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The Randomized Heston Model\ast 

Antoine Jacquier\dagger and Fangwei Shi\dagger 

Abstract. We propose a randomized version of the Heston model---a widely used stochastic volatility model in
mathematical finance---assuming that the starting point of the variance process is a random variable.
In such a system, we study the small- and large-time behaviors of the implied volatility and show
that the proposed randomization generates a short-maturity smile much steeper (``with explosion"")
than in the standard Heston model, thereby palliating the deficiency of classical stochastic volatility
models in short time. We precisely quantify the speed of explosion of the smile for short maturities
in terms of the right tail of the initial distribution, and in particular show that an explosion rate
of t\gamma (\gamma \in [0, 1/2]) for the squared implied volatility---as observed on market data---can be obtained
by a suitable choice of randomization. The proofs are based on large deviations techniques and the
theory of regular variations.

Key words. stochastic volatility, large deviations, Heston, implied volatility, asymptotic expansion

AMS subject classifications. 60F10, 91G20, 91B70

DOI. 10.1137/18M1166420

1. Introduction. Implied volatility is one of the most important observed data in financial
markets and represents the price of European options, reflecting market participants' views.
Over the past two decades, a number of (stochastic) models have been proposed in order to
understand its dynamics and reproduce its features. In recent years, a lot of research has
been devoted to understanding the asymptotic behavior (large strikes [8, 9, 13], small/large
maturities [24, 25, 26, 49]) of the implied volatility in a large class of models in extreme cases;
these results not only provide closed-form expressions (usually unavailable) for the implied
volatility, but also shed light on the role of each model parameter and, ultimately, on the
efficiency of each model.

Continuous stochastic volatility models driven by Brownian motion effectively fit the
volatility smile (at least for indices); the widely used Heston model, for example, is able
to fit the volatility surface for almost all maturities [33, section 3], but becomes inaccurate for
small maturities. The fundamental reason is that small-maturity data is much steeper (for
small strikes)---the so-called short-time explosion---than the smile generated by these stochas-
tic volatility models (a detailed account of this phenomenon can be found in the volatility
bible [33, Chapters 3 and 5]). To palliate this issue, Gatheral (among others) comments

\ast Received by the editors January 22, 2018; accepted for publication (in revised form) November 21, 2018;
published electronically February 12, 2019.

http://www.siam.org/journals/sifin/10-1/M116642.html
Funding: The work of the first author was supported by EPSRC First Grant EP/M008436/1. The work of

the second author was funded by a mini-DTC scholarship from the Department of Mathematics, Imperial College
London.

\dagger Department of Mathematics, Imperial College London, London SW7 2AZ, UK (a.jacquier@imperial.ac.uk,
fangwei.shi12@imperial.ac.uk).

89

http://www.siam.org/journals/sifin/10-1/M116642.html
mailto:a.jacquier@imperial.ac.uk
mailto:fangwei.shi12@imperial.ac.uk


90 ANTOINE JACQUIER AND FANGWEI SHI

that jumps should be added in the stock dynamics; the literature on the influence of the
jumps is vast, and we only mention here the clear review by Tankov [49] in the case of ex-
ponential L\'evy models, where the short-time implied volatility explodes at a rate of | t log t| 
for small t. To observe nontrivial convergence (or divergence), Mijatovi\'c and Tankov [47]
introduced maturity-dependent strikes and studied the behavior of the smile in this regime.

As an alternative to jumps, a portion of the mathematical finance community has recently
been advocating the use of fractional Brownian motion (with Hurst parameter H < 1/2) as
driver of the volatility process. Al\`os, Le\'on, and Vives [2] first showed that such a model is
indeed capable of generating steep volatility smiles for small maturities (see also the recent
work by Fukasawa [31]), and Gatheral, Jaisson, and Rosenbaum [34] recently showed that
financial data exhibits strong evidence that volatility is ``rough"" (an estimate for SPX volatility
actually gives H \approx 0.14). Guennoun et al. [36] investigated a fractional version of the Heston
model and proved that as t tends to zero, the squared implied volatility explodes at a rate
of tH - 1/2. This is currently a very active research area, and the reader is invited to consult [7,
21, 22, 23, 28] for further developments. This is, however, not the end of the story---yet---as
computational costs for simulation are a serious concern in fractional models.

