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Abstract

We consider a class of assets whose risk-neutral pricing dynamics are described by an exponential

Lévy-type process subject to default. The class of processes we consider features locally-dependent drift,

diffusion and default-intensity as well as a locally-dependent Lévy measure. Using techniques from regular

perturbation theory and Fourier analysis, we derive a series expansion for the price of a European-style

option. We also provide precise conditions under which this series expansion converges to the exact price.

Additionally, for a certain subclass of assets in our modeling framework, we derive an expansion for the

implied volatility induced by our option pricing formula. The implied volatility expansion is exact within

its radius of convergence. As an example of our framework, we propose a class of CEV-like Lévy-type

models. Within this class, approximate option prices can be computed by a single Fourier integral and

approximate implied volatilities are explicit (i.e., no integration is required). Furthermore, the class of

CEV-like Lévy-type models is shown to provide a tight fit to the implied volatility surface of S&P500

index options.

Keywords Regular Perturbation, Lévy-type, Local Volatility, Implied Volatility, Default, CEV

1 Introduction

A local volatility model is a model in which the volatility σt of an asset X is a function of the current time

t and the present level of X . That is, σt = σ(t,Xt). One advantage of local volatility models is that, like

most scalar diffusions, transition densities (and therefore option prices) are often available in closed-form

as eigenfunction expansions (see Linetsky (2007); Lipton (2002a) and references therein). However, local

volatility models suffer from the fact that they do not permit the underlying asset to experience jumps, the
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need for which is well-documented in literature Eraker (2004). Furthermore, local volatility models do not

account properly for the forward volatility, and notoriously misprice options such as cliquet or forward-start.

One class of models that does allow the underlying to jump is the exponential Lévy class. In this class,

the underlying X = eY is described as the exponential of a Lévy process Y . Aside from allowing the under-

lying to jump, exponential Lévy models have the desirable feature that transition densities (and European

option prices) can be computed quickly as generalized Fourier transforms (see Lewis (2001); Lipton (2002b);

Boyarchenko and Levendorskii (2002); Cont and Tankov (2004)). However, exponential Lévy models are

spatially homogeneous; neither the drift, volatility nor the jump-intensity have any local dependence. Thus,

exponential Lévy models are not able to exhibit volatility clustering or capture the leverage effect, both of

which are well-known features of equity markets.

Recently, a number of authors have found methods of combining the desirable features of local volatil-

ity and exponential Lévy models. For example, Benhamou, Gobet, and Miri (2009) derive an analytical

formula for the approximate prices of European options, for models that include local volatility and com-

pound Poisson jumps (i.e., models that include a finite activity Lévy measure). Their approach relies

on asymptotic expansions around small diffusion and small jump frequency/size limits. More recently,

Pagliarani, Pascucci, and Candia (2011) consider general local volatility models with independent Lévy

jumps (not necessarily finite activity). Unlike, Benhamou et al. (2009), Pagliarani et al. (2011) make no

small jump intensity/size assumption. Rather the authors construct an asymptotic solution of the pricing

equation by expanding the local volatility function as a Taylor series. While both of the methods described

above allow for local volatility and independent jumps, neither of these methods allow for state-dependent

jumps.

Stochastic jump-intensity is an important feature of equity markets (see Christoffersen, Jacobs, and Ornthanalai

(2009)) and a locally dependent Lévy measure is one way to incorporate stochastic jump-intensity into a

modeling framework. One analytically tractable way of obtaining a local Lévy measure is to time-change

a scalar Markov diffusion with a Lévy subordinator, as described in Mendoza-Arriaga, Carr, and Linetsky

(2010). Another analytically tractable method of working with local Lévy measures is to write a local Lévy

measure as a power series in its local variable, as described in Lorig, Pagliarani, and Pascucci (2013).

In this paper, we take a different approach. We consider a Lévy-type process whose infinitesimal generator

separates into locally dependent and independent parts. The locally independent part is the generator of a

Lévy process with killing. We treat the locally dependent part of the generator as a regular perturbation

about the locally independent part. Thus, we are able to obtain a convergent series representation for the

price of a European option. A significant advantage of this method is that, when the locally independent
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part of the generator has no jump or killing component, we are able find a convergent series expansion for

the implied volatility surface induced by our option pricing formula.

The rest of this paper proceeds as follows: In Section 2, we present a class of exponential Lévy-type models

and state our assumptions about the market. In Section 3, using regular perturbation methods and Fourier

analysis, we derive a series expansion for the price of a European option. We also provide precise conditions

under which this series converges to give the exact option price. In Section 4, we provide a series expansion

for the implied volatility smile induced by a certain sub-class of models within our modeling framework.

This series is exact within its radius of convergence. In Section 5, we perform specific computations for

a class of CEV-like Lévy-type model. In this class, approximate option prices can be computed by a

single Fourier integral; approximate implied volatilities are explicit, requiring no integration. Section 5 also

includes extensive numerical examples, including a calibration to S&P500 options. Proofs and some sample

Mathematica code can be found in an Appendix. Lastly, some concluding remarks are given in Section 6.

2 Model and assumptions

We assume a frictionless market, no arbitrage and take an equivalent martingale measure P to be chosen by

the market on a complete filtered probability space (Ω,F, {Ft, t ≥ 0},P). The filtration {Ft, t ≥ 0} represents

the history of the market. All processes defined below live on this space. For simplicity, we assume zero

interest rates and no dividends. Thus, in the absence of arbitrage, all traded assets are martingales. We

consider a risky asset X , whose dynamics are given by

Xt = I{t<ζ} exp(Yt),

dYt = α(Yt)dt+ σ(Yt)dWt +

∫

R

zdÑt(Yt−, dz), Y0 = y ∈ R, (1)

ζ = inf

{
t ≥ 0 :

∫ t

0

k(Ys)ds = E

}
, E ∼ Exp(1),

where W is a Brownian motion, E is an independent exponentially distributed random variable with param-

eter one, and dÑt(Yt−, dz) is a state-dependent compensated Poisson random measure

dÑt(Yt−, dz) = dNt(Yt−, dz)− ν(Yt−, dz), E[dNt(Yt−, dz)|Yt−] = ν(Yt−, dz)dt.
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The volatility, killing, and drift functions, as well as the state-dependent Lévy measure are given by

σ(y) =
(
a20 + εa21η(y)

)1/2
,

k(y) = c0 + εc1η(y),

ν(y, dz) = ν0(dz) + εη(y)ν1(dz),

α(y) = k(y)− 1

2
σ2(y)−

∫

R

ν(y, dz)
(
ez − 1− z

)
.

Here, (a0, a1, c0, c1, ε) are non-negative constants and the function η belongs to S, the Schwartz space of

rapidly decreasing functions on R:

S = {f ∈ C∞(R) : ‖f‖α,β <∞, for all (α, β) ∈ N
2}, ‖f‖α,β := sup

y∈R

|yα∂βf(y)|.

The function η must be such that σ(y) > 0, k(y) ≥ 0 and ν(y,A) ≥ 0 for all y ∈ R and all Borel sets A.

Finally, we assume that the locally-dependent Lévy measure ν(y, dz) satisfies, for any y ∈ R,

∫

R

min(1, z2)ν(y, dz) <∞, ν(y, {0}) = 0, (2)

∫

|z|≥1

ezν(y, dz) <∞,

∫

|z|≥1

|z|ν(y, dz) <∞. (3)

Conditions (2) are part of the definition of a Lévy measure while the conditions (3) relate to the existence

of moments greater than one, see in particular item 4 below. Note further that these three conditions also

hold for both ν0 and ν1. We denote by F
Y
t the filtration generated by Y . Note that ζ, which represents the

default time of X , is not FY
t -measurable. Thus, we introduce an indicator process Dt := I{ζ≤t} in order to

keep track of the event {ζ ≤ t}. We denote by FD
t the filtration generated by D. The filtration of a market

observer, then, is Ft = FY
t ∨ FD

t . The main features of the class of models described above are as follows:

1. Local volatility: the process Y has a local volatility component: σ(y) =
(
a20 + εa21η(y)

)1/2
.

