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Abstract. One the one hand, rough volatility has been shown to provide a consistent
framework to capture the properties of stock price dynamics both under the historical
measure and for pricing purposes. On the other hand, market price of volatility risk
is a well-studied object in Financial Economics, and empirical estimates show it to be
stochastic rather than deterministic. Starting from a rough volatility model under the
historical measure, we take up this challenge and provide an analysis of the impact of such
a non-deterministic risk for pricing purposes.

Introduction

Rough volatility is a recent paradigm proposed by Gatheral, Jaisson and Rosenbaum [10],
which has attracted the attention of many academics and practitioners thanks to its numer-
ous attractive properties. Despite some debate about whether volatility should be rough [12,
13, 17, 16, 23], this class of models provides a general framework to analyse both time se-
ries of the instantaneous volatility (under the historical measure P) and prices of financial
derivatives (under the pricing measure Q). Starting from a rough version of the Bergomi
model [5] under P, Bayer, Friz and Gatheral [3] showed that a deterministic market price of
risk preserved its structure under Q (somehow akin to the Heston model [14] specification).

However, the Financial Economics literature has long shown that this market price of
risk, monitoring the transition from P to Q via Girsanov’s transform, is not constant nor
deterministic but instead stochastic. Its estimation has been the source of long academic
discussions, outside the scope of the present paper though, and we refer the interested reader
to [1, 6, 7, 8, 19, 21] for some useful pointers. This of course has serious practicals implications
for risk management, and [11, 24] are fascinating sources of information. We focus here on this
particular bridge between P and Q and show, not surprisingly, that the required stochasticity
of the market price of risk unfortunately breaks the structure of the rough Bergomi model
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under Q. However, we link the Hölder regularity of the volatility process (lower in this class
of rough models) with that of the change of measure, and design several specifications making
the model tractable under Q. While the rough Bergomi model tracks well the behaviour of
the historical volatility, it is less powerful for option prices, especially when considering VIX
smiles (which are more or less flat under this model). Our new setup allows for more flexibility
there, while preserving the P-tractability of the model.

Section 1 provides the technical setup and analysis of the market price of risk, while the
design of useful continuous-time rough stochastic volatility models with non-deterministic
market prices of risk is detailed in Section 2. Finally, in Section 3, we perform an empirical
analysis, estimating risk premia from historical options data.

1. Rough volatility models and change of measure

Rough volatility models are a natural extension of classical stochastic volatility models.
Starting from such a model under the historical measure P, we characterise below its dynamics
under equivalent martingale measures Q ∼ P, which then, by the fundamental theorem of
asset pricing, allows for arbitrage-free option pricing. Following for example [4, 10] we consider
a rather general class of (rough) stochastic volatility model under P, where the stock price
process admits the following dynamics:

(1.1)


dSt
St

= µtdt+
√
vt dW

P
t ,

vt = ψ(t, Yt),

Yt =

∫ t

0

k(t, s)dZP
s ,

starting from S0 > 0, over a fixed time interval T := [0, T ], for T > 0. Here W P = (W P,W P,⊥)

is a two-dimensional standard Brownian motion defined on a given filtered probability space
(Ω,F ,P), with F = FW P ∨ FW P,⊥ , and ZP := ρW P + ρW P,⊥, with ρ ∈ [−1, 1] and ρ :=√
1− ρ2. We further introduce the set Fb of P-bounded and (Ft)t∈T-progressively measurable

process and recall the Doléans-Dade stochastic exponential of a square integrable process X:

E(X)t := exp

(
Xt −

1

2
⟨X⟩t

)
, t ∈ T.

We finally consider the following set of assumptions, in place for the rest of the paper:

Assumption 1.1.

(i) The function ψ : T × R → (0,∞) is continuous, bounded, and bounded away from the
origin on T× (−∞, a] for each a > 0;

(ii) For each t ∈ T, E
[
v−1
t

]
is finite;

(iii) The process µ belongs to Fb;
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(iv) Given an interest rate process r := (rt)t∈T ∈ Fb, there exist a sequence (P̂n)n∈N and a
process γ := (γt)t∈T in Fb and bounded P̂n-almost surely, for each n ∈ N, such that

sup
t∈T

{
ρ

∫ t

0

k(t, u)χudu

}
≤ 0, P̂n-almost surely, for all n ∈ N,

where we introduce the Sharpe ratio χu := ru−µu√
vu

and

(1.2) dP̂n
dP

∣∣∣∣
Ft

:= E
(∫ ·

0

χudW
P
u +

∫ ·

0

γudW
P,⊥
u

)
t∧τn

and τn := inf{t ≥ 0, Yt = n};

(v) The correlation is negative: ρ ≤ 0;
(vi) For each t ∈ T, the kernel k(t, ·) is null on T \ [0, t] and

∫ ·
0
k(·, s)dZP

s is a well-defined
Gaussian process.

