=
|0⟩ ⟨0|+ |0⟩ ⟨ψ|+ |ψ⟩ ⟨0|+ |ψ⟩ ⟨ψ|

1 + ⟨0|ψ⟩
|0⟩ − |0⟩

=
|0⟩+ |0⟩ ⟨ψ|0⟩+ |ψ⟩+ |ψ⟩ ⟨ψ|0⟩

1 + ⟨0|ψ⟩
− |0⟩

=
|0⟩ (1 + ⟨ψ|0⟩) + |ψ⟩ (1 + ⟨ψ|0⟩)

1 + ⟨0|ψ⟩
− |0⟩ = |ψ⟩ ,

where we used the fact that ⟨0|ψ⟩ ∈ R in the third line.
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The property V |0⟩⊗n
= |ψ⟩ is in fact the only property of V that is required, otherwise V

does not have any impact on the scheme or the error bounds. In case there are several alter-
native choices for V one may thus select the one that is most suitable from the perspective
of hardware requirements and limitations.

We can now measure the state of the n-qubit system after applying the gates V and U.
The possible states that we could measure are 0, . . . , N − 1. For m ∈ {0, 1, 2, 3} we denote
by Pm the probability that the measured state is in {m, 4+m, . . . , 4(n−1)+m}. By running
the circuit S times we may estimate these probabilities by

P̂n
m :=

1

S

S∑
s=1

1{m,4+m,...,4(n−1)+m}(i
(s)),

with i(s) the measured state in the i-th shot. Here we will consider S to be large enough
and will consider Pn

m = Pn
m(θ,x) as the output of the quantum circuit. We summarise this

construction in the following formal definition:

Definition 2.3. For n ∈ N and θ ∈ Θ, we define the unitary operator Cn(θ,x) := U(θ,x)V
acting on n = ⌈log2(4n)⌉ qubits, namely the realisation of the variational quantum circuit

|0⟩⊗n
V U(θ,x)

With a slight abuse of notation, we may also refer to this circuit as Cn(θ,x). Furthermore,

for any m ∈ {0, 1, 2, 3}, we let Pn
m := P

(
”Cn(θ,x) |0⟩⊗n ∈ {m, 4 +m, . . . , 4(n− 1) +m}”

)
.

2.2. Approximation error bound. We now consider learning based on the variational
quantum circuit constructed above. For a continuous and integrable (in C(Rd) × L1(Rd))

function f : Rd → R, we denote by f̂(ξ) :=
∫
Rd e

−2πiy·ξf(y)dy, for ξ ∈ Rd, its Fourier
transform and define

L1[f̂ ] :=

∫
Rd

|f̂(ξ)|dξ,

which may or may not be finite.
Given the operator Cn(θ,x) and R > 0, introduce the map fRn,θ : Rd → R by

fRn,θ(·) := R− 2R[Pn
1 (θ, ·) + Pn

2 (θ, ·)].

In order to avoid repetitions later and to compare the different results more clearly,
introduce the spaces of functions

F :=
{
f : Rd → R : f ∈ C

(
Rd
)
∩ L1

(
Rd
)}
,

FR :=
{
f ∈ F , with L1[f̂ ] ≤ R

}
, for any R > 0. (2.1)

Before stating the first theorem, we fix a probability measure µ on Rd, which shall be used
throughout to measure the approximation error. This measure can be chosen arbitrarily
and changes how the approximation quality is weighted in different regions of Rd. For
example, if µ is the uniform measure on a hypercube [−M,M ]d (for some M > 0), then
the approximation quality is weighted equally over [−M,M ]d and no weight is put on the
approximation quality outside [−M,M ]d.

The following result shows that the outputs of Cn(θ,x) can be used to approximate such

functions–further satisfying f̂ ∈ L1(Rd)–up to an error of size n−
1
2 . In particular, no curse

of dimensionality occurs and the number of qubits is logarithmic in n.
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Theorem 2.4. For any R > 0, f ∈ FR and n ∈ N, there exists θ ∈ Θ such that(∫
Rd

∣∣f(x)− fRn,θ(x)
∣∣2 µ(dx))1/2

≤ L1[f̂ ]√
n
.

Remark 2.5. We would like to emphasise that the quantum circuit above depends on θ (a
quantum analogue of the vector of hyperparameters in classical neural networks) but also
on the input data x. While this may not sound ideal at first, this is how classical analyses
are performed, for example in [40, 46]. Now, the theorem states that the optimal vector θ
does not itself depend on x, which is a very desirable feature indeed. Assume for example
that the measure µ is a sum of Dirac masses, namely

µ(dx) =

M∑
i=1

µiδxi ,

for some positive integer M so that the expression in Theorem 2.4 reads∫
Rd

∣∣f(x)− fRn,θ(x)
∣∣2 µ(dx) = M∑

i=1

µi

∣∣f(xi)− fRn,θ(x
i)
∣∣2 ,

implying that the quantum neural network can approximate the function f over any compact
hypercube [min{xi

1}i=1,...,M ,max{xi
1}i=1,...,M ] × · · · × [min{xi

d}i=1,...,M ,max{xi
d}i=1,...,M ]

with a single vector of parameters θ. More generally, fix a weighting function w : Rd → [0,∞)
that models the weight w(x) we assign to the error at each point x ∈ Rd. Provided that
w ∈ L1(Rd), we can use it to define a probability measure µ with Lebesgue-density w/∥w∥1
for which the error reads∫

Rd

∣∣f(x)− fRn,θ(x)
∣∣2 µ(dx) = 1

∥w∥1

∫
Rd

w(x)
∣∣f(x)− fRn,θ(x)

∣∣2 dx,
so that the quantum neural network is able to approximate the function f on all of Rd in an
average sense with a single vector of parameters θ. Handling or adding constraints to take
care of potential erratic behaviour outside the (necessarily) compact set of training data
points has recently been tackled for classical neural networks [1, 47, 51] and we leave it to
future research in the quantum case.