2. Local Lévy measure: jumps in Y of size dz arrive with a state-dependent intensity described by the

local Lévy measure ν(y, dz). The Lévy measure has the decomposition ν(y, dz) = ν0(dz)+εη(y)ν1(dz),

where ν0 and ν1 are both Lévy measures. Note that both the jump intensity and the jump distribution

can change depending on the value of y.

3. Local default intensity: the underlying asset X can default (i.e., for any t > 0, P(Xt = 0) > 0)

with a state-dependent default intensity of k(y) := c0 + εc1η(y).

4. Martingale: the conditions above ensure that E(Xt) is finite for any t ≥ 0. The drift function α is

fixed by the Lévy measure, the volatility and the killing functions, ensuring that X is a martingale.
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5. Existence: the Lévy-Itô SDE (1) has a unique strong solution (see Theorem 1.19 in Øksendal and Sulem

(2005)).

3 Option pricing

Let Vt be the value at time t of a European derivative, expiring at time T > t with payoff H(XT ). For

convenience, we introduce the function h : R ∋ y 7→ H(ey) with K := H(0). Using risk-neutral pricing, Vt is

expressed as the conditional expectation of the option payoff

Vt = E [H(XT )|Ft]

= E
[
h(YT )I{ζ>T}|Ft

]
+KE

[
I{ζ≤T}|Ft

]

= E
[
h(YT )I{ζ>T}|Ft

]
+K −KE

[
I{ζ>T}|Ft

]

= I{ζ>t}E
[
h(YT )e

−
∫

T

t
k(Ys)ds|FY

t

]
+K −KI{ζ>t}E

[
e−

∫
T

t
k(Ys)ds|FY

t

]

= I{ζ>t}E
[
h(YT )e

−
∫

T

t
k(Ys)ds|Yt

]
+K −KI{ζ>t}E

[
e−

∫
T

t
k(Ys)ds|Yt

]
,

where we have used

E
[
h(YT )I{ζ>T}|Ft

]
= I{ζ>T}E

[
h(YT )E[I{ζ>T}|FY

T ∨ Ft]|Ft

]

= I{ζ>T}E
[
h(YT )e

−
∫

T

t
k(Ys)ds|Ft

]

= I{ζ>T}E
[
h(YT )e

−
∫

T

t
k(Ys)ds|FY

t

]
.

Using the time-homogeneity of Y , it is clear that

E

[
h(YT )e

−
∫

T

t
k(Ys)ds|Yt = y

]
= Ey

[
h(YT−t)e

−
∫

T−t

0
k(Ys)ds

]
,

where the notation Ey means E[·|Y0 = y]. Thus, to value a European-style derivative, we must compute

expectations of the form

uε(t, y) := Ey

[
h(Yt)e

−
∫

t

0
k(Ys)ds

]
. (4)

We explicitly indicate the dependence of uε(t, y) on the parameter ε, which will play a key role in the regular

perturbation analysis below. The function uε(t, y) in (4) satisfies the Kolmogorov backward equation

(−∂t +A
ε)uε = 0, with boundary condition uε(0, y) = h(y), (5)

where the infinitesimal generator Aε is defined by

A
εf(x) = lim

t→0+

1

t

(
Ey

[
f(Yt)e

−
∫

t

0
k(Ys)ds

]
− f(y)

)
, whenever the limit exists. (6)
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If f ∈ C2
0 (R), then the limit (6) does exist and the generator Aε has the explicit representation

A
ε = A0 + εηA1, (7)

Ai =
1

2
a2i
(
∂2 − ∂

)
+ ci (∂ − 1)−

∫

R

νi(dz)
(
ez − 1− z

)
∂ +

∫

R

νi(dz)
(
θz − 1− z∂

)
, i ∈ {0, 1}, (8)

where ∂ (without the subscript t) indicates differentiation with respect to y and θz is the shift operator :

θzf(y) = f(y + z). We define dom(Aε) as the set of functions u such that the derivatives and integrals

appearing in Aεu with Aε given by (7)-(8) exist and are finite.

Remark 1. By Jacod and Shiryaev (1987), Definition II.8.25, Proposition II.8.26, the operators A0 and A1

correspond to infinitesimal generators of Lévy processes which are exponentially special semimartingales.

Assumption 2. We assume the existence of a unique classical solution to the Cauchy problem (5). A

sufficient (but not necessary) condition for its existence is that the payoff function h and its first two

derivatives are bounded (see Theorem 3.2, Chapter 3 in Bensoussan and Lions (1984)).

From (7), since the operator Aε decomposes into O(1) and O(ε) terms, we seek a solution to the Cauchy

problem (5) of the form

uε =
∞∑

n=0

εnun. (9)

Conditions under which this expansion is valid will be given in Theorem 4. Inserting the expansion (9) into

the Cauchy problem (5) and collecting terms of like powers of ε we find

O(1) : (−∂t +A0)u0 = 0, u0(0, y) = h(y), (10)

O(εn) : (−∂t +A0)un = −ηA1un−1, un(0, y) = 0, for n ≥ 1. (11)

To solve the above Cauchy problems, it will be convenient to introduce the notations

〈u, v〉 :=
∫

R

u(y)v(y)dy and ‖u‖2 := 〈u, u〉. (12)

Note that the inner product 〈u, v〉 may be infinite. We also introduce A∗
i , the formal adjoint of Ai defined

via the relation 〈u,Aiv〉 = 〈A∗
i u, v〉, for any Schwartz functions u and v. Explicitly, A∗

i is given by

A
∗
i =

1

2
a2i
(
∂2 + ∂

)
+ ci (−∂ − 1) +

∫

R

νi(dz) (e
z − 1− z)∂ +

∫

R

νi(dz)(θ−z − 1 + z∂),

for i = 0, 1, which can be deduced through integrating by parts. We note the following important relations

A0ψλ = φλψλ, A
∗
0ψλ = φλψλ, A1ψλ = χλψλ, A

∗
1ψλ = χλψλ,
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where

ψλ(y) :=
1√
2π
eiλy, (13)

φλ :=
1

2
a20
(
−λ2 − iλ

)
+ c0(iλ− 1)−

∫

R

ν0(dz)
(
ez − 1− z

)
iλ+

∫

R

ν0(dz)
(
eiλz − 1− iλz

)
,

χλ :=
1

2
a21
(
−λ2 − iλ

)
+ c1(iλ− 1)−

∫

R

ν1(dz)
(
ez − 1− z

)
iλ+

∫

R

ν1(dz)
(
eiλz − 1− iλz

)
.

Note that for any function u and any complex number λ := λr + iλi ∈ C such that 〈ψλ, u〉 is finite, we have

the generalized Fourier representation

u(y) =

∫

R

dλr〈ψλ, u〉ψλ(y). (14)

However, whenever u ∈ L2(R), such a generalized representation is not necessary, and the simpler form (with

λ ∈ R) u(y) =
∫
R
dλ〈ψλ, u〉ψλ(y) suffices. We are now in a position to find an explicit solution to (10)-(11).

Proposition 3. Suppose that u0 satisfies (10). Then the sequence (un) defined in (11) reads

un(t, y) =

∫

R

· · ·
∫

R︸ ︷︷ ︸
n+1

(
n∏

k=0

dλk

)(
n∑

k=0

etφλk

∏n
j 6=k(φλk

− φλj
)

)(
n−1∏

k=0

χλk
〈ψλk+1

, ηψλk
〉
)
〈ψλ0

, h〉ψλn
(y), (15)

where
∏−1

k=0(· · · ) = 1 and
∏0

j 6=k(· · · ) = 1 by convention.

Proof. See Appendix A.

We have obtained a formal expansion ((9) and (15)) for uε. The following theorem provides precise conditions

under which the expansion is guaranteed to be valid. From now on, we shall denote by L2(R) the set of all

real functions which are square integrable with respect to the Lebesgue measure.