We propose here a new class of models, namely standard stochastic volatility models
(driven by standard Brownian motion) where the initial value of the variance is randomized,
and we focus our attention on the Heston version. The motivation for this approach originates
from the analysis of forward-start smiles by Jacquier and Roome [39, 40], who proved that
the forward implied volatility explodes at a rate of t1/4 as t tends to zero. A simple version
of our current study is the ``CEV-randomized Black--Scholes model"" introduced in [41], where
the Black--Scholes volatility is randomized according to the distribution generated from an
independent CEV process; in this work, the authors proved that this simplified model gen-
erates the desired explosion of the smile. The Black--Scholes randomized setting where the
volatility has a discrete distribution corresponds to the lognormal mixture dynamics studied
in [11, 12]. We push the analysis further here; our intuition behind this new type of model is
that the starting point of the volatility process is actually not observed accurately, but only
to some degree of uncertainty. Traders, for example, might take it as the smallest (maturity-
wise) observed at-the-money implied volatility. Our initial randomization aims at capturing
this uncertainty. This approach was recently taken by Mechkov [46], considering the ergodic
distribution of the CIR process as starting distribution, who argues that randomizing the
starting point captures potential hidden variables. One could also potentially look at this
from the point of view of uncertain models, and we refer the reader to [29] for an interesting
related study. The main result of our paper is to provide a precise link between the explosion
rate of the implied volatility smile for short maturities and the choice of the (right tail of the)
initial distribution of the variance process. The following table (a more complete version with
more examples can be found in Table 1) gives an idea of the range of explosion rates that can
be achieved through our procedure; for each suggested distribution of the initial variance, we
indicate the asymptotic behavior (up to a constant multiplier) of the (square of the) out-of-
the-money implied volatility smile (in the first row, the function f will be determined precisely
later, but the absence of time dependence is synonymous with absence of explosion).
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Name Behaviors of \sigma 2
t (x) (x \not = 0) Reference

Uniform f(x) Equation 4.3

Exponential(\lambda ) | x| t - 1/2 Theorem 4.11

\chi -squared | x| t - 1/2 Theorem 4.11

Rayleigh x2/3t - 1/3 Theorem 4.5

Weibull (k > 1) (x2/t)1/(1+k) Theorem 4.5

The rest of the paper is structured as follows: We introduce the randomized Heston
model in section 2 and discuss its main properties. Section 3 is a numerical appetizer to give
a taste of the quality of such a randomization. Section 4 is the main part of the paper, in
which we prove large deviations principles for the log-price process and translate them into
short- and large-time behaviors of the implied volatility. In particular, we prove the claimed
relation between the explosion rate of the small-time smile and the tail behavior of the initial
distribution. The small-time limit of the at-the-money implied volatility is, as usual in this
literature, treated separately in section 4.5. Section 5 includes a dynamic pricing framework:
based on the distribution at time zero and the evolution of the variance process, we discuss
how to reprice (or hedge) the option during the life of the contract. Finally, section 6 presents
numerical examples and examples of common initial distributions. The appendices gather
some reminders on large deviations and regular variations, as well as proofs of the main
theorems.