Remark 1.2. Condition (vi) may be replaced in terms of conditions on the kernel, for
example k(t, ·) ∈ L2([0, t]) for each t ∈ T. In light of (v), the first constraint in (iv) may be
rewritten as inft∈T

{∫ t
0
k(t, u)χudu

}
≥ 0, P̂n-almost surely, for all n ∈ N.

The following examples are common choices of such kernels:

Example 1.3. The Gamma kernel, common in the BSS literature pioneered by Barndorff-
Nielsen and Schmiegel [2], is given by

k(t, s) = (t− s)H− 1
2 e−β(t−s)11{t≥s}, with H ∈ (0, 1), β ≥ 0.

In order to state the main result, define the Radon-Nikodym derivative, for each t ∈ T,

(1.3) Dγ
t :=

dQ
dP

∣∣∣∣
FP

t

= E
(∫ ·

0

χudW
P
u +

∫ ·

0

γudW
P,⊥
u

)
t

,

so that, from (1.2) above, Dγ
t∧τn = dP̂n

dP

∣∣∣∣
Ft

.

Proposition 1.4. For any γ satisfying Assumption 1.1(iv), the process
∫ ·

0

χudW
P
u+

∫ ·

0

γudW
P,⊥
u

is a P-local martingale on T.

Proof. Recall that the sum of two local martingale (with respect to the same filtration) is a
local martingale whose sequence of stopping times is given by the minimum of the sequences
of stopping times for the terms in the sum. The boundedness of γ implies that

∫ ·
0
γsdW

P,⊥
s is a

true P-martingale. Regarding
∫ ·
0
χudW

P
u , the integrand is Fs-measurable and locally bounded

with respect to the sequence of stopping times (τn)n∈N in (1.2) thanks to Assumption 1.1(i)-
(iii)-(iv). Exploiting Assumption 1.1(ii)-(iii)-(iv), then EP[χ2

t ] is finite for all t ∈ T. Thus, the
first term in the sum is a local martingale as well, and so is the whole sum. □

Proposition 1.4 justifies the use of a Doléans-Dade stochastic exponential in the definition
of Dγ . Furthermore, we obtain the following result.
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Theorem 1.5. Under Assumption 1.1, for any γ as in Assumption 1.1(iv), then

(I) the Radon-Nikodym derivative process Dγ in (1.3) is a true Q-martingale;
(II) under the (arbitrage-free) equivalent risk-neutral martingale measure Q,

(1.4)



dSt
St

= rtdt+
√
vt dW

Q
t ,

vt = ψ

(
t, Ŷt +

∫ t

0

k(t, s)λsds

)
,

Ŷt =

∫ t

0

k(t, s)dZQ
s ,

with S0, v0 > 0, and λ is the market price of volatility risk defined by

(1.5) λt := ρχt + ρ γt,

and where WQ and ZQ are Q-Brownian motions defined as

(1.6) WQ
t :=W P

t +

∫ t

0

χudu, and ZQ
t := ZP

t +

∫ t

0

λudu;

(III) the discounted stock price S̃t := St

Bt
with dBt = rtBtdt, B0 = 1, is a true Q-martingale.

Proof. To satisfy the no-arbitrage conditions, the change of measure for W P is constrained
by the martingale restriction on the discounted spot dynamics, while the Brownian mo-
tion ZP gives freedom to the model and makes the market incomplete by the free choice of
the process γ. Consequently, the change of measure from P to Q and the corresponding
Radon-Nikodym derivative directly follow from Girsanov’s Theorem via (1.3), provided that
Dγ
t ∈ L1 and Dγ is a true martingale. Thus, once we have shown (I), then (II) automatically

follows. By Proposition 1.4, Dγ
t ∈ L1 and, being a non-negative local martingale, it is a

supermartingale, and a true martingale on T if and only if E [Dγ
T ] = 1. To prove this, we

closely follow [9, Proof of Theorem 1.1] with some modifications, and recall the stopping time
τn := inf{t ≥ 0, Yt = n} from (1.2). For any s ∈ T, the random function f(x) := rs−µs√

ψ(s,x)

is P-bounded on (−∞, a] for any a > 0 since r and µ are P-bounded, and ψ(s, ·) bounded
away from zero on intervals of the form (−∞, a], by Assumption 1.1(iii)-(iv)-(i), respectively.
Then, again by Proposition 1.4,

(1.7) 1 = E
[
Dγ
T∧τn

]
= E

[
Dγ
T 11{T<τn}

]
+ E

[
Dγ
τn11{τn≤T}

]
.