Theorem 4. Suppose h ∈ L2(R) ∩ dom(Aε). Suppose further that for any u ∈ L2(R)

∫

R

dλ|φλ|2|〈ψλ, u〉|2 <∞ implies

∫

R

dλ|χλ|2|〈ψλ, u〉|2 <∞, (16)

and that there exist two real constants A ≥ 0 and B ≤ 1 (independent of (t, y)) such that

ε2 ≤ inf
λ∈R

A2 +B2|φλ|2

‖η‖2 · |χλ|2
. (17)

Then the option price uε(t, y) is an analytic function of ε and its power series expansion is given by (9)

where the sequence {un}∞n=0 is given by (15). The sequence of partial sums u(N)(t, y) :=
∑N

n=0 ε
nun(t, y)

converges uniformly (with respect to ε) to the exact price uε(t, y).
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Proof. See Appendix B. The last convergence statement simply follows from the fact that every power series

converges uniformly within its radius of convergence.

Remark 5. We wish to rectify a common misperception. Under the conditions of Theorem 4, the series

expansion (9) is the exact option price uε(t, y). It is not an asymptotic approximation.

Remark 6 (Feynman-Kac transition densities). Since the diffusion component σ of Y is non-zero, as assumed

in Section 2, the function uε(t, y) can be written as an integral with respect to a density

uε(t, y) := Ey

(
h(Yt)e

−
∫

t

0
k(Ys)ds

)
=

∫

R

h(z)pε(t, y, z)dz. (18)

The density pε(t, y, z) is called the Feynman-Kac (FK) transition density. However it is not a probability

density since, due to the killing function k(y), it is norm-defecting, i.e.
∫
R
pε(t, x, z)dz ≤ 1. If one sets the

payoff function h = δz, then u(t, x) becomes the FK density p(t, x, z) since
∫
R
δz(z

′)pε(t, x, z′)dz′ = pε(t, x, z).

Strictly speaking, the Dirac delta δz is not in L2(R), but is a densely defined unbounded linear functional

on the Hilbert space L2(R). Its action on functions in L2(R) is well-defined. In particular, by making the

replacement 〈ψλ0
, h〉 → 〈ψλ0

, δz〉 = 1√
2π
e−iλ0z in (15), one obtains pε(t, y, z).

Remark 7 (European calls and puts). The most common European options—calls and puts—have payoffs h

which do not belong to L2(R). Assuming the expectation (4) is finite, one can still obtain the price of such

an option by integrating the payoff against the FK density pε, as in (18). However, a more computationally

convenient means of obtaining the option price is to use the method of generalized Fourier transforms. Note

that, even when h /∈ L2(R), the inner product 〈ψλ, h〉 appearing in (15) can sometimes be made finite by

fixing an imaginary component of λ. A European call option, for example, has a payoff h(y) ≡ (ey − ek)+,

which has a generalized Fourier transform

〈ψλ, h〉 =
∫

R

dy 1√
2π
e−iλy

(
ey − ek

)+
=

−ek−ikλ

√
2π (iλ+ λ2)

,

where λ = λr + iλi and λi ∈ (−∞,−1). As such, one can still use (15) to compute call options. Indeed one

simply fixes an imaginary component ℑ[λ0] < 1 and integrates with respect to the real part ℜ[λ0].

4 Implied volatility

For European calls and puts, it is often the implied volatility induced by an option price, rather than the

option price itself, that is of primary importance. It is therefore fundamental to be able to compute them.

In this section, we derive an implied volatility expansion for a certain sub-class of the model above.
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Assumption 8. In this section only we assume ν0 ≡ 0 and c0 = 0, which implies φλ ≡ −a2
0

2

(
λ2 + iλ

)
.

To begin our implied volatility analysis, we fix a time to maturity t > 0, an initial value of the underlying

Y0 = y and a call option payoff h(y) = (ey − ek)+. Our goal is to find the implied volatility (defined below)

for this particular option. For ease of notation, throughout this section, we will suppress all dependence on

(t, y, k). The reader should keep in mind, however, that the implied volatility does depend on these variables.

We begin our analysis by defining the Black-Scholes price and the implied volatility.

Definition 9. The Black-Scholes Price uBS : R+ → R+, defined as a function of volatility σ, is given by

uBS(σ) :=

∫

R

dλre
tφBS

λ (σ)〈ψλ, h〉ψλ, φBS
λ (σ) = −σ

2

2
(λ2 + iλ). (19)

Remark 10. Note that Equation (15), together with Assumption 8 imply that u0 = uBS(a0).

Remark 11. Usually, the Black-Scholes price is written as uBS(σ) =
∫
R
pBS(t, y, z)h(z)dy; Expression (19)

is simply its Fourier representation. Here pBS(t, y, z) ≡ 1
σ
√
2πt

exp
(

(z−(y−σ2t/2))2

2σ2t

)
is the transition density

of a Brownian motion with drift −σ2/2 and volatility σ. We use the Fourier representation of uBS as it will

be more convenient for the analysis that follows.

Definition 12. For an option price uε, the implied volatility is defined implicitly as the unique number

σε ∈ R
+ such that uBS(σε) = uε.

Remark 13. For any t > 0, the existence and uniqueness of the implied volatility σε follows from the general

arbitrage bounds for call prices and the monotonicity of uBS (Fouque et al. (2011), Section 2.1, Remark (i)).

Remark 14. For any σ0 > 0 and σ0 + δ > 0, the function uBS(σ0 + δ) is given by its Taylor series:

uBS(σ0 + δ) =

∞∑

n=0

δn

n!
∂nσu

BS(σ0), ∂nσu
BS(σ0) =

∫

R

dλr

(
∂nσe

tφBS
λ (σ0)

)
〈ψλ, h〉ψλ. (20)

Observe also that, by monotonicity of uBS we have ∂σu
BS(σ) > 0 for all σ > 0. Therefore, uBS is an invertible

analytic function, as the following theorem shows.

Theorem 15 (Lagrange Inversion Theorem). Suppose u is defined as a function of σ through the equation

uBS(σ) = u, where uBS is analytic at a point σ0 and ∂σu
BS(σ0) 6= 0. Then it is possible to solve for σ on a

neighborhood of uBS(σ0) where [uBS]−1 is analytic:

σ =
[
uBS

]−1
(u) = σ0 +

∞∑

n=1

bn
n!

(
u− uBS(σ0)

)n
, bn = lim

σ→σ0

∂n−1
σ

(
σ − σ0

uBS(σ)− uBS(σ0)

)n

. (21)

Proof. See Abramowitz and Stegun (1964), Equation 3.6.6.
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Theorem 15 shows that, for every fixed σ0 > 0, the exists some radius of convergence R > 0 such that

|u − uBS(σ0)| < R implies σ, defined through uBS(σ) = u, is given by (21). The radius of convergence R

depends on the coefficients bn, which, in general, are quite difficult to compute. Note, from the expression

for bn, the radius of convergence R depends on (t, y, k) through the function uBS.

Recall that Theorem 4 shows that uε is an analytic function of ε. Since the composition of two analytic

functions is also analytic (Brown and Churchill (1996), section 24, p. 74), Theorem 15 implies that the

implied volatility σε = [uBS]−1(uε) is an analytic function of ε, and therefore has a power series expansion.

We write this expansion as

σε = σ0 + δε, δε =

∞∑

k=1

εkσk. (22)

Taylor expanding uBS about the point σ0 we have

uBS(σε) = uBS(σ0 + δε)

=

∞∑

n=0

1

n!
(δε∂σ)

nuBS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!

( ∞∑

k=1

εkσk

)n

∂nσu
BS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!




∞∑

k=1




∑

j1+···+jn=k

n∏

i=1

σji


 εk


 ∂nσuBS(σ0)

= uBS(σ0) +

∞∑

k=1

εk




∞∑

n=1

1

n!




∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσ


uBS(σ0)

= uBS(σ0) +

∞∑

k=1

εk



σk∂σ +

∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσ



uBS(σ0). (23)

Now, we insert the expansions (9) and (23) into the definition 12 and collect terms of like order in ε:

O(1) : u0 = uBS(σ0),

O(εk) : uk = σk∂σu
BS(σ0) +

∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσu
BS(σ0), k ≥ 1.

Solving the above equations for the sequence (σk)k≥0 we find

O(1) : σ0 = a0,

O(εk) : σk =
1

∂σuBS(σ0)


uk −

∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσu

BS(σ0)


 , k ≥ 1,

(24)

where we have used Remark 10 to deduce that σ0 = a0.
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Remark 16. The sequence (σk)k≥1 can be determined recursively since (24) only depends on (σj)j≤k−1.

Remark 17. Note that ∂nσu
BS(σ) can be easily computed using (20).

Explicitly, up to O(ε4) we have

O(ε) : σ1 =
u1
∂σu0

, (25)

O(ε2) : σ2 =
u2 − 1

2σ
2
1∂

2
σu0

∂σu0
, (26)

O(ε3) : σ3 =
u3 − (σ2σ1∂

2
σ + 1

3!σ
3
1∂

3
σ)u0

∂σu0
,

O(ε4) : σ4 =
u4 − (σ3σ1∂

2
σ + 1

2σ
2
2∂

2
σ + 1

2σ2σ
2
1∂

3
σ + 1

24σ
4
1∂

4
σ)u0

∂σu0
.

We summarize our implied volatility result in the following theorem:

Theorem 18 (Implied volatility). Let R(t, y, k, a0) denote the radius of convergence of the infinite series (21)

with σ0 = a0. Assume further that ε satisfies (17) and that |uε − uBS(a0)| = |∑∞
n=1 ε

nun| < R(t, y, k, a0).

Then the implied volatility σε (Definition 12), is characterised by (22), with (σk)
∞
k≥0 given by (24).

Remark 19. We emphasize that, within the radius of convergence, the implied volatility expansion is exact.

It is not an asymptotic approximation. That is, for fixed (t, y, k) ∈ R+ × R × R, the sequence of partial

sums σ(N) :=
∑N

n=0 ε
nσn converges to the exact implied volatility σε (i.e., we have pointwise convergence).

The convergence is uniform with respect to ε (since every power series converges uniformly within its radius

of convergence). Furthermore, while the accuracy of the implied volatility expansion (22) is limited by the

number of terms one wishes to compute, we will show through a numerical example in Section 5 that very

few terms are actually required to achieve an accurate approximation of implied volatility.

Remark 20. As written, the expansion (22) with σk given by (24) is not very convenient to compute. Indeed,

σk in (24) requires computing uk which, in the general case, requires a (k+1)-fold numerical integral. Thus,

the results of this section are primarily of theoretical interest. In Section 5 however, we will show that, in a

CEV-like setting, an approximation of the implied volatility can be computed in closed form.

5 Example: CEV-like Lévy-type process

The constant elasticity of variance (CEV) model of Cox (1975) improves upon the Black-Scholes model by

allowing the volatility to depend on the present level of the underlying through a local volatility function

of the form σ(y) = aeβy (recall, y = log x). This model has enjoyed wide success because (i) it admits
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closed-form solutions for European option prices and (ii) when β < 0, the local volatility function increases

as y → −∞, which is consistent with the leverage effect and results in a negative implied volatility skew.

Still, the CEV model has some shortcomings. First, the volatility function σ(y) drops to zero as y tends to

infinity. Second, the model does not allow the underlying to experience jumps.

We can retain some CEV-like features, while overcoming both of the above mentioned shortcomings by

choosing η(y) ≡ eβ(y) := eβy in our framework. In this setting, the volatility function, killing function, and

Lévy measure become

σ(y) = (a0 + εa21e
βy)1/2, k(y) = c0 + εc21e

βy, ν(y, dz) = ν0(y, dz) + εeβyν1(y, dz).

To maintain consistency with the leverage effect, and to simplify the discussion, we shall assume that β ≤ 0.

Remark 21. Note that, since eβ /∈ S, the CEV-like model described above does not belong to the class

of models described in Section 2. Nevertheless, one can always fix some y < Y0 and modify the function η

so that η ≡ eβ on the open interval (y,∞) and so that it decays smoothly to zero on (−∞, y]. In this

case, one should verify that the perturbing parameter ε is small enough to satisfy (17) with the modified

function η. Throughout this section we will continue to perform computations with η ≡ eβ . We will check

the validity of this simplification by testing our results by Monte Carlo simulation. One could in principle

make this adjustment more precise: define τε := inf{t ≥ 0 : Yt < −ε−1}. Then, if for any t > 0, the quantity

logP(τε < t) decays at least as fast as −ε−1, then we can modify the coefficients of the process such that

the new process has similar tails (on an exponentially decreasing scale). Such an argument can be found for

instance in (Deuschel, Friz, Jacquier, and Violante (2013), Remark 2.11)

Remark 22. When η ≡ eβ, the process Y may reach −∞ in finite time (equivalently, the origin is an

attainable boundary for X). To account for this, we modify the default time ζ to be ζ := ζ0 ∧ ζ1, where

ζ0 := inf{t ≥ 0 : Yt = −∞} and ζ1 := inf{t ≥ 0 :
∫ t

0
k(Ys)ds ≥ E}. This construction (see for example

Section 1.1 in Linetsky (2007)), corresponds to specifying −∞ (resp. 0) as an absorbing boundary for Y

(resp. X).

The CEV-like model enjoys the follow features:

• The local volatility function σ(y) ≡
(
a20 + εa21e

βy
)1/2

behaves asymptotically like the CEV model

σ(y) ∼ √
εa1e

βy/2 as y decreases to −∞, reflecting the fact that volatility tends to increase as the

asset price drops (the leverage effect). However, limyր+∞ σ(y) = a0, which is in contrast to the CEV

model, in which the local volatility function drops close to zero as y tends to infinity.

12



• Jumps of size dz arrive with a state-dependent intensity of ν(y, dz) ≡ ν0(dz) + εeβyν1(dz). The local

Lévy measure behaves like ν(y, dz) ∼ εeβyν1(dz) as y ց −∞ and asymptotically like ν(y, dz) ∼ ν0(dz)

as y ր +∞. Thus, both the jump intensity and jump distribution can change drastically depending

on the value of y and the choice of Lévy measures ν0(dz) and ν1(dz).

• A default (i.e., of jump to zero of the asset price X) arrives with a state-dependent intensity k(y) ≡
(
c0 + εc1e

βy
)
. The local killing function k behaves asymptotically like εc1e

βy as y ց −∞, reflecting

the fact that a default is more likely to occur as the asset price drops. However, limyր+∞ k(y) = c0,

which is a form first suggested by Carr and Linetsky (2006).

To value an option, we must find an expression for un, given by (15), when η = eβ. For any complex λ ∈ C

and analytic function f , Dirac (1927) shows that 1
2π

∫
R
eiλxdx = δ(λ) and

∫
R
δ(λ − µ)f(µ)dµ = λ. Thus,

with ψλ given by (13), we have

〈ψµ, eβψλ〉 = δ(λ − µ− iβ). (27)

Inserting (27) into (15), we see that the (n+ 1)-fold integral collapses into a single integral

un =

∫

R

dλ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)
〈ψλ, h〉ψλ−inβ

= enβ

∫

R

dλ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)
〈ψλ, h〉ψλ. (28)

Remark 23. Although we have written the option price as an infinite series (9), from a practical standpoint,

one may only compute uε ≈ u(N) :=
∑N

n=0 ε
nun for some finite N . For any such N we may pass the sum

∑N
n=0 through the integral appearing in (28). Thus, for the purposes of computation, the best way express

the approximate option price is

uε ≈ u(N) =

∫

R

dλ〈ψλ, h〉ψλ

N∑

n=0

εnenβ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)
. (29)

Note that, to obtain the approximate value of uε, only a single integration is required. This makes the pricing

formula (29) as efficient as other models in which option prices are expressed as a Fourier-type integral (e.g.

exponential Lévy processes, Heston model, etc.).