Notation. Throughout this paper, we denote by \sigma t(x) the implied volatility of a European
Call or Put option with strike ex and time to maturity t. For a set \scrS in a given topological
space we denote by \scrS o and \scrS its interior and closure. Let \BbbR + := [0,\infty ), \BbbR \ast + := (0,\infty ),
and \BbbR \ast := \BbbR \setminus \{ 0\} . For two functions f and g, and x0 \in \BbbR , we write f \sim g as x tends to
x0 if limx\rightarrow x0 f(x)/g(x) = 1. If a function f is defined and locally bounded on [x0,\infty ), and
limx\uparrow \infty f(x) = \infty , define f\leftarrow (x) := inf \{ y \geq [x0,\infty ) : f(y) > x\} as its generalized inverse. Also
define the sign function as sgn(u) := 11\{ u\geq 0\}  - 11\{ u<0\} . Finally, for a sequence (Zt)t\geq 0 satisfying
a large deviations principle as t tends to zero with speed g(t) and good rate function \Lambda \ast Z
(Appendix B.1) we use the notation Z \sim LDP0(g(t),\Lambda 

\ast 
Z). If the large deviations principle

holds as t tends to infinity, we denote it by LDP\infty (\cdot \cdot \cdot ).

2. Model and main properties. On a filtered probability space (\Omega ,\scrF , (\scrF t)t\geq 0,\BbbP ) sup-
porting two independent Brownian motions W (1) and W (2), we consider a market with no
interest rates, and propose the following dynamics for the log-price process:

(2.1)
dXt =  - 1

2
Vtdt+

\sqrt{} 
Vt

\Bigl( 
\rho dW

(1)
t + \rho dW

(2)
t

\Bigr) 
, X0 = 0,

dVt = \kappa (\theta  - Vt)dt+ \xi 
\sqrt{} 
VtdW

(1)
t , V0

(\mathrm{L}\mathrm{a}\mathrm{w})
= \scrV ,

where \rho \in [ - 1, 1], \rho :=
\sqrt{} 

1 - \rho 2, and \kappa , \theta , \xi are strictly positive real numbers. Here \scrV is a
continuous random variable, independent of the filtration (\scrF t)t\geq 0, for which the interior of
the support is of the form (v - , v+) for some 0 \leq v - \leq v+ \leq \infty , with moment generating
function M\scrV (u) := \BbbE 

\bigl( 
eu\scrV 
\bigr) 
for all u \in \scrD \scrV := \{ u \in \BbbR : \BbbE 

\bigl( 
eu\scrV 
\bigr) 
< \infty \} \supset ( - \infty , 0], and we

further assume that \scrD \scrV contains at least an open neighborhood of the origin, namely, that
m := sup \{ u \in \BbbR : M\scrV (u) <\infty \} belongs to (0,\infty ]. Then clearly all positive moments of \scrV 
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exist. Existence and uniqueness of a solution to this stochastic system is guaranteed as soon
as \scrV admits a second moment [44, Chapter 5, Theorem 2.9]. Notice that the process (X,V )
is not adapted to the filtration (\scrF t)t\geq 0 due to the lack of information on \scrV in \scrF t. The process
is Markovian, however, with respect to the augmented filtration \sigma (\scrF t \vee \sigma (\scrV ))t\geq 0.

When \scrV is a Dirac distribution (v - = v+), system (2.1) corresponds to the standard
Heston model [37], and it is well known that the stock price process exp(X) is a \BbbP -martingale;
it is trivial to check that this is still the case for (2.1). Behavior [51], asymptotics [25, 26, 27],
and estimation and calibration [4, 51] of the Heston model have been treated at length in
several papers, and we refer the interested reader to this literature for more details; we shall
therefore always assume that v - < v+.

Remark 2.1. For any t \geq 0, the tower property for conditional expectation yields

\BbbE (Vt) = \BbbE [\BbbE (Vt| \scrV )] = \theta 
\bigl( 
1 - e - \kappa t

\bigr) 
+ e - \kappa t\BbbE (\scrV ),

\BbbV (Vt) = \BbbE [\BbbV (Vt| \scrV )] + \BbbV [\BbbE (Vt| \scrV )] = e - 2\kappa t
\biggl( 
\BbbV (\scrV ) + \xi 2

\kappa 

\bigl( 
e\kappa t  - 1

\bigr) 
\BbbE (\scrV )

\biggr) 
+
\xi 2\theta 

2\kappa 

\bigl( 
1 - e - \kappa t

\bigr) 2
.