For standard neural networks, the condition
∫
Rd ∥ξ∥|f̂(ξ)|dξ <∞ guarantees that f can

be approximated by neural networks without the curse of dimensionality, as established

in [3]. For f ∈ L1(Rd), this condition is stronger than the requirement L1[f̂ ] <∞ imposed
in Theorem 2.4.

A sufficient condition for L1[f̂ ] < ∞ is the requirement that f ∈ Hs(Rd) for s > d
2 ,

where Hs is the Sobolev space of order s, see [11, Lemma 6.5] applied with k = 0 and its
proof. In dimension d = 1, for example, a sufficient condition to apply Theorem 2.4 is thus
f ∈ L1(R) ∩ L2(R) ∩ C(R) (= L1(R) ∩ C(R)), f ′ ∈ L2(R). The proof of Theorem 2.4 is
constructive and consists of two steps. First, in Proposition 2.7, we show that for any choice
of weights θ = (ai, bi, γi)i=1,...,n the function

gRn,θ : x 7−→ 1

n

n∑
i=1

R cos
(
γi
)
cos
(
li(x)

)
, with li(x) := bi + ai · x, (2.2)

can be realised as the output of Cn(θ,x), namely that it is equal to fRn,θ. Then, in Propo-

sition 2.8, we use a probabilistic argument to show that functions of type (2.2) are able to
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approximate continuous, integrable functions f with integrable Fourier transform up to an

error of size L1[f̂ ]n−
1
2 , thus yielding Theorem 2.4.

Remark 2.6. Instead of the quantum circuit in Theorem 2.4 one could alternatively use a
circuit with 2n qubits in which U has a tensor product structure. More specifically, U could
be chosen as the sequence of n two-qubit operations

U =

n∏
i=1

(1⊗ 1)⊗i−1 ⊗
(
U
(i)
1 ⊗ U

(i)
2

)
⊗ (1⊗ 1)⊗n−i,

and V ∈ C22n×22n could be chosen as any unitary matrix that maps |0⟩⊗2n
to the state |ψ⟩ =

1√
n

∑n−1
i=0 (|1⟩ ⊗ |1⟩)⊗i ⊗ (|0⟩ ⊗ |0⟩)⊗n−i. Choosing Pn

m (m ∈ {0, 1, 2, 3}) as the probability

that the measured state is in {(|1⟩⊗|1⟩)⊗i⊗(|x⟩⊗|y⟩)⊗(|0⟩⊗|0⟩)⊗n−i−1 : i ∈ {0, . . . , n−1}}
where x, y ∈ {0, 1} are the coefficients in the binary representation m = 2x + y, the proof
of Proposition 2.7 below carries over analogously.

2.3. Proof of Theorem 2.4. In this section we prove two propositions, the combination
of which directly implies Theorem 2.4.

Proposition 2.7. For any n ∈ N, θ ∈ Θ, the representation fRn,θ = gRn,θ holds over Rd.

Proof. Let us first calculate Pn
0 . To do this, we first compute

UV |0⟩⊗n
= U |ψ⟩ = 1√

n

n−1∑
j=0

U |4j⟩ = 1√
n

n−1∑
j=0

3∑
k=0

[
U
(j+1)
1 ⊗ U

(j+1)
2

]
k+1,1

|4j + k⟩ ,

and consequently

Pn
0 =

n−1∑
i=0

∣∣∣⟨4i| UV |0⟩⊗n
∣∣∣2 =

n−1∑
i=0

∣∣∣∣∣∣⟨4i| 1√
n

n−1∑
j=0

3∑
k=0

[
U
(j+1)
1 ⊗ U

(j+1)
2

]
k+1,1

|4j + k⟩

∣∣∣∣∣∣
2

=
1

n

n−1∑
i=0

∣∣∣∣[U(i+1)
1 ⊗ U

(i+1)
2

]
1,1

∣∣∣∣2 .
Computing

[U
(i)
1 ⊗ U

(i)
2 ]1,1 = [U

(i)
1 ]1,1[U

(i)
2 ]1,1 = cos

(
γi

2

)[
H

(
e

i
2 l

i(x) 0

0 e−
i
2 l

i(x)

)
H

]
1,1

=
1√
2
cos

(
γi

2

)[
H

(
e

i
2 l

i(x) e
i
2 l

i(x)

e−
i
2 l

i(x) −e−
i
2 l

i(x)

)]
1,1

=
1

2
cos

(
γi

2

)(
e

i
2 l

i(x) + e−
i
2 l

i(x)
)

= cos

(
γi

2

)
cos

(
li(x)

2

)
,
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then Pn
0 = 1

n

∑n
i=1 cos

(
γi

2

)2
cos
(

li(x)
2

)2
, which simplifies, using cos(y)2 = cos(2y)+1

2 , to

Pn
0 =

1

n

n∑
i=1

1

4

(
cos
(
γi
)
+ 1
) (

cos
(
li(x)

)
+ 1
)

=
1

4
+

1

4n

n∑
i=1

cos
(
γi
)
cos
(
li(x)

)
+

1

4n

n∑
i=1

cos
(
γi
)
+

1

4n

n∑
i=1

cos
(
li(x)

)
.