Remark 24. The choice η ≡ eβ is convenient since the Fourier transform of an exponential yields a Dirac

Delta function (see (27)), which results in the (n + 1)-fold integral for un collapsing to a one-dimensional
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integral. However, η = eβ is not the only convenient choice for which this occurs. Observe that

〈ψλ, sin(ω·)〉 = i

√
π

2

(
− δ(λ− ω) + δ(λ + ω)

)
,

〈ψλ, cos(ω·)〉 =
√
π

2

(
δ(λ− ω) + δ(λ + ω)

)
,

〈ψλ, (·)n〉 = in
√
2πδ(n)(λ),





(30)

where δ(n) is the nth derivative of a Delta function. In particular, any smooth function η can locally be

approximated by a truncated power series η(y) ≈
∑n

i=0
1
n!∂

nη(y0)(y − y0)
i. Similarly, any periodic function

can be approximated by a truncated Fourier series η ≈∑n
i=0 (ai sin(ωiy) + bi cos(ωiy)). Thus, equation (30)

provides a way to include arbitrary local dependence.

5.1 Implied volatility asymptotics for CEV-like models

While the implied volatility expansion of Section 4 is of considerable theoretical interest, it is not computa-

tionally efficient to use equations (22) and (24). Indeed, computing the value of each ui in (24) requires a

Fourier integration, which must be done numerically. However, as we will show, if we restrict our analysis

to CEV-like models, the leading order terms for implied volatility can be computed approximately in terms

of simple functions, which require no numerical integration.

Assumption 25. To simplify the analysis below, we assume that ν0 ≡ ν1 ≡ 0 and c0 = c1 = 0, (i.e., Y is

an Itô diffusion without killing). Under this assumption, φλ ≡ −a2
0

2

(
λ2 + iλ

)
and χλ ≡ −a2

1

2

(
λ2 + iλ

)
. We

emphasise that the assumption on ν1 is for computational convenience only. At the end of this section, in

Remark 26, we show how to relax this assumption.

The key to the computations that follow will be to show that u1 and u2 can be approximated by a differential
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operator acting on u0 = uBS(a0). To this end, using (28) we observe that, for any M ≥ 1, we have

u1(t, y) = eβy
∫

R

dλ

(
etφλ

φλ − φλ−iβ
+

etφλ−iβ

φλ−iβ − φλ

)
χλ〈ψλ, h〉ψλ(y)

= eβy
∫

R

dλ

(
1

φλ − φλ−iβ
+
etφλ−iβ−tφλ

φλ−iβ − φλ

)
χλe

tφλ〈ψλ, h〉ψλ(y)

= eβy
∫

R

dλ

( ∞∑

n=1

tn

n!
(φλ−iβ − φλ)

n−1

)
χλe

tφλ〈ψλ, h〉ψλ(y)

≈ eβy
∫

R

dλ

(
M∑

n=1

tn

n!
(φλ−iβ − φλ)

n−1

)
χλe

tφλ〈ψλ, h〉ψλ(y)

= eβy
M∑

n=1

tn

n!
(φ−i∂−iβ − φ−i∂)

n−1
χ−i∂

∫

R

dλetφλ〈ψλ, h〉ψλ(y)

= eβy
M∑

n=1

tn

n!
(φ−i∂−iβ − φ−i∂)

n−1
χ−i∂u0(t, y) =: u

(M)
1 (t, y), (31)

We used here the fact that p(λ)ψλ = p(−i∂)ψλ for any polynomial function p. Similarly, for u2, we find

u2(t, y) = e2βy
∫

R

dλ

(
etφλ

(φλ − φλ−iβ)(φλ − φλ−2iβ)
+

etφλ−iβ

(φλ−iβ − φλ)(φλ−iβ − φλ−2iβ)

+
etφλ−2iβ

(φλ−2iβ − φλ)(φλ−2iβ − φλ−iβ)

)
χλ−iβχλ〈ψλ, h〉ψλ(y)

= e2βy
∫

R

dλ

(
1

(φλ − φλ−iβ)(φλ − φλ−2iβ)
+

etφλ−iβ−tφλ

(φλ−iβ − φλ)(φλ−iβ − φλ−2iβ)

+
etφλ−2iβ−tφλ

(φλ−2iβ − φλ)(φλ−2iβ − φλ−iβ)

)
χλ−iβχλe

tφλ〈ψλ, h〉ψλ(y)

= e2βy
∫

R

dλ

(
1

φλ−iβ − φλ−2iβ

∞∑

n=1

tn

n!
(φλ−iβ − φλ)

n−1

+
1

φλ−2iβ − φλ−iβ

∞∑

n=1

tn

n!
(φλ−2iβ − φλ)

n−1

)
χλ−iβχλe

tφλ〈ψλ, h〉ψλ(y)

= e2βy
∫

R

dλ

( ∞∑

n=2

tn

n!

n−1∑

k=1

(
n− 1

k

)
(φλ−iβ)

k − (φλ−2iβ)
k

φλ−iβ − φλ−2iβ
(φλ)

n−1−k

)
χλ−iβχλe

tφλ〈ψλ, h〉ψλ(y)

= e2βy
∫

R

dλ

( ∞∑

n=2

tn

n!

n−1∑

k=1

(
n− 1

k

)
(−φλ)n−1−k

k−1∑

m=0

(φλ−iβ)
m (φλ−2iβ)

k−1−m

)

χλ−iβχλe
tφλ〈ψλ, h〉ψλ(y)

≈ e2βy
M∑

n=2

tn

n!

n−1∑

k=1

(
n− 1

k

)
(−φ−i∂)

n−1−k
k−1∑

m=0

(φ−i∂−iβ)
m
(φ−i∂−2iβ)

k−1−m
χ−i∂−iβχ−i∂u0(t, y)

=: u
(M)
2 (t, y), (32)

where we use bk − ck = (b − c)
∑k−1

n=0 b
nck−1−n. Define σ

(M)
1 and σ

(M)
2 as the Mth order approximation of

15



σ1 and σ2 (obtained by replacing u1 and u2 in (25) and (26) by u
(M)
1 and u

(M)
2 ):

O(ε) : σ
(M)
1 :=

u
(M)
1

∂σu0
,

O(ε2) : σ
(M)
2 :=

u
(M)
2 − 1

2! (σ
(M)
1 )2∂2σu0

∂σu0
,

(33)

Since χ−i∂ ≡ 1
2a

2
1(∂

2 − ∂), the functions u
(M)
1 and u

(M)
2 are of the form

u
(M)
i =

M∑

n=0

bi,n∂
n(∂2 − ∂)u0, (34)

for i ∈ {1, 2}, where (bi,n) are coefficients which can be computed by expanding the terms in (31) and (32).

Next, using the Black-Scholes formula for European call options we compute (recall that u0 ≡ uBS)

∂σu0|σ=a0
= ta0(∂

2 − ∂)u0 (∂2 − ∂)u0 =
1

a0
√
t
exp

(
y − d2+

2

)
, d+ =

1

a0
√
t

(
y − k +

a20t

2

)
(35)

Inserting (34) and (35) into (33), we obtain

O(ε) : σ
(M)
1 =

M∑

n≥0



b1,n∂

n exp
(
y − d2

+

2

)

ta0 exp
(
y − d2

+

2

)


 ,

O(ε2) : σ
(M)
2 =

M∑

n≥0



b2,n∂

n exp
(
y − d2

+

2

)

ta0 exp
(
y − d2

+

2

)


− 1

2

(
σ
(M)
1

)2( (k − y)2

ta30
− ta0

4

)
.

The above expressions, while perhaps involving many terms, can be easily computed using a computer

algebra system such as Mathematica. Once computed explicitly, the above expressions are simple functions

of (t, y, k), which require no integration. Thus, the approximate implied volatility

σ(2,M) := σ0 + εσ
(M)
1 + ε2σ

(M)
2 , (36)

can be computed extremely quickly. We provide Mathematica code for computing σ(2,M) in Appendix C.