Consider the standard Heston model (v - = v+ =: V0) and construct \scrV such that \BbbE (\scrV ) = V0.
Then, for any time t \geq 0, both random variables Vt (in (2.1) and in the standard Heston
model) have the same expectation; however, the randomization of the initial variance increases
the variance by e - 2\kappa t\BbbV (\scrV ). As time tends to infinity, it is straightforward to show that the
randomization preserves the ergodicity of the variance process, with a Gamma distribution as
invariant measure, with identical mean and variance:

lim
t\uparrow \infty 

\BbbE (Vt) = \theta and lim
t\uparrow \infty 

\BbbV (Vt) =
\xi 2\theta 

2\kappa 
.

For any t \geq 0, let M(t, u) denote the moment generating function (mgf) of Xt:

(2.2) M(t, u) := \BbbE 
\bigl( 
euXt

\bigr) 
for all u \in \scrD t

\mathrm{M} :=
\bigl\{ 
u \in \BbbR : \BbbE 

\bigl( 
euXt

\bigr) 
<\infty 

\bigr\} 
.

The tower property yields directly

(2.3) M(t, u) = \BbbE 
\bigl( 
euXt

\bigr) 
= \BbbE 

\bigl( 
\BbbE 
\bigl( 
euXt | \scrV 

\bigr) \bigr) 
= \BbbE 

\Bigl( 
e\mathrm{C}(t,u)+\mathrm{D}(t,u)\scrV 

\Bigr) 
= e\mathrm{C}(t,u)M\scrV (D(t, u)) ,

where the functions C and D arise directly from the (affine) representation of the mgf of the
standard Heston model, recalled in Appendix A.1.

3. Practical appetizer and relation to model uncertainty.

3.1. The bounded support case: A practical appetizer. Before diving into the tech-
nical statements and proofs of asymptotic results in section 4, let us provide a numerical
hors d'oeuvre, whetting the appetite of the reader regarding the practical relevance of the
randomization. As mentioned in the introduction, the main drawback of classical continuous-
path stochastic volatility models (without randomization and driven by standard Brownian
motions) is that the small-maturity smile they generate is not steep enough to reflect the
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Figure 1. Volatility surfaces of standard Heston (colored) and with randomization \scrV (Law)
= \scrU (4\%, 8.2\%).

reality of the market. The graph in Figure 1 represents a comparison of the implied volatility
surface generated by the standard Heston model with

\kappa = 2.1, \theta = 0.05, V0 = 0.06, \rho =  - 0.6, \xi = 0.1

and that of the Heston model randomized by a uniform distribution with v - = 0.04 and
v+ = 0.082. From the trader's point of view, this could be understood as uncertainty on the
actual value of V0 (see also [29] for a related approach). Clearly, the randomization steepens
the smile for small maturities, while its effect fades away as maturity becomes large. This
numerical example intuitively yields the following informal conjecture.

Conjecture 3.1. Under randomization of the initial volatility, the smile ``explodes"" for small
maturities.

We shall provide a precise formulation---and exact statements---of this conjecture. Despite
appearances in Figure 1, the conjecture is actually false when the initial distribution has
bounded support, such as in the uniform case here. However, as will be detailed in section 6.1,
greater steepness of the smile (compared to the standard Heston model) does appear for a
wide range of strikes, but not in the far tails (this, as well as the at-the-money curvature in
the uncorrelated case, is quantified precisely in section 6.1). This leads us to believe that,
even if an ``explosion"" does not actually occur in the bounded support case, this assumption
may still be of practical relevance given the range of traded strikes.