Next, for m ∈ {1, 2, 3}, we have

Pn
m =

n−1∑
i=0

∣∣∣⟨4i+m| UV |0⟩⊗n
∣∣∣2 =

n−1∑
i=0

∣∣∣∣∣∣⟨4i+m| 1√
n

n−1∑
j=0

3∑
k=0

[
U
(j+1)
1 ⊗ U

(j+1)
2

]
k+1,1

|4j + k⟩

∣∣∣∣∣∣
2

=
1

n

n−1∑
i=0

∣∣∣∣[U(i+1)
1 ⊗ U

(i+1)
2

]
m+1,1

∣∣∣∣2 .
Computing as above

[U
(i)
1 ⊗ U

(i)
2 ]2,1 = [U

(i)
1 ]1,1[U

(i)
2 ]2,1 = sin

(
γi

2

)
cos

(
li(x)

2

)
,

[U
(i)
1 ⊗ U

(i)
2 ]3,1 = [U

(i)
1 ]2,1[U

(i)
2 ]1,1 = i cos

(
γi

2

)
sin

(
li(x)

2

)
,

[U
(i)
1 ⊗ U

(i)
2 ]4,1 = [U

(i)
1 ]2,1[U

(i)
2 ]2,1 = i sin

(
γi

2

)
sin

(
li(x)

2

)
,

thus yields

Pn
1 =

1

n

n∑
i=1

sin

(
γi

2

)2

cos

(
li(x)

2

)2

Pn
2 =

1

n

n∑
i=1

cos

(
γi

2

)2

sin

(
li(x)

2

)2

Pn
3 =

1

n

n∑
i=1

sin

(
γi

2

)2

sin

(
li(x)

2

)2

.

Therefore,

Pn
0 + Pn

1 =
1

n

n∑
i=1

cos

(
li(x)

2

)2

=
1

2
+

1

2n

n∑
i=1

cos
(
li(x)

)
,

Pn
0 + Pn

2 =
1

n

n∑
i=1

cos

(
γi

2

)2

=
1

2
+

1

2n

n∑
i=1

cos
(
γi
)
.

Putting it all together we obtain, for any given R > 0, that

R− 2R [Pn
1 + Pn

2 ] = R [1 + 4Pn
0 − 2 (Pn

0 + Pn
1 )− 2 (Pn

0 + Pn
2 )] =

1

n

n∑
i=1

R cos
(
γi
)
cos
(
li(x)

)
.

□
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Proposition 2.8. Let R > 0 and f ∈ FR. For any n ∈ N, there exists θ ∈ Θ such that(∫
Rd

∣∣fRn,θ(x)− f(x)
∣∣2 µ(dx))1/2

≤ L1[f̂ ]√
n
.

Proof. Since f̂ ∈ L1(Rd), the Fourier inversion theorem states that for all x ∈ Rd,

f(x) =

∫
Rd

e2πixξf̂(ξ)dξ.

Since f is real-valued, we may then write, for any x ∈ Rd,

f(x) =

∫
Rd

e2πixξf̂(ξ)dξ =

∫
Rd

{
cos (2πx · ξ)Re[f̂(ξ)]− sin (2πx · ξ)Im[f̂(ξ)]

}
dξ (2.3)

=

∫
Rd

{
cos (2πx · ξ)Re[f̂(ξ)] + cos

(
2πx · ξ +

π

2

)
Im[f̂(ξ)]

}
dξ.

Let p := L1[f̂ ]−1
∫
Rd |Re[f̂(ξ)]|dξ ∈ [0, 1] and Z1, . . . , Zn be i.i.d. random variables with a p-

Bernoulli distribution, so that P(Zi = 1) = p and P(Zi = 0) = 1−p = L1[f̂ ]−1
∫
Rd |Im[f̂(ξ)]|dξ.

If
∫
Rd |Re[f̂(ξ)]|dξ ̸= 0, let ν1 be the probability measure on Rd with density |Re[f̂ ]|∫

Rd |Re[f̂(ξ)]|dξ
,

otherwise ν1 is an arbitrary probability measure on Rd. Analogously, if
∫
Rd |Im[f̂(ξ)]|dξ ̸= 0,

let ν0 be the probability measure on Rd with density |Im[f̂ ]|∫
Rd |Im[f̂(ξ)]|dξ

, otherwise ν0 is an ar-

bitrary probability measure on Rd. Let U1, . . . ,Un be i.i.d. random variables with distri-
bution ν1, and V1, . . . ,Vn be i.i.d. random variables with distribution ν0 and assume that
U1, . . . ,Un, V1, . . . ,Vn and Z1, . . . , Zn are independent. Set now

Ai := 2π(ZiUi + (1− Zi)Vi), Bi :=
π

2
(1− Zi),

Wi := L1[f̂ ]

[
Re[f̂ ](Ui)

|Re[f̂ ](Ui)|
Zi +

Im[f̂ ](Vi)

|Im[f̂ ](Vi)|
(1− Zi)

]
,

with the quotient set to zero when the denominator is null, and consider the random function

F (x) :=
1

n

n∑
i=1

Wi cos(Bi +Ai · x).

Then we calculate

E[F (x)] = E[W1 cos(B1 +A1 · x)]

= L1[f̂ ]

(
pE

[
Re[f̂ ](U1)

|Re[f̂ ](U1)|
cos(2πU1 · x)

]
+ (1− p)E

[
Im[f̂ ](V1)

|Im[f̂ ](V1)|
cos
(π
2
+ 2πV1 · x

)])

= L1[f̂ ]

(
p

∫
Rd

Re[f̂ ](ξ)

|Re[f̂ ](ξ)|
cos(2πξ · x)ν1(dξ) + (1− p)

∫
Rd

Im[f̂ ](ξ)

|Im[f̂ ](ξ)|
cos
(π
2
+ 2πξ · x

)
ν0(dξ)]

)

= L1[f̂ ]

(
p

∫
Rd

Re[f̂ ](ξ)∫
Rd |Re[f̂(z)]|dz

cos(2πξ · x)dξ + (1− p)