Remark 26. The results of this section can be further extended by relaxing the assumption on χλ. Consider

the case where the Lévy measure ν1 is non-zero. Then χλ is of the form

χλ =
1

2
a20
(
−λ2 − iλ

)
+

∫

R

ν1(dz)(e
iλz − 1− iλz)− iλ

∫

R

ν1(dz)(e
z − 1− z)

=
1

2
a20
(
(iλ)2 − iλ

)
+

∞∑

n=2

In((iλ)
n − iλ), where In :=

∫

R

ν1(dz)z
n.
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In this case, we can approximate the operator χ−i∂ by truncating the infinite sum at some finite q ∈ N:

χ
(q)
−i∂ :=

1

2
a20
(
∂2 − ∂

)
+

q∑

n=2

In(∂
n − ∂)

=
1

2
a20
(
∂2 − ∂

)
+

q∑

n=2

In

n∑

k=2

(∂k − ∂k−1)

=
1

2
a20
(
∂2 − ∂

)
+

q∑

n=2

In

n∑

k=2

∂k−2(∂2 − ∂),

This truncation implies that u
(M)
i remains of the form (34), which allows for explicit computation of σ(2,M).

5.2 Numerical Results

Because η = eβ does not satisfy the requirement η ∈ S, it is important to test the validity of the pricing

formula (29). Below, we provide numerical tests to support this formula. First, we examine convergence of

the FK density. Next, we compare the implied volatility surface induced by option pricing approximation

(29) to the implied volatility surface generated by a Monte Carlo simulation. Then, we examine the implied

volatility expansion of Section 4. We also illustrate the empirical relevance of this model by calibrating a

particular CEV-like model with Gaussian jumps to the implied volatility surface of S&P500 index options.

Finally, we examine the implied volatility approximation of Section 5.1.

5.2.1 Convergence of the approximate FK density

In order to examine convergence of the FK density pε(t, y, z), we define the O(εN ) approximation of the FK

density p(N)(t, y, z), given by setting h = δz in (29)

p(N)(t, y, z) =

∫

R

dλ〈ψλ, δz〉ψλ(y)

N∑

n=0

εnenβ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)
.

In Figure 1 we plot the approximate transition density p(N) for a CEV-like model with Gaussian jumps

νi(dz) =
1√
2πs2i

exp

(−(z −mi)
2

2s2i

)
dz. (37)

For the smallest initial value in the plot, y = −0.6 we see that p(8) and p(9) are virtually identical. As the

initial value y moves in the positive direction, fewer terms are required for convergence. For y = 0.0, we see

very little difference between p(4) and p(5). And for y = 0.6, we see that p(2) and p(3) are nearly identical.

This is not surprising, since the size of the perturbing term εeβA1 decreases as y tends to infinity.
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5.2.2 Comparison to Monte Carlo simulation

In order to test the accuracy of pricing formula (29) we compute the price of a series of call options with

N = 10. We once again assume Gaussian jumps, as in (37). For each call option, we also compute its price

using Monte Carlo simulation. For the Monte Carlo simulations we use a standard Euler scheme with a

time step of 10−3 years and run 107 sample paths. As implied volatility – rather than price – is the more

relevant quantity for call options, we convert prices to implied volatilities by inverting the Black-Scholes

formula numerically (we examine our implied volatility expansion in the next section). In Figure 2 we plot

the resulting implied volatilities as a function of the log-moneyness to maturity ratio, LMMR := (k − y)/t.

For the strikes and maturities tested, we see very close agreement between the implied volatilities resulting

from pricing approximation (29) and the implied volatilities resulting from the Monte Carlo simulation.

5.2.3 Implied Volatility Expansion

In section we examine the implied volatility expansion of Section 4. We continue to work in the CEV-like

setting with η = eβ . But, we now set ν0 ≡ 0 and c0 = 0, which is an assumption of Section 4. We still

assume ν1 is Gaussian, as in equation (37). We define the O(εn) approximation of the implied volatility

σ(n) :=

n∑

k=0

εkσk,

where σ0 = a0 and the {σk}∞n=1 are given by (24). The values of un, which are needed for the implied

volatility expansion, are computed using (28). In figure 3 we plot σ(n) for n = 0, 1, · · · , 5. In order to see

how well the truncated implied volatility expansion approximates the exact implied volatility σε we also

plot a proxy of σε. Our proxy for σε is obtained by approximating uε with u(12), and then by inverting the

Black-Scholes formula numerically to obtain σε. The price u(12) is computed using (29). Given the numerical

results of Section 5.2.2, approximating uε with u(12) should not introduce much error.

In Figure 3 we see very fast convergence of σ(n) to σε for LMMR ∈ [−0.5, 3.0]. In this region σ(3) is

nearly indistinguishable from σε. Outside of this region, however, the implied volatility expansion does

not converge. This is due to the fact that, for LMMR /∈ [−0.5, 3.0] we have |uε − uBS(a0)| > R, where

R = R(t, y, k, a0) is the radius of convergence of the infinite series (21) with σ0 = a0.
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5.2.4 Calibration to S&P500 options

In order to demonstrate the applicability of the CEV-like models from Section 5 we perform a sample

calibration to S&P500 options. For the calibration, we assume that jumps are Gaussian, i.e. that

νi(dz) =
Γi√
2πs2

exp

(
(y −m)2

2s2

)
dz,

for i = 1, 2. We have assumed here a common mean m and variance s2, but have allowed for separate jump

intensities Γ0,Γ1 > 0. Thus the jump distribution remains constant, but the intensity Γ0 + εeβyΓ1 varies

with y. One could allow for additional flexibility by considering separate means and variances.

Let Φ be the set of model parameters and let Θ be the feasible set for these parameters. We denote by

IV(t, k; Φ) the implied volatility of an option with time to maturity t and log-strike k, as computed using Φ,

and we denote by IVobs(t, k), the observed implied volatility of an option with time-to-maturity t and log-

strike k. We formulate the calibration problem as a least-squares fit to the observed implied volatility. That

is, we seek Φ∗ such that

inf
Φ∈Θ

∑

(t,k)∈(T ,K)

(
IVobs(t, k)− IV(t, k; Φ)

)2
=

∑

(t,k)∈(T ,K)

(
IVobs(t, k)− IV(t, k; Φ∗)

)2
,

where (T ,K) represents the set of all (maturity, strike) observed implied volatility data. Observe that we fit

all maturities in the data set simultaneously; we do not fit maturity-by-maturity. Note, because ν0 6= 0 and

c0 6= 0, we are not in the setting of Section 4. Thus we must compute implied volatilities by first computing

option prices using (29), and then by inverting the Black-Scholes formula numerically. The results of the

calibration procedure are plotted in Figure 4. The figure clearly shows that the CEV-like model considered

in this section provides a tight fit to implied volatility across maturities.

Using the parameters obtained in the calibration procedure, we run a series of numerical tests in order to

investigate the computational cost of computing IV(N) (the implied volatility induced by u(N)) for different

values of N . As a point of comparison, we note that u(0) corresponds to the price of an option as computed

in an exponential Lévy setting (i.e., an exponential Lévy model with no local-dependence). As demonstrated

in Table 1, for N = 3 we obtain we obtain implied volatilities that are accurate to two decimal places. These

implied volatilities require roughly 2.22 times as long to compute as the corresponding implied volatilities

in an exponential Lévy setting.

5.2.5 Implied volatility asymptotics for CEV-like models with no jumps

In our last numerical experiment, we implement the implied volatility expansion outlined in Section 5.1.

Under Assumption (25) we compute approximate implied volatilities σ(2,M) using (33) and (36). For com-
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parison, we also plot the exact implied volatility σε. To compute σε, we first compute uε using (29) and then

we invert the Black-Scholes formula numerically. The results are plotted in Figure 5. With a time-to-maturity

of t = 1/2, we observe a nearly exact match between σ(2,M) and σε for log-moneyness k − y > −0.5.