4. Asymptotic behavior of the randomized model. This section is the core of the paper
and relates the explosion of the implied volatility smile in small times to the tail behavior of
the randomized initial variance. Section 4.1 (Proposition 4.1) provides the short-time behavior
of the cumulant generating function (cgf) of the random sequence (Xt)t\geq 0 and relates it to
the choice of the initial distribution \scrV . This paves the way for a large deviations principle
for the sequence (Xt)t\geq 0. Section 4.2 concentrates on the case where both m and v+ are
infinite: Theorem 4.5 indicates that the squared implied volatility has an explosion rate of t\gamma 

with \gamma \in (0, 1/2). The case where m < v+ = +\infty is covered in section 4.3, where an explosion
rate of

\surd 
t is obtained. Section 4.4 provides the large-time asymptotic behavior of the implied

volatility in our randomized setting; in particular, the long-term similarities between standard



94 ANTOINE JACQUIER AND FANGWEI SHI

and randomized Heston models are present in this section. Finally, section 4.5 covers the
singular case of the small-time at-the-money implied volatility.

4.1. Preliminaries. As a first step in understanding the behavior of the implied volatility,
we analyze the short-time limit of the rescaled cgf of the sequence (Xt)t\geq 0. To do so, let h :
\BbbR + \rightarrow \BbbR + be a smooth function, which can be extended at zero by continuity with h(0) :=
limt\downarrow 0 h(t) = 0. In light of (2.3), for any t \geq 0, we introduce the effective domain of the mgf
of the rescaled random variable Xt/h(t),

\scrD t :=

\biggl\{ 
u \in \BbbR : M

\biggl( 
t,

u

h(t)

\biggr) 
<\infty 

\biggr\} 
,

as well as the following sets, for any t > 0:

\scrD t
\scrV :=

\biggl\{ 
u \in \BbbR : M\scrV \circ D

\biggl( 
t,

u

h(t)

\biggr) 
<\infty 

\biggr\} 
, \scrD \ast := lim inf

t\downarrow 0
\scrD t =

\bigcup 
t>0

\bigcap 
s\leq t

\scrD s,

\scrD \ast \scrV := lim inf
t\downarrow 0

\scrD t
\scrV =

\bigcup 
t>0

\bigcap 
s\leq t

\scrD s
\scrV .

We now denote the pointwise limit \Lambda h(u) := limt\downarrow 0 \Lambda h (t, u/h(t)), where

(4.1) \Lambda h

\biggl( 
t,

u

h(t)

\biggr) 
:= h(t) logM

\biggl( 
t,

u

h(t)

\biggr) 
.

The seemingly identical notation for the function and its pointwise limit should not create
any confusion in this paper. Introduce further the real numbers u - \leq 0 and u+ \geq 1 and the
function \Lambda : (u - , u+) \rightarrow \BbbR :

(4.2)

\left\{         
u - :=

2

\xi \rho 
arctan

\biggl( 
\rho 

\rho 

\biggr) 
11\{ \rho <0\}  - 

\pi 

\xi 
11\{ \rho =0\} +

2

\xi \rho 

\biggl( 
arctan

\biggl( 
\rho 

\rho 

\biggr) 
 - \pi 

\biggr) 
11\{ \rho >0\} ,

u+ :=
2

\xi \rho 

\biggl( 
arctan

\biggl( 
\rho 

\rho 

\biggr) 
+ \pi 

\biggr) 
11\{ \rho <0\} +

\pi 

\xi 
11\{ \rho =0\} +

2

\xi \rho 
arctan

\biggl( 
\rho 

\rho 

\biggr) 
11\{ \rho >0\} ,

\Lambda (u) :=
u

\xi (\rho cot (\xi \rho u/2) - \rho )
.

The following proposition, whose proof is postponed to Appendix D.1, summarizes the limiting
behavior of \Lambda h(\cdot , \cdot ) as t tends to zero. In view of Remark 4.2(ii) below, we shall only consider
power functions of the type h(t) \equiv ct\gamma . It is clear that there is no loss of generality by
taking c = 1, as it only acts as a space-scaling factor. We shall therefore replace the notation \Lambda h

by \Lambda \gamma to highlight the power exponent in action.