∫
Rd

Im[f̂ ](ξ)∫
Rd |Im[f̂ ](z)|dz

cos
(π
2
+ 2πξ · x

)
dξ

)

=

∫
Rd

Re[f̂ ](ξ) cos(2πξ · x)dξ +

∫
Rd

Im[f̂ ](ξ) cos
(π
2
+ 2πξ · x

)
dξ = f(x).
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In particular, using the i.i.d. assumption and Fubini, we obtain

E
[∫

Rd

|f(x)− F (x)|2µ(dx)
]
=

∫
Rd

V[F (x)]µ(dx)

=
1

n2

∫
Rd

V

[
n∑

i=1

Wi cos(Bi +Ai · x)

]
µ(dx)

=
1

n

∫
Rd

V [W1 cos(B1 +A1 · x)]µ(dx)

≤ 1

n

∫
Rd

E
[
(W1 cos(B1 +A1 · x))2

]
µ(dx)

≤ 1

n
E
[
W 2

1

]
≤ 1

n

(∫
Rd

|f̂(ξ)|dξ
)2

=
1

n
L1[f̂ ]2.

(2.4)

Since P(Z ≤ B) > 0 for any non-negative random variable Z with E[Z] ≤ B for B > 0,
then there exists ω ∈ Ω such that Fω(x) =

1
n

∑n
i=1Wi(ω) cos(Bi(ω) +Ai(ω) · x) satisfies∫

Rd

|f(x)− Fω(x)|2µ(dx) ≤
1

n

(∫
Rd

|f̂(ξ)|dξ
)2

.

It remains to be shown that Fω = fθ for a suitable choice of weights θ = (ai, bi, γi)i=1,...,n.

But this follows directly by choosing bi = Bi(ω), a
i = Ai(ω) and γ

i = arccos(Wi(ω)
R ) (so that

R cos
(
γi
)
= Wi(ω)), which is well defined because Wi(ω) = L1[f̂ ]ϕi for some ϕi ∈ {−1, 1}

and thus |Wi(ω)
R | ≤ 1 given the constraint L1[f̂ ] ≤ R. Therefore,(∫

Rd

|f(x)− fθ(x)|2µ(dx)
)1/2

≤ L1[f̂ ]√
n
.

□

2.4. Universal approximation by variational quantum circuits. As a corollary of
Theorem 2.4 we obtain the following universal approximation result:

Corollary 2.9. Let µ be a probability measure on Rd and let f ∈ L2(Rd, µ). Then for any
ε > 0 there exist n ∈ N, R > 0 and θ ∈ Θ such that Cn(θ,x) outputs a function fθ with(∫

Rd

|f(x)− fθ(x)|2µ(dx)
)1/2

≤ ε. (2.5)

Proof. We first show that f can be approximated up to error ε
2 by a function in C∞

c (Rd).
This follows by standard arguments, which we give for completeness. By [28, Lemma 1.35]

there exists a bounded continuous function g : Rd → R with
∣∣∫

Rd |f(x)− g(x)|2µ(dx)
∣∣ 12 ≤ ε

6 .

Denote by χm : Rd → [0, 1] a continuous function with χm(x) = 1 for x ∈ [−m,m]d and

χm(x) = 0 for x ∈ Rd \ [−m − 1,m + 1]d. Then
(∫

Rd |g(x)− χm(x)g(x)|2µ(dx)
) 1

2 ≤
supx∈Rd |g(x)|µ({Rd \ [−m,m]d}) ≤ ε

6 for m chosen sufficiently large. Finally, since C∞
c (Rd)

is dense in Cc(Rd) in the supremum norm, there exists h ∈ C∞
c (Rd) with(∫

Rd

|f(x)− h(x)|2µ(dx)
) 1

2

≤ ∥f−g∥L2(µ)+∥g−χmg∥L2(µ)+∥χmg−h∥L2(µ) ≤
ε

2
. (2.6)
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Now we show how to apply Theorem 2.4 to h. Since h is a Schwartz function, its Fourier

transform ĥ is one as well and in particular h and ĥ are both integrable. Choosing R = L1[ĥ]
and n = ⌈(2Chε

−1)2⌉, Theorem 2.4 yields the existence of θ ∈ Θ such that(∫
Rd

|h(x)− fθ(x)|2µ(dx)
) 1

2

≤ L1[ĥ]√
n

≤ ε

2
.

This estimate together with (2.6) then imply (2.5), as claimed. □

3. Variational quantum circuits with randomly generated weights

In this section we construct a quantum circuit in the spirit of reservoir computing: the
parameters inside the circuit are randomly generated and only a final layer of weights after
measuring the quantum state is trainable. This has the advantage that training such a
circuit only requires us to solve a linear regression problem, as opposed to generic quantum
circuits which are typically trained using gradient-based methods.

In the notation above, we could consider a circuit in which the weights (bi,ai)i=1,...,n are
randomly sampled and then fixed, and only the remaining weights (γi)i=1,...,n are trained

over. Here we consider an even simpler circuit which does not depend on γ1, . . . , γ(n), but
instead on some trainable “readout weights” appearing only after measurement.

3.1. Approximation error bounds for a random universal quantum circuit. Let
n ∈ N, B = (Bi)i=1,...,n i.i.d. with 1

2 -Bernoulli distribution and A = (Ai)i=1,...,n i.i.d. with

density πa, and A and B independent, and Ai = (Ai
j)1≤j≤d for each i = 1, . . . , n. For an

input x ∈ Rd we consider, for i = 1, . . . , n,

U
(i)
1 (x) := U

(i)
1

(
2πAi,

π

2
Bi,x

)
= H Rz

(
−Biπ

2

)
Rz
(
−2πAi

dxd
)
· · · Rz

(
−2πAi

1x1
)
H.