The first term in (1.7) converges to E [Dγ
T ] as n tends to infinity, yielding

1− E [Dγ
T ] = lim

n↑∞
E
[
Dγ
τn11{τn≤T}

]
.

Girsanov’s theorem implies E
[
Dγ
τn11{τn≤T}

]
= P̂n(τn ≤ T ), where P̂n is defined such that

Ŵn
t =W P

t −
∫ t∧τn

0

χudu
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is a P̂n-Brownian motion. Then, under P̂n, the process Y becomes

Yt = Ŷ nt +

∫ t∧τn

0

k(t, s)
(
ρχu + ρ γu

)
du,

where Ŷ nt :=

∫ t

0

k(t, s)dẐns and

Ẑnt = ZP
t −

∫ t∧τn

0

(
ρχu + ρ γu

)
du,

for t ≥ 0, where Ẑn is a P̂n-Brownian motion. Furthermore, by Assumption 1.1(iv), there
exists Mγ > 0 such that |γt| < Mγ P̂n-almost surely, and

P̂n
(
sup
t∈T

Yt ≥ n

)
= P̂n

(
sup
t∈T

{
Ŷ nt +

∫ t∧τn

0

k(t, u)
(
ρχu + ρ γu

)
ds

}
≥ n

)
≤ P̂n

(
sup
t∈T

Ŷ nt + sup
t∈T

{
ρ

∫ t∧τn

0

k(t, u)χudu

}
+ sup

t∈T

{
ρ

∫ t∧τn

0

k(t, u)γudu

}
≥ n

)
≤ P̂n

(
sup
t∈T

Ŷ nt + sup
t∈T

{
ρ

∫ t∧τn

0

k(t, u)χudu

}
≥ n− |ρ|KTMγ

)
,

where KT := supt∈T
∫ t
0
k(t, s)ds. Then, an application of Assumption 1.1(iv), we obtain

(1.8) P̂n
(
sup
t∈T

Yt ≥ n

)
≤ P̂n

(
sup
t∈T

Ŷ nt ≥ n− |ρ|KTMγ

)
.

Inequality (1.8), in turn, implies P̂n(τn ≤ T ) ≤ P̂n(τ̂n ≤ T ), for τ̂n := inf{t ≥ 0, Ŷ nt =

n− |ρ|KTMγ}. Finally, since Ẑn is a P̂n-Brownian motion, we obtain

lim
n↑∞

P̂n(τn ≤ T ) ≤ lim
n↑∞

P̂n(τ̂n ≤ T ) = lim
n↑∞

P
(
sup
t∈T

Yt ≥ n− |ρ|KTMγ

)
= 0,

and it follows that dQ
dP

is indeed a true martingale and note that lim
n↑∞

P̂n = Q. In the sense
that the relation (1.6) holds between the P and Q Brownian motions. This concludes the
proof of (I) and, as stated in the beginning, the results in (II) then readily follow by direct
application of the change of measure theorem.

We now prove (III): the discounted price S̃ = S/B is a true martingale for ρ ≤ 0. A
straightforward application of Itô’s formula yields under Q

dS̃t

S̃t
=

√
vt dW

Q
t ,

vt = ψ

(
t, Ŷt +

∫ t

0

k(t, s)λsds

)
,

Ŷt =

∫ t

0

k(t, s)dZQ
s
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Define the stopping time ιn := inf{t ≥ 0, Ŷt = n}. For any t ∈ T, the random function
g(x) := ψ

(
t, x+

∫ t
0
k(t, s)λsds

)
is bounded Q-almost surely on (−∞, a] by Assumption 1.1(i)-

(iii)-(iv), with λ in (1.5), and by boundedness of γ, so that, since S̃ is a Q-local martingale:

S̃0 = EQ[S̃T∧ιn ] = EQ[S̃T 11{T<ιn}] + EQ[S̃ιn11{T>ιn}].

The first term converges to EQ[S̃T ] as n tends to infinity, hence

S̃0 − EQ[S̃T ] = lim
n↑∞

EQ[S̃ιn11{T>ιn}].