Proposition 4.1. Let h(t) = t\gamma , with \gamma \in (0, 1]. As t tends to zero, the following pointwise
limit holds:

\Lambda \gamma (u) := lim
t\downarrow 0

\Lambda \gamma 

\Bigl( 
t,
u

t\gamma 

\Bigr) 
=

\left\{       
0, u \in \BbbR , if \gamma \in (0, 1/2) for any \scrV ,
0, u \in \BbbR , if \gamma \in [1/2, 1), v+ <\infty ,
\Lambda (u)v+, u \in (u - , u+), if \gamma = 1, v+ <\infty ,

L\pm 11\{ u=\pm 
\surd 
2m\} , u \in [ - 

\surd 
2m,

\surd 
2m], if \gamma = 1/2, v+ = \infty ,m <\infty ,
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and is infinite elsewhere, where L\pm \in [0,\infty ]. Whenever \gamma > 1 (for any \scrV ), or m < \infty 
and \gamma > 1/2, the limit is infinite everywhere except at the origin.

We shall call the (pointwise) limit degenerate whenever it is either equal to zero everywhere
or zero at the origin and infinity everywhere else. In Proposition 4.1, only the last two cases
are not degenerate.

Remark 4.2.
(i) The case where v+ and m are both infinite is treated separately, in section 4.2, as more

assumptions are needed on the behavior of the distribution of \scrV .
(ii) If h is not a power function, the proofs of Proposition 4.1 and Theorem 4.6 indicate

that we only need to compare the order of h with orders of t1/2 and t. Any nonpower
function then yields degenerate limits.

(iii) In the last case, L\pm depend on the explicit form of the mgf of \scrV . Example 6.2 illustrates
this.

When the random initial distribution \scrV has bounded support (v+ < \infty ), Proposition 4.1
indicates that the only possible speed factor is \gamma = 1, and a direct application of the G\"artner--
Ellis theorem (Theorem B.2) implies a large deviation for the sequence (Xt)t\geq 0; adapting
directly the methodology from [24], we obtain the small-time behavior of the implied volatility.

Corollary 4.3. If v+ <\infty , then X \sim LDP0(t,\Lambda 
\ast 
v+) with \Lambda \ast v+(x) := sup

\bigl\{ 
ux - \Lambda (u)v+ : u \in 

(u - , u+)
\bigr\} 
and

(4.3) lim
t\downarrow 0

\sigma 2t (x) =
x2

2\Lambda \ast v+(x)
for all x \not = 0.

Approximations, in particular around the at-the-money x = 0, of the rate function \Lambda \ast v+ ,
and hence of the small-time implied volatility, can also be found in [24, Theorem 3.2] and
apply here directly as well. Further, as discussed in detail in section 6.1, higher-order terms
in the small-time expansion of \sigma 2t (x) can be obtained if the mgf of the initial randomization
is known in closed form.

4.2. The thin-tail case. In the case m = \infty , Proposition 4.1 is not sufficient, as several
different behaviors can occur. In this case, which we naturally coin ``thin-tail,"" a more refined
analysis is needed, and the following assumption shall be of utmost importance.

Assumption 4.4 (thin-tail). v+ = \infty , and \scrV admits a smooth density f with log f(v) \sim 
 - l1vl2 as v tends to infinity for some (l1, l2) \in \BbbR \ast + \times (1,\infty ).

For notational convenience, we introduce the following two special rates of convergence,
1
2 < \gamma < 1 < \gamma , and two positive constants, c, c:

(4.4) \gamma :=
l2

1 + l2
, \gamma :=

l2
l2  - 1

, c := (2l1l2)
1

1+l2 , c := (2l1l2)
1

1 - l2 .

The following theorem is the main result of this thin-tail section and provides both a
large deviations principle for the log-stock price process as well as its implications on the
small-maturity behavior of the implied volatility. Define the function \Lambda \ast : \BbbR \rightarrow \BbbR + by

(4.5) \Lambda \ast (x) :=
c

2\gamma 
x2\gamma for any x in \BbbR .
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Theorem 4.5. Under Assumption 4.4, X \sim LDP0(t
\gamma ,\Lambda \ast ) with \Lambda \ast given in (4.5), and, for

any x \not = 0,
lim
t\downarrow 0

t1 - \gamma \sigma 2t (x) = c - 1\gamma x2(1 - \gamma ).