Similarly to Section 2.1 we now use these gates to build the (random) block matrix

U := U(x) :=



U
(1)
1 (x) 02×2 02×2 · · · 02×2 02×n0

02×2 U
(2)
1 (x) 02×2 · · · 02×2

...
...

. . .
...

...

02×2 · · · 02×2 U
(n−1)
1 (x) 02×2

...

02×2 · · · · · · 02×2 U
(n)
1 (x) 0n×n0

0n0×2 · · · · · · · · · 0n0×2 1n0×n0


,

with n0 ∈ N0 the smallest positive integer such that log2(2n + n0) ∈ N. Then U ∈
C(2n+n0)×(2n+n0) is a (random) unitary matrix and can be viewed as a gate operating on

n := ⌈log2(2n)⌉ qubits. Let N := 2n + n0 = 2n and similarly to Section 2.1 let V ∈ CN×N

be any unitary matrix that maps |0⟩⊗n
to the state |ψ⟩ = 1√

n

∑n−1
i=0 |2i⟩.

Consider now the circuit, which we call Cn(θ),

|0⟩⊗n
V U(x)

The possible measurement outcomes are 0, . . . , N − 1, and we denote by Pk := Pk(x) the
probability that the measured state is equal to k ∈ {0, . . . , N−1}, which can be estimated by
running the circuit, as explained in Section 2.1. In contrast to Section 2, here no parameter is
trained/adjusted within the quantum circuit. The matrix parametersA andB are randomly
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generated and then fixed, and the subsequent inputs x are mapped through the fixed circuit

to output probabilities Pk = Pk(x) = PA,B

k (x), for k = 0, . . . , N − 1.
Mimicking the previous section, we introduce the space

F :=
{
f : Rd → R : f ∈ C(Rd) ∩ L1(Rd), f̂ ∈ L1(Rd), |f̂ | ≪ πa,

∫
Rd

|f̂(ξ)|2

πa(ξ)
dξ <∞

}
,

where we write ν ≪ µ if µ(A) = 0 implies ν(A) = 0 to denote that a measure ν is absolutely
continuous with respect to the measure µ, and where, for a function f ∈ F , we denote

L2[f ] :=

(
2

∫
Rd

|f̂(ξ)|2

πa(ξ)
dξ

)1/2

.

Given the operator Cn(θ) and w ∈ Rn, introduce the map Fw : Rd → R by

Fw(x) :=

n−1∑
j=0

wj

(
2P2j(x)−

1

n

)
. (3.1)

The following theorem provides an approximation error bound for such a circuit. The
approximation bound proved here is a quantum analogue to the bounds obtained for classical
random feature neural networks in [14, 15].

Theorem 3.1. For any n ∈ N, f ∈ F , there exists an Rn-valued σ(A,B)-measurable
random vector W such that

E
[∫

Rd

|FW (x)− f(x)|2 µ(dx)
]1/2

≤ L2[f ]√
n
.

The proof of Theorem 3.1 is quite similar to that of Theorem 2.4, it follows by combining
Propositions 3.4 and 3.6 below.

Example 3.2. As an example, consider d = 1 and let πa be the density of a t1-distribution.

Then the condition L2[f ] <∞ translates to
∫
R(1 + |ξ|2)|f̂(ξ)|2dξ <∞, namely f ∈ H1(R).

Thus f satisfies the conditions of Proposition 3.4 if it has a weak derivative f ′ and if both f
and f ′ are square-integrable.

More generally, for d ∈ N and πa the density of a tν(0,1d)-distribution (with ν > 0),

the condition L2[f ] < ∞ is equivalent to
∫
Rd |f̂(ξ)|2(1 + ∥ξ∥2)(ν+d)/2dξ < ∞, which means

that f needs to belong to the Sobolev space H ν+d
2 (Rd).

The next result shows that in the case where f ∈ Hs(Rd) for some s > d
2 we may in fact

generate Ai from a distribution arbitrary close to any given density, at the expense of a
possibly large constant in the error bound.

Corollary 3.3. Fix s > d
2 . Let φ be an arbitrary probability density, ν = 2(s − d

2 ) and tν
the density of a tν(0,1d)-distribution. For δ ∈ (0, 1), set πa := δtν + (1 − δ)φ. Let n ∈ N
and let Fw be the function realised by the quantum circuit in Theorem 3.1 with weights Ai

distributed according to πa and Bi distributed according to a 1
2 -Bernoulli distribution. Then

for any f ∈ Hs(Rd) ∩ L1(Rd) there exists a σ(A,B)-measurable random vector W and a
constant Cf,δ independent of n such that

E
[∫

Rd

|FW (x)− f(x)|2 µ(dx)
]1/2

≤ Cf,δ√
n
.
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Proof. The assumption on f guarantees that f ∈ C(Rd) and f̂ ∈ L1(Rd). In addition, πa is

strictly positive and so |f̂ | ≪ πa holds, because πa(x) ̸= 0 for all x ∈ Rd. Finally, πa ≥ δtν
and thus inserting tν(ξ) =

Γ((ν+d)/2)
Γ(ν/2)νd/2πd/2 (1 + ν−1∥ξ∥2)−(ν+d)/2 yields∫

Rd

|f̂(ξ)|2

πa(ξ)
dξ ≤

∫
Rd

|f̂(ξ)|2

δtν(ξ)
dξ

≤ 1

δ

Γ(ν2 )ν
d/2πd/2

Γ(ν+d
2 )