Girsanov’s Theorem further gives EQ[S̃T 11{T>ιn}] = S̃0P̃n(T > ιn), where P̃n is such that

W̃n
t =WQ

t −
∫ t∧ιn

0

vsds

is a P̃n-Brownian motion. Note that, for t < ιn, Ŷt = Ỹt + ρ
∫ t
0
k(t, s)vsds, where Ỹt =∫ t

0
k(t, s)dZ̃ns and Z̃nt := ZQ

t − ρ
∫ t
0
k(t, s)vsds is also a P̃n-Brownian motion. We conclude

that, if ρ ≤ 0, then Ŷt ≥ Ỹt and

lim
n↑∞

P̃n(ιn ≤ T ) ≤ lim
n↑∞

P̃n(ι̃n ≤ T ) = lim
n↑∞

P

(
sup
t∈[0,T ]

Yt ≤ n

)
= 0,

where ι̃n := inf{t ≥ 0, Ỹt = n}, and hence S̃ is a true martingale. □

Discussion. Under Assumption 1.1, consider ρ ≤ 0, some valid function ψ and kernel k, and
the constant values γs = γ and µ = µs ≤ rs = r for γ, µ, r ∈ R ensuring Assumption 1.1(iv).,
so that Theorem 1.5 applies. In this scenario, a sufficient condition for the change of measure
to be well defined is that the physical drift must be smaller than the risk-free rate.

1.1. Characterisation of rough volatility models via Generalised Fractional Op-
erators. It is natural to represent rough volatility models in terms of fractional operators.
In this section we present the Generalised Fractional Operators (GFO) and a representation
result for rough volatility models in terms of GFO. To do so, let us first present the GFO
introduced in [15, Definition 1.1] defined as follows.

Definition 1.6. For any β ∈ (0, 1), α ∈ (−β, 1− β) and h ∈ C1
b ((0,∞)) such that h′(·) ≤ 0,

the GFO associated to the kernel k(x) := xαh(x) applied to f ∈ Cβ(R) is defined as

(Gαf)(t) :=


∫ t

0

(f(s)− f(0))
d

dt
k(t− s)ds, if α ∈ [0, 1− β),

d

dt

∫ t

0

(f(s)− f(0))k(t− s)ds, if α ∈ (−β, 0).

To simplify future notations, we let H± := H ± 1
2 for H ∈ (0, 12 ). We now introduce a

specific setup that will drive the rest of our computations: consider the power-law kernel

(1.9) kα(u) := uα11{u≥0},



RISK PREMIUM AND ROUGH VOLATILITY 7

as well as the set

Λβ,H :=
{
λ ∈ Cβ for some β ∈ (0, 1] such that H− ∈ (−β, 0) and λ0 = 0

}
.

To this particular power-law kernel, the GFO (from Definition 1.6, since H− ∈ (− 1
2 , 0)) reads

(GH−f)(t) =
d

dt

∫ t

0

(f(s)− f(0))kH−(t− s)ds.

Denote further

K(t, s) :=

∫ t

0

kH−(u− s)du =
kH+

(t− s)

H+
,

so that the corresponding GFO is precisely 1
H+

GH+ . To streamline notations and emphasise
nice symmetries, we introduce the notations

G− := GH− and G+ :=
1

H+
GH+ .

From the properties of GFO [15, Proposition 1.2], then G+λ ∈ Cβ+H+ as soon as λ ∈ Λβ,H .

Corollary 1.7 (GFO representation of rough volatility). With the kernel kH− in (1.9) and
λ ∈ Λβ,H , the system (1.4) under the risk-neutral measure Q can be rewritten as

dSt
St

= rtdt+
√
vtdW

Q
t ,

vt = ψ
(
t, (G−ZQ)(t) + (G+λ)(t)

)
.

Proof. The fact that
∫ ·

0

kH−(·− s)dZQ
s = G−ZQ is straightforward by the properties of GFO

in [15, Proposition 1.4]. Furthermore, for any λ ∈ Λβ,H and any t ∈ T,∫ t

0

kH−(t− s)λsds =

∫ t

0

d

dt
K(t, s)(λs − λ0)ds =

(
G+λ

)
(t).

□

Note that since G+λ ∈ Cβ+H+ , then the risk premium has sample paths with Hölder
regularity greater than 1

2 , regardless of the value of H.

2. Modelling the risk premium process: A practical approach

In practice, the process λ is directly modelled without resorting to a change of measure
starting from γ. We now consider different modelling choices for the risk premium λ and
analyse some of its properties. In spite of the formal derivation of Theorem 1.5, a numerical
treatment of the integral

∫ t
0
• ds is rather intricate. To overcome this issue, Bayer, Friz and

Gatheral [3] elegantly came up with the forward variance form of rough volatility in the spirit
of Bergomi [5]. We shall restrict ourselves to this functional form (defined in the following
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proposition) for the reminder of the section. Consider (1.4) with ψ(t, x) = ξ0(t)e
νx, with

ξ0(t) := E[vt|F0] and ν > 0. Then the risk-neutral dynamics in forward variance form read
dSt
St

= rtdt+
√
vt dW

Q
t ,

vt = ξ0(t) exp

(
ν

(∫ t

0

kH−(t− s)dZQ
s +

∫ t

0

kH−(t− s)λsds

))
.