6 Conclusion

In this paper we introduce a class of Lévy-type models in which the diffusion coefficient, the Lévy measure

and the default intensity all depend locally on the value of the underlying. Within this framework, we

obtain a formula (written as an infinite series) for the price of a European option. Furthermore, we provide

conditions under which this infinite series is guaranteed to converge. Additionally, we obtain an explicit

expression for the implied volatility smile induced by a certain sub-class of Lévy-type models. This series is

exact within its radius of convergence. As an example of our framework, we introduce a CEV-like Lévy-type

model, which corrects some short-comings of the CEV model; namely (i) our choice of local volatility function

does not drop to zero as the value of the underlying increases and (ii) our model permits the underlying

asset to experience jumps. In this CEV-like setting, we show that option prices can be computed with

the same level of efficiency as other models in which option prices are computed as Fourier-type integrals

and we show that approximate implied volatilities can be computed explicitly without integration. We also

test the accuracy of the pricing and implied volatility formulas in the CEV-like setting through numerical

examples. And we show that one specific CEV-like model with normal jumps provides a tight fit to the

observed S&P500 implied volatility surface.

Thanks

The authors would like to thank Bjorn Birnir, Stephan Sturm and two anonymous referees for their helpful

comments.
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A Proof of Proposition 3

We begin the proof by Fourier transforming the left-hand side of (10) and (11). We have

〈ψλ, (−∂t +A0)un〉 = −∂t〈ψλ, un〉+ 〈ψλ,A0un〉 = −∂t〈ψλ, un〉+ 〈A∗
0ψλ, un〉 = (−∂t + φλ)〈ψλ, un〉,

where we use A∗
0ψλ = φλψλ. Fourier transforming the right-hand side of (11) and the initial conditions

yields the following ODEs in the variable t for 〈ψλ, u0〉 and for the sequence (〈ψλ, un〉)n≥1:

O(1) : (−∂t + φλ)〈ψλ, u0〉 = 0, 〈ψλ, u0(0, ·)〉 = 〈ψλ, h〉,

O(εn) : (−∂t + φλ)〈ψλ, un〉 = −〈ψλ, ηA1un−1〉, 〈ψλ, un(0, ·)〉 = 0, n ≥ 1.

The following solutions can easily be checked (e.g., by substitution)

O(1) : 〈ψλ, u0(t, ·)〉 = etφλ〈ψλ, h〉,

O(εn) : 〈ψλ, un(t, ·)〉 =
∫ t

0

dse(t−s)φλ〈ψλ, ηA1un−1(s, ·)〉, n ≥ 1.

Next, using (14), we obtain

O(1) : u0(t, y) =

∫

R

dλetφλ〈ψλ, h〉ψλ(y),

O(εn) : un(t, y) =

∫

R

dλ

∫ t

0

dse(t−s)φλ〈ψλ, ηA1un−1(s, ·)〉ψλ(y), n ≥ 1.

Note that the sequence (un)n≥1 can be computed recursively. For example,

u1(t, y) =

∫

R

dλ

∫ t

0

dse(t−s)φλ〈ψλ, ηA1u0(s, ·)〉ψλ(y)

=

∫

R

∫

R

dλdµ

∫ t

0

dse(t−s)φλ〈ψλ, ηA1e
sφµ〈ψµ, h〉ψµ〉ψλ(y)

=

∫

R

∫

R

dλdµ

∫ t

0

dsetφλ+s(φµ−φλ)χµ〈ψλ, ηψµ〉〈ψµ, h〉ψλ(y)

=

∫

R

∫

R

dλdµ

(
etφµ − etφλ

φµ − φλ

)
χµ〈ψλ, ηψµ〉〈ψµ, h〉ψλ(y)

Generalizing the above recursion relation to arbitrary n, one finds expression (15) for un.

B Proof of Theorem 4

In this section, we will show that uε, given by (9) and (15), is a classical solution of the Cauchy problem (5)

under the conditions of Theorem 4. Throughout this section, we define a Hilbert space H = L2(R) with norm

‖·‖ = 〈·, ·〉 given by (12). Our strategy is to show that the closure of Aε = A0+εηA1 (with a domain restricted
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to H) generates a C0-contraction semigroup Pε = {Pε
t , t ≥ 0} in H. The semigroup Pε has the property that

if h ∈ dom(Aε) then Pε
th ∈ dom(Aε) (Engel and Nagel (2006), Proposition II.6.2) and (−∂t +Aε)Pε

th = 0

with initial condition Pε
0h = h. Thus, if we can show that Aε generates a semigroup Pε, we can identify

uε(t, y) ≡ Pεh(t, y) as the unique classical solution to (5). Moreover, if it exists, the semigroup Pε
t is given

by Pε
t = exp(tAε) = exp(t[A0 + εηA1]), where the exponential is defined by

exp(tAε) := lim
n→∞

(
1− t

n
A

ε

)−n

,

and the solution uε(t, y) = P
εh(t, y) inherits the analyticity of the exponential in the perturbing parameter ε.

Thus, if Aε generates a semigroup Pε, then uε is an analytic function of ε, and has the representation (9).

We start by defining the domains of the operators A0, A1 and ηA1: dom(Ai) := {u ∈ H : ‖Aiu‖ < ∞}

for i = 0, 1 and dom(ηA1) := {u ∈ H : ‖ηA1u‖ <∞}. Note that

‖A0u‖2 =

∫

R

dλ|〈ψλ, u〉|2|φλ|2, ‖A1u‖2 =

∫

R

dλ|〈ψλ, u〉|2|χλ|2, ‖η‖2 =

∫

R

dλ|〈ψλ, η〉|2.

Thus by (16), we have dom(A0) ⊆ dom(A1). Since η ∈ S, then ‖ηA1u‖2 ≤ ‖η‖2 · ‖A1u‖2 is finite for any

u ∈ dom(A1). Therefore the inclusions S ⊆ dom(A0) ⊆ dom(A1) ⊆ dom(ηA1) hold. Therefore since S is

a dense subset of H (see Jacob (2001), Corollary 2.6.1), the operators A0, A1 and ηA1 are densely defined

in H. To show that Aε generates a semigroup Pε we recall the following theorem from Chernoff (1972):

Theorem 27. Let A be the generator of a C0-contraction semigroup P0
t ≡ exp(tA) on a Banach space,

and εB a dissipative operator with a densely defined adjoint. If there exist two real constants A ≥ 0 and

B ≤ 1 such that the inequality ‖εBu‖ ≤ A ‖u‖ + B ‖Au‖ holds for all u ∈ dom(A) (i.e., the operator εB is

bounded relative to A with relative bound B), then the closure of Aε := A + εB generates a C0-contraction

semigroup Pε
t = exp(tAε).

We now check the conditions of Theorem 27 with A0 ≡ A and εηA1 ≡ εB. First, by Corollary II.3.17

in Engel and Nagel (2006), A0, as the generator of a Lévy process that is an exponentially special semi-

martingale, generates a C0-contraction semigroup. Next, by Theorem 2.12 in Hoh (1998), εηA1 satisfies the

positive maximum principle, and hence is dissipative (Ethier and Kurtz (1986), Lemma 4.2.1). Since η ∈ S

and since Hilbert spaces are reflexive, then εηA1 has a densely defined adjoint (see the discussion after the

main theorem in Chernoff (1972)). Theorem 4 will then follow if we can prove that εηA1 is bounded relative

to A0 with relative bound B.

Proposition 28. Suppose that there exist two constants A ≥ 0 and B ≤ 1 such that ε satisfies

ε2 ≤ inf
λ∈R

A2 +B2|φλ|2

‖η‖2 · |χλ|2
.
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Then εηA1 is bounded relative to A0 with relative bound B.