∫
Rd

|f̂(ξ)|2(1 + ν−1∥ξ∥2)(ν+d)/2dξ

≤ 1

δ

Γ(ν2 )ν
d/2πd/2

Γ(ν+d
2 )

max(1, ν−1)(ν+d)/2

∫
Rd

|f̂(ξ)|2(1 + ∥ξ∥2)(ν+d)/2dξ,

(3.2)

which is finite since f ∈ Hs(Rd) and s = (ν+d)/2. The hypotheses of Theorem 3.1 are thus
satisfied and so the claim follows from Theorem 3.1 and the bound (3.2). □

3.2. Proof of Theorem 3.1. Propositions 3.4 and 3.6 are the essential tools, directly
implying Theorem 3.1. For w ∈ Rn, mimicking (2.2), introduce the (random) map Gw :
Rn → R and, for each i = 1, . . . , n, the linear map Li by

Gw(x) :=
1

n

n∑
i=1

Wi cos
(
Li(x)

)
, with Li(x) :=

π

2
Bi + 2πAi · x. (3.3)

Proposition 3.4. For any f ∈ F , there exist a σ(A,B)-measurable random vector W such
that the random function GW in (3.3) satisfies

E
[∫

Rd

|GW (x)− f(x)|2 µ(dx)
]1/2

≤ L2[f ]√
n
.

Proof. First, note that, for each i ∈ {1, . . . , n}, the random variable

Wi :=
2

πa(Ai)

{(
1−Bi

)
Re[f̂ ](Ai) +BiIm[f̂ ](Ai)

}
,

is well defined since |f̂ | ≪ πa. The independence and the i.i.d. assumptions then yield

E [GW (x)] = E
[
W1 cos

(
L1(x)

)]
=

∫
Rd

{
Re[f̂ ](ξ) cos(2πξ · x) + Im[f̂ ](ξ) cos

(π
2
+ 2πξ · x

)}
dξ = f(x),

where the last step follows by (2.3). Proceeding as in the proof of Proposition 2.8, we obtain

E
[∫

Rd

|f(x)−GW (x)|2 µ(dx)
]
=

∫
Rd

V [GW (x)]µ(dx)

=
1

n2

∫
Rd

V

[
n∑

i=1

Wi cos
(
Li(x)

)]
µ(dx)

=
1

n

∫
Rd

V
[
W1 cos

(
L1(x)

)]
µ(dx)

≤ 1

n

∫
Rd

E
[(
W1 cos

(
L1(x)

))2]
µ(dx)

≤ 1

n
E
[
W 2

1

]
=

2

n

∫
Rd

1

πa(ξ)

(
Re[f̂ ](ξ)2 + Im[f̂ ](ξ)2

)
dξ,

which implies the claimed bound. □
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Remark 3.5. As mentioned earlier, the proof above yields an analogous result for the circuit
constructed in Section 2. Indeed, choosing R = max(W1, . . . ,Wn), then Γi = arccos(Wi

R )
is well defined as a σ(A,B)-measurable random variable, and so is R, so that the random

function F (x) := 1
n

∑n
i=1R cos

(
Γi
)
cos(π2B

i + 2πAi · x) satisfies

E
[∫

Rd

∣∣F (x)− f(x)
∣∣2 µ(dx)]1/2 ≤ L2[f ]√

n
.

The next result shows that the functions Gw employed in Proposition 3.4 can indeed be
realised by the considered quantum circuit.

Proposition 3.6. For n ∈ N, given Cn(θ), and w ∈ Rn, the identity Fw ≡ Gw holds on Rn.

Proof. The proof requires the computation of the probabilities Pk for k even. First,

U V |0⟩⊗n
= U |ψ⟩ = 1√

n

n−1∑
j=0

U |2j⟩ = 1√
n

n−1∑
j=0

{[
U
(j+1)
1

]
1,1

|2j⟩+
[
U
(j+1)
1

]
2,1

|2j + 1⟩
}
.

Therefore, for k = 2j +m, j ∈ {0, . . . , n− 1},m ∈ {0, 1},

Pk =
∣∣∣⟨k| U V |0⟩⊗n

∣∣∣2 =
1

n

∣∣∣∣[U(j+1)
1

]
m+1,1

∣∣∣∣2 . (3.4)

Similarly as in the proof of Proposition 2.7 we now obtain for i = j + 1 that[
U
(i)
1

]
1,1

=

[
H

(
e

i
2L

i(x) 0

0 e−
i
2L

i(x)

)
H

]
1,1

=
1√
2

[
H

(
e

i
2L

i(x) e
i
2L

i(x)

e−
i
2L

i(x) −e−
i
2L

i(x)

)]
1,1

= cos

(
Li(x)

2

)
.

By plugging this into (3.4) and using the double-angle formula we then obtain

P2(i−1) =
1

n

∣∣∣∣cos(1

2
Li(x)

)∣∣∣∣2 =
1

2n
cos
(
Li(x)

)
+

1

2n
.

Inserting this expression into Fw in (3.1) then yields the claimed representation. □

4. L∞-error bounds for variational quantum circuits

In this section we prove approximation error bounds for variational quantum circuits in
the case when the error is measured with respect to the uniform norm on compacts.

4.1. L∞-error bounds for trainable variational quantum circuits. For R > 0, let FR

be as above in (2.1); for f ∈ FR let

∥f∥B2
:=

(∫
Rd

∥ξ∥2|f̂(ξ)|dξ
) 1

2

, and BR := {f ∈ FR : ∥f∥B2
<∞}

be a subset of FR with further integrability properties of the Fourier transform. For functions
in BR we can complement the L2(Rd, µ)-error bound in Theorem 2.4 by a uniform error
bound on compact sets.