In the remaining of this section, the process XQ will denote a Q-Brownian motion possibly
correlated with WQ and ZQ.

2.1. Risk premium driven by Itô diffusion. Generalised Fractional Operators provide
a natural framework to model risk premium processes driven by diffusions. The statement
below shows the details of such a construction. Recall that the Beta function is defined as
B(x, y) :=

∫ 1

0
sx−1(1− s)y−1ds, for x, y > 0.

Proposition 2.1. For H ∈ (0, 12 ) and α ∈
(
− 1

2 , 0
)
, consider λ = bGαY Q ∈ Cα+ 1

2 , where
b := B(H+, α+ 1)−1 and

Y Q
t =

∫ t

0

b(s, Y Q
s )ds+

∫ t

0

σ(s, Y Q
s )dXQ

s ,

where b(·) and σ(·, ·) satisfy Yamada-Watanabe conditions [20, Section 5.2, Proposition 2.13]
for pathwise uniqueness ensuring that a weak solution exists. Then Gα+H+Y Q ∈ CH+α+1 and

(2.1) vt = ξ0(t) exp
{
ν
(
(G−ZQ)(t) + (Gα+H+Y Q)(t)

)}
.

Furthermore, if Y Q = XQ and d⟨Y Q, ZQ⟩t = ρ dt with ρ ≤ 0, then

EQ [vt|Fs] = ξ0(t) exp
{
ν
[(
G−ZQ) (s, t) + (Gα+H+XQ) (s, t)] }(2.2)

× exp

{
ν2

2

(
k2H(t− s)

2H
+

k2(H+1)(t− s)

2H2
+(H + 1)

+ ρ
k2H+

(t− s)

H2
+

)}
,

where
(
GH−ZQ) (s, t) := ∫ s

0
kH−(t−u)dZQ

u for 0 ≤ s ≤ t, and similarly for
(
Gα+H+XQ) (s, t).

Proof. We first prove (2.1), which follows from [15, Proposition 1.2] and the identities high-
lighted above in Corollary 1.7. Indeed, in view of Corollary 1.7 we only need to show that∫ t

0

kH−(t− s)λsds = (Gα+H+Y Q)(t).

Replacing the expression for λ in the integral and using stochastic Fubini theorem, we obtain∫ t

0

kH−(t− s)λsds = b

∫ t

0

kH−(t− s)(GαY Q)(s)ds = b

∫ t

0

kH−(t− s)

∫ s

0

kα(s− u)dY Q
u ds

= b

∫ t

0

∫ t

u

kH−(t− s)kα(s− u)ds dY Q
u .
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Now, direct computations for the inner integral yields∫ t

u

kH−(t− s)kα(s− u)ds = kα+H+
(t− u)

∫ 1

0

(1− s)H−sαds = B(α+ 1,H+)kα+H+
(t− u).

Therefore∫ t

0

kH−(t−s)λsds = b

∫ t

0

B(α+1,H+)kα+H+(t−u)dY Q
u =

∫ t

0

kα+H+(t−u)dY Q
u = (Gα+H+Y Q)(t).

We now move to the proof of the identity (2.2). Exploiting the representation of vt in this
specific case and the measurability and independence properties of the Brownian increments,

EQ [vt|Fs] = ξ0(t)EQ
s

[
exp

{
ν
[(
GH−ZQ) (t) + (Gα+H+XQ) (t)]}]

= ξ0(t)EQ
s

[
exp

{
ν

[∫ t

0

kH−(t− u)dZQ
u +

∫ t

0

kα+H+
(t− u)dXQ

u

]}]
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+(t− u)dXQ
u

]}
× EQ

s

[
exp

{
ν

[∫ t

s

kH−(t− u)dZQ
u +

∫ t

s

kα+H+(t− u)dXQ
u

]}]
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+
(t− u)dXQ

u

]}
× exp

{
ν2

2

(∫ t

s

k2H−(t− u)du+

∫ t

s

k2H+1(t− u)

H2
+

du+ ρ

∫ t

s

k2H(t− u)

H+
du

)}
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+(t− u)dXQ
u

]}
× exp

{
ν2

2

(
k2H(t− s)

2H
+

k2(H+1)(t− s)

2H2
+(H + 1)

+ ρ
k2H+

(t− s)

H2
+

)}
.