In exponential L\'evy models, the implied variance \sigma 2t (x) for nonzero x explodes at a rate
of | t log t| [49, Proposition 4]. Theorem 4.5 implies that in a thin-tail randomized Heston
model we have a much slower explosion rate of t\eta with \eta \in (0, 1/2). In [47] the authors
commented that market data suggests that implied volatility with decreasing maturity still
has a reasonable range of values and does not explode significantly, which might provide
empirical grounds justifying the potential value of this randomized model as an alternative to
the exponential L\'evy models. The theorem relies on the study of the asymptotic behavior of
the rescaled mgf of Xt.

Lemma 4.6. Under Assumption 4.4, the only nondegenerate speed factor is \gamma = \gamma , and

(4.6) \Lambda \gamma (u) =
c

2\gamma 
u2\gamma for any u in \BbbR .

Assumption 4.4 in particular implies that the function log f is regularly varying with
index l2 (which we denote by | log f | \in \scrR l2 ; see also Appendix B.2 for a review of and useful
results on regular variation). Without this slightly stronger assumption, however, the constant
in (4.6)---essential to compute precisely the rate function governing the corresponding large
deviations principle (Theorem 4.5)---would not be available. In order to prove the lemma and
hence the theorem, let us first state and prove the following result.

Lemma 4.7. If | log f | \in \scrR l (l > 1), then logM\scrV (z) \sim (l  - 1)
\bigl( 
z
l

\bigr) l
l - 1 \psi (z) at infinity,

with \psi \in \scrR 0 defined as

\psi (z) :=

\biggl( 
z

| log f | \leftarrow (z)

\biggr) \leftarrow 
z

l
1 - l .

Proof. Since | log f | \in \scrR l, Bingham's Lemma (Lemma B.4) implies log\BbbP (\scrV \geq x) =
log
\int \infty 
x e\mathrm{l}\mathrm{o}\mathrm{g} f(y)dy \sim log f(x), as x tends to infinity, and the result follows from Kasahara's

Tauberian theorem [10, Theorem 4.12.7].

Proof of Lemma 4.6 and of Theorem 4.5. By Lemma B.5, the mgf of \scrV is well defined
on \BbbR +. Lemmas 4.7 and C.2 imply that as t tends to zero,

t\gamma logM\scrV 

\Bigl( 
D
\Bigl( 
t,
u

t\gamma 

\Bigr) \Bigr) 
=

\left\{       
t\gamma logM\scrV 

\biggl( 
u2

2
t1 - 2\gamma 

\bigl( 
1+\scrO 

\bigl( 
t1 - \gamma 

\bigr) \bigr) \biggr) 
\sim c

2\gamma 
u2\gamma t\gamma (1 - \gamma /\gamma ), when \gamma \in (1/2,1),

tlogM\scrV 

\biggl( 
\Lambda (u)

t
(1+\scrO (t))

\biggr) 
\sim c

2\gamma 
2\gamma \Lambda (u)\gamma t1 - \gamma ,when \gamma =1.

For u \not = 0 the right-hand side is well defined with nonzero limit if and only if \gamma = \gamma \in (1/2, 1);
the case \gamma = 1 does not yield any nondegenerate behavior, and the lemma follows.

The large deviations principle stated in Theorem 4.5 is a direct consequence of Lemma 4.6
and the G\"artner--Ellis theorem (Theorem B.2), noting that the function \Lambda \gamma in (4.6) satisfies
all the required conditions and admits \Lambda \ast as the Fenchel--Legendre transform. The translation
of this asymptotic behavior into implied volatility follows along the same lines as in [24].
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4.3. The fat-tail case. If v+ is infinite and m is finite, Proposition 4.1 states that the
only choice for the rescaling factor is h(t) = t1/2, but the form of the limiting rescaled cgf does
not yield any immediate asymptotic estimates for the probabilities. In this case, we impose
the following assumption on the mgf of \scrV in the vicinity of the upper bound m of its effective
domain.