Theorem 4.1. For any R,M > 0, f ∈ BR and n ∈ N, there exists θ ∈ Θ such that

sup
x∈[−M,M ]d

∣∣f(x)− fRn,θ(x)
∣∣ ≤ 2(π + 1)L1[f̂ ] + 8πMd

1
2L1[f̂ ]

1
2 ∥f∥B2√

n
.
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Proof. The proof is identical to that of Theorem 2.4, except that the L2-bound in (2.4)
is replaced by an L∞-bound, and we use the same notation as there. Define first for all
x ∈ [−M,M ]d, i = 1, . . . , n the random variables Ui,x = Wi cos(Bi + Ai · x). Then the
L∞-error that we aim to bound can be rewritten as

E

[
sup

x∈[−M,M ]d
|f(x)− F (x)|

]
= E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

(Ui,x − E[Ui,x])

∣∣∣∣∣
]
.

Let ε1, . . . , εd be i.i.d. Rademacher random variables independent of A = (A1, . . . ,An) and
B = (B1, . . . , Bn). Using symmetrisation, we then obtain

E

[
sup

x∈[−M,M ]d
|f(x)− F (x)|

]
≤ 2E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiUi,x

∣∣∣∣∣
]
.

For any a = (a1, . . . ,an) ∈ Rd × · · · × Rd, b = (b1, . . . , bn) ∈ Rn consider the set

Ta,b := {(li(x))i=1,...,n : x ∈ [−M,M ]d},

with the function li(x) = bi+ai ·x, and for w = (w1, . . . , wn) ∈ Rn with |wi| ≤ L1[f̂ ] define
the maps ϱwi

: R → R via ϱwi
(x) = wi

L1[f̂ ]
(cos(x)− 1). Then independence yields that

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiUi,x

∣∣∣∣∣
]
= E

E[ sup
x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiwi cos(l
i(x))

∣∣∣∣∣
]∣∣∣∣∣

(w,a,b)=(W,A,B)

 .
and with the above definitions and Jensen’s inequality we obtain

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiwi cos(l
i(x))

∣∣∣∣∣
]
≤ L1[f̂ ]E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiϱwi
(li(x))

∣∣∣∣∣
]
+ E

[∣∣∣∣∣ 1n
n∑

i=1

εiwi

∣∣∣∣∣
]

≤ L1[f̂ ]E

[
sup

t∈Ta,b

∣∣∣∣∣ 1n
n∑

i=1

εiϱwi(ti)

∣∣∣∣∣
]
+ V

[
1

n

n∑
i=1

εiwi

] 1
2

.

The fact that ϱwi(0) = 0 and that ϱwi is 1-Lipschitz allows us to apply the comparison
theorem [30, Theorem 4.12]

E

[
sup

t∈Ta,b

∣∣∣∣∣ 1n
n∑

i=1

εiϱwi
(ti)

∣∣∣∣∣
]
≤ 2E

[
sup

t∈Ta,b

∣∣∣∣∣ 1n
n∑

i=1

εiti

∣∣∣∣∣
]
.

Using this, the fact that ε1, . . . , εn are i.i.d. Rademacher random variables we thus obtain

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiwi cos(bi + ai · x)

∣∣∣∣∣
]

≤ 2L1[f̂ ]E

[
sup

t∈Ta,b

∣∣∣∣∣ 1n
n∑

i=1

εiti

∣∣∣∣∣
]
+ V

[
1

n

n∑
i=1

εiwi

] 1
2

= 2L1[f̂ ]E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εi(l
i(x))

∣∣∣∣∣
]
+

1

n

(
n∑

i=1

V [εiwi]

) 1
2

≤ 2L1[f̂ ]

(
E

[∣∣∣∣∣ 1n
n∑

i=1

εibi

∣∣∣∣∣
]
+ E

[
sup

x∈[−M,M ]d

∣∣∣∣∣x · 1
n

n∑
i=1

εiai

∣∣∣∣∣
])

+
∥w∥
n

.
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We already estimated the first term (with bi instead of wi) as

E

[∣∣∣∣∣ 1n
n∑

i=1

εibi

∣∣∣∣∣
]
≤ ∥b∥

n
.

For the second term, we use the fact that E[εiεj ] = δi,j to obtain

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣x · 1
n

n∑
i=1

εiai

∣∣∣∣∣
]
≤ sup

x∈[−M,M ]d
∥x∥∞E

[∥∥∥∥∥ 1n
n∑

i=1

εiai

∥∥∥∥∥
1

]
=
M

n

d∑
j=1

E

[∣∣∣∣∣
n∑

i=1

εiai,j

∣∣∣∣∣
]

≤ M

n

d∑
j=1

(
n∑

i=1

a2i,j

) 1
2

and thus

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiwi cos(l
i(x))

∣∣∣∣∣
]
≤ 2L1[f̂ ]

∥b∥
n

+
M

n

d∑
j=1

(
n∑

i=1

a2i,j

) 1
2

+
∥w∥
n

.

Combining the obtained estimates and again using Jensen’s inequality yields

E

[
sup

x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiUi,x

∣∣∣∣∣
]
= E

E[ sup
x∈[−M,M ]d

∣∣∣∣∣ 1n
n∑

i=1

εiwi cos(l
i(x))

∣∣∣∣∣
]∣∣∣∣∣

(w,a,b)=(W,A,B)


≤ 2L1[f̂ ]

E [∥B∥]
n

+
M

n

d∑
j=1

E

( n∑
i=1

|Ai,j |2
) 1

2

+
E [∥W∥]

n

≤ 2L1[f̂ ]

 1√
n
E[B2

1 ]
1
2 +

M√
n

d∑
j=1

E
[
|A1,j |2

] 1
2

+
E
[
|W1|2

] 1
2

√
n

≤ 2L1[f̂ ]

(
π

2

1√
n
+
Md

1
2

√
n

E[∥A1∥2]
1
2

)
+
L1[f̂ ]√
n
.