Thus we only have to show that

(
GH−ZQ) (s, t) = ∫ s

0

kH−(t−u)dZQ
u and

(
Gα+H+XQ) (s, t) = ∫ s

0

kα+H+(t−u)dXQ
u .

We prove the first identity, the second being analogous. It is a straightforward consequence
of the definitions and the properties of Brownian increments:

(
GH−ZQ) (s, t) := EQ

s

[∫ t

0

kH−(t− u)dZQ
u

]
=

∫ s

0

kH−(t− u)dZQ
u + EQ

s

[∫ t

s

kH−(t− u)dZQ
u

]
=

∫ s

0

kH−(t− u)dZQ
u .

□

Remark 2.2. Since the instantaneous variance in this model is log-Normal, the results in [18,
Proposition 3.1] and numerical methods therein still apply for the VIX with minimal changes.
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2.2. A risk premium driven by a CIR process. A second natural choice is to consider
the Cox-Ingersoll-Ross (CIR) process

dY Q
s = κ(θ − Y Q

s )ds+ σ

√
Y Q
s dXQ

s ,(2.3)

with κ, θ, σ > 0. As tempting as this approach might seem, it is not trivial at all to compute
the basic quantity EQ[vt] here, as the following proposition shows.

Proposition 2.3. Assume that the Brownian motions ZQ and XQ are independent and
consider λ = GαY Q ∈ Cα+ 1

2 , with Y Q defined in (2.3). Then, for any s ≤ t,

EQ
s [vt] = ξ0(t) exp

{
ν
[(
G−ZQ) (s, t) + (Gα+H+Y Q) (s, t)] }

exp

{
ν2

2

∫ t

s

kH−(t− u)2du− Y Q
s C(s, T )−A(s, T )

}
,

where A(t, T ) := −κθ
∫ T
t
C(u, T )du and C satisfies the Riccati equation

νkH−(T, t)− ∂tC(t, T ) + C(t, T )θ +
σ2

2
C2(t, T ) = 0,

for t ∈ [0, T ), with boundary condition C(T, T ) = 0.

Proof. By independence of the driving Brownian motions we have, for any u ≤ t,

E[vt|Fu] = ξ0(t) exp
{
ν
((
G−ZQ) (u, t) + (Gα+H+Y Q) (u, t))}

× E
[
exp

{
ν
((
G−ZQ) (t)− (G−ZQ) (u, t))}]

× E
[
exp

{
ν
((
Gα+H+Y Q) (t)− (Gα+H+Y Q) (u, t))}] ,

where the first expected value is the MGF of a Gaussian random variable, hence

E
[
exp

{
ν
( (

G−ZQ) (t)− (G−ZQ) (u, t))}] = exp

{
ν2

2

∫ t

u

kH−(t, s)ds

}
.

We are now interested in computing the second expectation

E
[
exp

{
ν
((
Gα+H+Y Q) (t)− (Gα+H+Y Q) (u, t))}] ,

where (
Gα+H+Y Q) (t)− (Gα+H+Y Q) (u, t) = ∫ t

u

kH−(t, s)Y
Q
s ds.

This is, in spirit, similar to computing a bond price in the CIR model. To do so, define

B(t, T ) := E

[
exp

(
ν

∫ T

t

kH−(T, s)Y
Q
s ds

)∣∣∣∣Ft
]
,

where t ≤ T . We note that B(·, T ) is a semimartingale as T is fixed, therefore applying the
conditional version of Feynman-Kac’s formula, we obtain

(2.4)
(
νrkH−(T, t) + ∂t + κ(θ − y)∂r +

σ2

2
r∂yy

)
B(y, t, T ) = 0.
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where B(y, t, T ) is such that B(Y Q
t , t, T ) is a solution to the moment generating function.

With an ansatz of the type B(y, t, T ) = exp{−yC(t, T )−A(t, T )}, we have at (y, t, T ),

∂tB(y, t, T ) = −(y∂tC(t, T ) + ∂tA(t, T ))B(y, t, T ),

∂yB(y, t, T ) = −C(t, T )B(y, t, T ), ∂yyB(y, t, T ) = C(t, T )2B(y, t, T ),

and the PDE (2.4) becomes, with r = Y Q
t ,(

νY Q
t kH−(T, t)−

(
Y Q∂tC + ∂tA+ κ

(
θ − Y Q

t

)
C
)
+
σ2

2
C2Y Q

t

)
B(Y Q

t , t, T ) = 0,

which further simplifies to(
νkH−(T, t)− ∂tC − κC +

σ2

2
C2

)
Y Q
t B(Y Q

t , t, T )− (κθC + ∂tA)B(Y Q
t , t, T ) = 0.