Proof. For any u ∈ dom(A0), the inequality in the proposition holds if and only if ε2 ≤ A2+B2|φλ|2
‖η‖2·|χλ|2 holds for

all λ ∈ R. This in turn is equivalent to 0 ≤ A2 +B2|φλ|2 − ε2 ‖η‖2 · |χλ|2 for any λ ∈ R, which implies that

0 ≤
∫

R

dλ|〈ψλ, u〉|2
(
A2 +B2|φλ|2 − ε2 ‖η‖2 · |χλ|2

)
= A2 ‖u‖2 +B2 ‖A0u‖2 − ε2 ‖η‖2 · ‖A1u‖2 .

This then implies ‖εηA1u‖2 ≤ A2 ‖u‖2 +B2 ‖A0u‖2. Since ‖ηA1u‖ ≤ ‖η‖ · ‖A1u‖, we then deduce the final

inequality ‖εηA1u‖ ≤ A ‖u‖+B ‖A0u‖, and the proposition follows.

We have now shown that Aε generates a semigroup Pε. Therefore, we identify uε(t, y) = Pε
th(y) and we

note that uε(t, y) is analytic in the perturbing parameter ε.
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C Mathematica code for computing σ
(2,M)

The following code will produce σ(2,M) from equation (36) with M = 10.

M = 10;

φ[λ ] =
1

2
a02

(
−λ2 − iλ

)
;

χ[λ ] =
1

2
a12

(
−λ2 − iλ

)
;

b1[t , a0 , a1 ] = CoefficientList

[
M∑

n=1

t∧n

n!
(φ[−id− iβ]− φ[−id])∧(n− 1)

1

2
a12, d

]
;

b2[t , a0 , a1 ] = CoefficientList
[ M∑

n=2

t∧n

n!

n−1∑

k=1

Binomial[n− 1, k](−φ[−id])∧(n− 1− k)

k−1∑

m=0

(φ[−id− iβ])∧m(φ[−id− 2iβ])∧(k − 1−m)χ[−id− iβ]
1

2
a12, d

]
;

dp[t , y , a0 , k ] = (y − k + (a0∧2/2)t)/(a0
√
t);

σ1[t , y , a0 , a1 , β , k ] = Exp[βy]

M−1∑

n=0

b1[t, a0, a1][[n+ 1]]

FullSimplify

[
D[Exp[y − dp[t, y, a0, k]∧2/2], {y, n}]

t a0Exp[y − dp[t, y, a0, k]∧2/2]

]
;

σ1[t , y , a0 , a1 , β , k ] = Exp[2βy]
M−1∑

n=0

b2[t, a0, a1][[n+ 1]]

FullSimplify

[
D[Exp[y − dp[t, y, a0, k]∧2/2], {y, n}]

t a0Exp[y − dp[t, y, a0, k]∧2/2]

]

− 1

2

(
σ1[t, y, a0, a1, β, k]

)
∧2

(
(k − y)∧2

ta0∧3
− t a0

4

)
;

σ2M [t , y , a0 , a1 , β , ε , k ] = a0 + ε σ1[t, y, a0, a1, β, k] + ε∧2 σ2[t, y, a0, a1, β, k];
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Figure 1: For different values of n we plot as a function of z the approximate transition densities p(n)(t, y, z)

for y = −0.6 (solid red), y = 0.0 (solid black) and y = 0.6 (solid blue). In order to see the convergence, on

each plot, we also graph p(n−1)(t, y, z) (dashed lines). Note that as y moves closer to −∞ (i) the transition

densities become wider, (ii) convergence of the densities requires more terms and (iii) the densities have

fatter tails on the left than on the right. All three phenomena are due to the fact that the local volatility and

the jump-intensity rise as y decreases to −∞. The following parameters are used in these plots: a0 = 0.20,

a1 = 0.10, c0 = 0.0, c1 = 0.0, s0 = 0.15, m0 = −0.10, s1 = 0.15, m1 = −0.10, ε = 1, β = −0.95, t = 1.0.
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Figure 2: In the above plots, we compute option prices using formula (29) with N = 10 and also by

Monte Carlo simulation. We then convert these prices to implied volatilities by inverting Black-Scholes

numerically. We do not use the implied volatility expansion described in Section 4. The solid line corresponds

to implied volatilities computed using pricing formula (29). The circles correspond to implied volatilities

resulting from the Monte Carlo simulation. Units on the horizontal axis are logmoneyness to maturity ratios

(LMMR := (k − y)/t). Note the steep skew, which is due to the fact that the local volatility and the jump

intensity increase as the value of the underlying drops. The following parameters are used in this plot:

a0 = 0.20, a1 = 0.10, c0 = 0.00, c1 = 0.00, s0 = 0.20, s1 = 0.10, m0 = −0.20, m1 = −0.10, ε = 1.0,

β = −1.25, y = −0.10.
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exp

(−(z −m1)
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)
dz.

Figure 3: We plot σ(n), the order O(εn) approximation of implied volatility (solid black), and σε, the exact

implied volatility (dashed black) as a function of LMMR. The following parameters are used in these plots:

a0 = 0.30, a1 = 0.00, c0 = 0.00, c1 = 0.00, s1 = 0.2, m1 = −0.40, ε = 4, β = −1.25, t = 0.125, y = 0.10.
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Figure 4: Using the CEV-like model from Section 5, we perform a calibration to S&P500 options from January

24, 2012. The horizontal axis is in units of log-moneyness: LM := k − y and the vertical axis in units of

implied volatility. The fit is a least-squares algorithm to implied volatilities across the three maturities. We

emphasize that we do not fit maturity-by-maturity. The Lévy measures ν0 and ν1 are Gaussian with common

mean m and variance s but different intensities Γ0 and Γ1. Thus, we allow the jump intensity, but not the

jump distribution, to change as a function of y. The parameters resulting from the calibration are as follows:

a0 = 0.059, c0 = 0.009, Γ0 = 1.105, a1 = 0.057, c1 = 0.010, Γ1 = 1.095, m = −0.076, s = 0.078, β = 0.410,

ε = 1.00. Without loss of generality, we assume y = 0, which simply results in a rescaling of parameters.

N TN/T0 IV(N)

0 1.00 0.2420 0.2162 0.1933 0.1719 0.1486 0.1222 0.1014 0.0929 0.0963 0.1046

1 1.04 0.2929 0.2683 0.2476 0.2306 0.2166 0.2006 0.1676 0.1318 0.1183 0.1211

2 1.49 0.2960 0.2709 0.2479 0.2265 0.2049 0.1841 0.1743 0.1558 0.1341 0.1307

3 2.22 0.2951 0.2698 0.2475 0.2276 0.2088 0.1887 0.1634 0.1547 0.1429 0.1354

4 3.26 0.2953 0.2701 0.2475 0.2272 0.2077 0.1877 0.1694 0.1483 0.1437 0.1379

5 4.48 0.2952 0.2700 0.2475 0.2273 0.2079 0.1879 0.1674 0.1518 0.1404 0.1390

6 6.16 0.2952 0.2700 0.2475 0.2273 0.2080 0.1878 0.1675 0.1519 0.1403 0.1391

LM -0.225 -0.180 -0.135 -0.090 -0.045 0.000 0.045 0.090 0.135 0.180

Table 1: Using the parameters obtained in the calibration to S&P500 options (see Figure 4) we compute

approximate prices u(N) using equation (29). We then compute implied volatilities (IV(N)) by inverting the

Black-Scholes pricing formula numerically. We denote by TN the computational time required to compute

implied volatilities for a series of strikes (listed above in unites of log-moneyness: LM := k − y) with a time

to maturity of 142 days. Note that T0 corresponds to the time it takes to compute IV’s for an exponential

Lévy model.
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Figure 5: We consider here the model proposed in Section 5.1. We plot the exact implied volatility σε

(solid), as well as the approximations σ(2,M) (dashed) and σ(1,M) (dotted) as a function of log-moneyness:

LM := k − y. In the above plot we use the following parameters: t = 0.5, y = 0.0, β = −2.0, ε = 1.0,

a0 = 0.5 and a1 = 0.3. Observe that σ(2,M) closely approximates σε for all LM > −0.5.
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