Inserting the definition of A1 yields

E[∥A1∥2]
1
2 = 2πE[∥Z1U1 + (1− Z1)V1∥2]

1
2

= 2π

(
p

∫
Rd

∥ξ∥2ν1(dξ) + (1− p)

∫
Rd

∥ξ∥2ν0(dξ)
) 1

2

= 2π

(
L1[f̂ ]−1

∫
Rd

∥ξ∥2|Re[f̂ ](ξ)|dξ + L1[f̂ ]−1

∫
Rd

∥ξ∥2|Im[f̂ ](ξ)|dξ
) 1

2

= 2πL1[f̂ ]−1/2

(∫
Rd

∥ξ∥2|f̂(ξ)|dξ
) 1

2

.

Overall, we obtain the bound

E

[
sup

x∈[−M,M ]d
|f(x)− F (x)|

]
≤ 4L1[f̂ ]

(
π

2

1√
n
+
Md

1
2

√
n

E[∥A1∥2]
1
2

)
+

2L1[f̂ ]√
n

≤ 2(π + 1)L1[f̂ ] + 8πMd
1
2L1[f̂ ]

1
2 ∥f∥B2√

n
.
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□

4.2. L∞-universal approximation theorem. As a corollary to Theorem 4.1 we obtain
a universal approximation theorem for continuous functions on compact subsets of Rd and
with error measured with respect to the uniform norm.

Corollary 4.2. Let X ⊂ Rd be compact and f ∈ C(X ,R). Then for any ε > 0 there exist
n ∈ N, R > 0 and θ ∈ Θ such that Cn(θ,x) outputs a function fθ with

sup
x∈X

|f(x)− fθ(x)| ≤ ε.

Proof. The proof proceeds similarly as in Corollary 2.9. We first show that f can be approxi-
mated on X up to error ε

2 by a function in C∞
c (Rd). ChooseM > 0 such that X ⊂ [−M,M ]d.

By Tietze’s extension theorem [45, Theorem 20.4] there exists a bounded continuous func-
tion F : Rd → R which coincides with f on X . Now let χ : Rd → [0, 1] a continuous function
with χ(x) = 1 for x ∈ [−M,M ]d and χ(x) = 0 for x ∈ Rd \ [−M − 1,M + 1]d. Then, since
C∞
c (Rd) is dense in Cc(Rd) in the supremum norm, there exists h ∈ C∞

c (Rd) with

sup
x∈Rd

|F (x)χ(x)− h(x)| ≤ ε

2
. (4.1)

Now we show how to apply Theorem 4.1 to h. Since h is a Schwartz function, its Fourier

transform ĥ is as well. In particular h and ĥ are both integrable and also ξ 7→ ∥ξ∥2|ĥ(ξ)| is in-
tegrable over Rd. ChoosingR = L1[ĥ] and n = ⌈(2(2(π+1)L1[ĥ]+8πMd

1
2L1[ĥ]

1
2 ∥h∥B2

)ε−1)2⌉,
Theorem 4.1 yields the existence of θ ∈ Θ such that

sup
x∈[−M,M ]d

|h(x)− fθ(x)| ≤
ε

2
.

This estimate together with (4.1) then imply

sup
x∈X

|f(x)− fθ(x)| ≤ sup
x∈X

|F (x)χ(x)− h(x)|+ sup
x∈X

|h(x)− fθ(x)| ≤ ε.

□

4.3. L∞-error bounds for reservoir quantum circuits. We can also obtain a uniform
approximation result for a subset of Fb ⊂ F . Let Fb be the set of functions in F for which

f̂/πa is bounded. In particular, given an arbitrary compact set, the result below guarantees
existence of readout weights for the reservoir quantum circuit which achieve an arbitrarily
small uniform approximation error. Suppose that

E
[
∥A1∥2

] 1
2 =

(∫
Rd

∥ξ∥2πa(ξ)dξ
) 1

2

<∞.

Theorem 4.3. For any M > 0, f ∈ Fb and n ∈ N, there exists an Rn-valued σ(A,B)-
measurable random vector W such that

E

[
sup

x∈[−M,M ]d
|FW (x)− f(x)|

]
≤ 1√

n

(
8

∥∥∥∥∥ f̂πa
∥∥∥∥∥
∞

( π

23/2
+ 2πMd

1
2E[∥A1∥2]

1
2

)
+ L2[f ]

)
.

Proof. The proof follows by combining the arguments from the proofs of Theorem 3.1 and
Theorem 4.1. Analogously to the proof of the latter, we need to derive an L∞-error bound
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instead of the L2-error bound in Proposition 3.4. We may use E[GW (x)] = f(x) to proceed
precisely as in the proof of Theorem 4.1 and obtain

E

[
sup

x∈[−M,M ]d
|GW (x)− f(x)|

]
≤ 8

∥∥∥∥∥ f̂πa
∥∥∥∥∥
∞

(
π

2
√
n
E[B2

1 ]
1
2 +

2πMd
1
2

√
n

E[∥A1∥2]
1
2

)
+

E
[
|W1|2

] 1
2

√
n

,

where we used the boundedness of f̂/πa to guarantee that wi ≤ 2∥ f̂
πa

∥∞ and the func-

tions ϱwi
can be chosen 1-Lipschitz and the comparison theorem [30, Theorem 4.12] can be

applied. We recall from the proof of Proposition 3.4 that E[|W1|2]
1
2 = L2[f ] and calculate

E[B2
1 ] =

1
2 . Inserting these expressions, we obtain

E

[
sup

x∈[−M,M ]d
|GW (x)− f(x)|

]
≤ 8

∥∥∥∥∥ f̂πa
∥∥∥∥∥
∞

(
π

23/2
√
n
+

2πMd
1
2

√
n

E[∥A1∥2]
1
2

)
+
L2[f ]√
n
.

□
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