The second term cancels when A(t, T ) = −κθ
∫ T
t
C(u, T )dt, and a Riccati equation remains:

νkH−(T, t)− ∂tC(t, T )− κC(t, T ) +
σ2

2
C2(t, T ) = 0,

with boundary conditions A(T, T ) = C(T, T ) = 0. □

Already in the uncorrelated case the computation of EQ[vt] becomes very costly, having
to solve a PDE for each time t. In the correlated case there is no hope to obtain any semi-
analytic result since one would need to compute cross terms and there is no tool coming from
Itô’s calculus available in that case.

3. Roughly extracting the Risk Premium from the Market

In this section we consider the risk premium process λ to be deterministic, with the aim of
obtaining a formula that links P and Q market observable quantities. The following theorem
shows how to infer the risk premium from the market using forecasts under the physical
measure and Variance Swap prices in the pricing measure.

Theorem 3.1. Consider the rough volatility model (1.1) under P. If ψ(t, x) = ξ0(t)e
νx,

µs = rs for all s ≥ 0 and (λs)s≥0 ∈ L2(R) is deterministic, then

(3.1) νρ

∫ t

s

kH−(t, u)γudu = log

(
EQ[vt|Fs]
EP[vt|Fs]

)
= log

(
ξs(t)

EP[vt|Fs]

)
.

Proof. If µ = r almost surely, the Radon-Nikodym derivative (1.3) in Theorem 1.5 reads

Dγ = E
(∫ ·

0

γsdW
P⊥
s

)
,

where we recall λs = ργs, and the inverse Radon-Nikodym derivative is given by

Dγ :=
1

Dγ
= E

(
−
∫ ·

0

γsdW
Q⊥
s

)
.
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Then, the conditional change of measure formula yields

(3.2) EP[vt|Fs] =
EQ [vt Dγt |Fs]
EQ [ Dγt |Fs]

.

On the one hand, EQ [ Dγt |Fs] = E
(
−
∫ ·
0
γudW

Q⊥
u

)
s

by the properties of the stochastic ex-
ponential and Gaussian moment generating functions. On the other hand, since, for t ∈ T,
ZQ
t = ZP

t +
∫ t
0
λsds and λ is deterministic, then

EQ [vt Dγt |Fs] = EQ
[
exp

{
ν

(∫ t

0

kH−(t, s)dZ
Q
s +

∫ t

0

λskH−(t, s)ds

)}
e−

∫ t
0
γsdW

Q⊥
s − 1

2

∫ t
0
γ2
sds

∣∣∣∣Fs]
= eν

∫ t
0
λskH− (t,s)ds− 1

2

∫ t
0
γ2
sdsEQ

[
exp

{
ν

∫ t

0

kH−(t, s)dZ
Q
s −

∫ t

0

γsdW
Q⊥
s

}∣∣∣∣Fs] ,
where the second factor in the last term is just the conditional moment generating function of
a Gaussian random variable. Applying Itô’s isometry then, conditionally on Fs, the random
variable ν

∫ t
0
kH−(t, s)dZ

Q
s −

∫ t
0
γsdW

Q⊥
s is distributed as N

(
µ, σ2

)
with

µ := ν

∫ s

0

kH−(t, u)dZ
Q
u −

∫ s

0

γudW
Q⊥
u ,

σ2 := ν2
∫ t

s

k2(t, u)du+

∫ t

s

γ2udu− 2νρ

∫ t

s

kH−(t, u)γudu,

since ZQ = ρWQ + ρWQ⊥. Exploiting the identities above and reordering terms,

EQ [vt Dγt |Fs] = exp

{
ν

∫ t

0

kH−(t, s)λsds+

µ︷ ︸︸ ︷
ν

∫ s

0

kH−(t, u)dZ
Q
u −

∫ s

0

γudW
Q⊥
u

+
1

2

(
ν2
∫ t

s

k2(t, u)du+

∫ t

s

γ2udu− 2νρ

∫ t

s

kH−(t, u)γudu︸ ︷︷ ︸
σ2

−
∫ t

0

γ2sds

)}

= exp

{
− νρ

∫ t

s

kH−(t, u)γudu

} EQ[ Dγt |Fs]︷ ︸︸ ︷
exp

{
−
∫ s

0

γudW
Q⊥
u − 1

2

∫ s

0

γ2udu

}

+exp

{
ν

∫ s

0

kH−(t, u)dZ
Q
u +

ν2

2

∫ t

s

k2H−
(t, u)du+ ν

∫ t

0

kH−(t, s)λsds

}
︸ ︷︷ ︸

EQ[vt|Fs]

,

by using the decomposition of σ2 as the sum of three terms, and so

EQ [vt Dγt |Fs] = EQ [ Dγt |Fs]EQ[vt|Fs] exp
{
−νρ

∫ t

s

kH−(t, u)γudu

}
.(3.3)
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Finally, going back to (3.2) and exploiting the identity in (3.3), the result follows from

EP[vt|Fs] = EQ[vt|Fs] exp
{
−νρ

∫ t

s

kH−(t, u)γudu

}
= EQ[vt|Fs] exp

{
−ν
∫ t

s

kH−(t, u)λudu

}
.

□

3.1. Estimating the risk premium in rough Bergomi. In this section we work with the
rough Bergomi model under P and its Q-version:

dSt
St

= µtdt+
√
vt dW

P
t ,

vt = exp
{
νZHt

}
,

vs


dSt
St

= rtdt+
√
vt dW

Q
t ,

vt = ξ0(t) exp

{
ν

(∫ t

0

kH−(t− s)dZQ
s +

∫ t

0

kH−(t− s)λsds

)}
,

Assuming λ deterministic, Theorem 3.1 gives an explicit procedure to compute the risk pre-
mium. In practice however, we are only able to observe variance swap quotes in discrete
times, and hence it is natural to consider λ piecewise constant.

Assumption 3.2. The deterministic process λ admits the following piecewise constant rep-
resentation on the time partition {0 = T0 < T1, ..., < Tn = T}, namely for n ∈ N:

(3.4) λ(t) :=

n∑
i=1

λi11{t∈[Ti−1,Ti)}, λi ∈ R for i = 1, . . . , n.

Similarly the forward variance ξ0 admits the following piecewise constant representation
EQ
0 [vt] = ξ0(t) :=

∑n
i=1 ξi11{t∈[Ti−1,Ti)} with ξi ∈ R for i = 1, . . . , n, where ξi :=

VTi
Ti−VTi−1

Ti−1

Ti−Ti−1

and VT := EQ
[
1
T

∫ T
0
vsds

]
is a market variance swap quote.

We now estimate {λ1, · · · , λn}. The dataset consists of daily Eurostoxx variance swap
quotes for maturities {1M, 3M, 6M, 1Y, 2Y} (Figures 1 and 2), while Figure 3 shows the
daily realised volatility obtained from Oxford-Man institute data.

Figure 1. Variance Swap volatility daily quotes on SX5E
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Figure 2. Forward variances extracted from variance swap quotes on SX5E

Figure 3. Annualised daily realised volatility on SX5E

In order to apply formula (3.1) we need the following ingredients:

(3.5) Parameters H, ν, ρ, EP[vt|F0], EQ[vt|F0].

So far we have obtained EQ[vt|F0] from Variance Swap market quotes. The next step is to
estimate (H, ν, ρ) using historical time-series. Gatheral, Jaisson and Rosenbaum [10], explain
how to estimate Ĥ and ν̂ from daily volatility data (Figure 3), and we follow their approach
using a 100-day rolling window (Figure 4) and refer the reader to the original paper for details.
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Figure 4. Estimated Ĥ and ν̂ on SX5E.

In order to estimate the correlation parameter we use the formula

Corr

(
ZHt − ZHs ,

∫ t

s

dWs

)
=
ρ
√
2H

H+
,

which allows us to estimate the correlation with the proxy

ρ̂ =
Ĥ + 1

2√
2Ĥ

Ĉorr

(
log(Sti)− log(Sti−1

)
√
vti−1

, log(vti)− log(vti−1)

)
.

Figure 5 below displays the historical estimates using a estimation window of 100 days.

Figure 5. Daily correlation estimate on SX5E and realised volatility.

To forecast volatility and obtain EP[vt|F0], we proceed as in [10] and use the forecasting
formula for the fractional Brownian motion due to Nuzman and Poor [22]:

ZHt+∆|Ft ∼ N
(
cos(Hπ)

π
∆H+

∫ t

0

ZHs ds

(t− s+∆)(t− s)H+
,
CH∆2H

2H

)
.
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Finally, we orderly estimate λi for each i = 1, . . . , n using Theorem 3.1 and the piecewise
constant assumption (3.4), as

i∑
j=1

λj

∫ Tj

Tj−1

kH−(t, u)du =
1

ν(1− ρ2)
log

(
ξ0(Ti)

EP[vTi
|F0]

)
.

Figure 6 shows the historical evolution of the risk premium process.

Figure 6. Daily SX5E risk premia; dashed lines represent means.

Remark 3.3. We would like to emphasise that assessing the best method to estimate (3.5)
is beyond the scope of this paper. However, as highlighted in the introduction, we stress the
importance of Theorem 3.1 towards which this empirical work provides a first step.
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