Assumption 4.8. There exist (\gamma 0, \gamma 1, \gamma 2, \omega ) \in \BbbR \ast \times \BbbR \times \BbbR \times \BbbN \ast +, such that the following
asymptotics hold for the cgf of \scrV as u tends to m from below:
(4.7)

logM\scrV (u)=

\Biggl\{ 
\gamma 0 log(m - u)+\gamma 1+o(1) for \omega =1,\gamma 0<0,

\gamma 0
(m - u)\omega  - 1

\{ 1+\gamma 1(m - u)log(m - u)+\gamma 2(m - u)+o(m - u)\} for \omega \geq 2,\gamma 0>0

and
(4.8)

M\prime \scrV (u)

M\scrV (u)
=

\left\{     
| \gamma 0| 

m - u
(1 + o(1)) for \omega = 1, \gamma 0 < 0,

(\omega  - 1)\gamma 0
(m - u)\omega 

\{ 1 + a(m - u) log(m - u) + b(m - u) + o (m - u)\} for \omega \geq 2, \gamma 0 > 0,

where a := \gamma 1(\omega  - 2)(\omega  - 1) - 1 and b := [\gamma 2(\omega  - 2) - \gamma 1] (\omega  - 1) - 1.

Remark 4.9. Condition (4.8) together with the expressions of a and b implies that the
asymptotics of (log(M\scrV ))

\prime can be derived by differentiating (4.7) term by term. This is of
course not always true; however, condition (4.8) is rather mild, and we shall check it directly
in several cases where M\scrV is known in closed form.

Example 4.10.

\bullet For the exponential distribution with parameter m, (\gamma 0, \gamma 1, \omega ) = ( - 1, logm, 1).
\bullet For the noncentral \chi -squared distribution as in Example 6.2, (\gamma 0, \gamma 1, \gamma 2, \omega ) =

\bigl( 
\lambda 
4 , - 

2q
\lambda ,

 - 2
\bigl( 
1 + q

\lambda log 2
\bigr) 
, 2
\bigr) 
.

For m \in (0,\infty ), introduce the function \Lambda \ast : \BbbR \rightarrow \BbbR + as

(4.9) \Lambda \ast (x) :=
\surd 
2m| x| ,

as well as, for any t > 0, the functions \scrE t, \scrC t : \BbbR \ast \rightarrow \BbbR \ast + by \scrE t(x) := 11\{ \omega =1\} +exp
\bigl( c1(x)

t1/4

\bigr) 
11\{ \omega =2\} 

and

(4.10) \scrC t(x) :=

\left\{       
exp

\biggl( 
1

2
(\rho \xi m+ 1)x+ \gamma 1

\biggr) 
| x| | \gamma 0|  - 1

\Gamma (| \gamma 0| )(2m)1+| \gamma 0| /2
t1 - 

1
2
| \gamma 0| for \omega = 1,

exp

\biggl( 
1

2
(\rho \xi m+ 1)x+ \gamma 0\gamma 2 +

\gamma 0
4m

\biggr) 
1

2m
\surd 
2\pi \zeta (x)

t
7
8
+ 1

4
\gamma 0\gamma 1 for \omega = 2,

where the functions c1 and \zeta are defined in Lemmas D.2 and D.3, respectively. Then the
following behavior, proved in section D.2, holds for European option prices.

Theorem 4.11. Under Assumption 4.8, European Call options with strike ex have the fol-
lowing expansion:

\BbbE 
\bigl( 
eXt - ex

\bigr) +
=(1 - ex)++exp

\biggl( 
 - \Lambda \ast (x)\surd 

t

\biggr) 
\scrE t(x)\scrC t(x)(1+o(1)) for any x \not =0, as t tends to zero.
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Moreover, the small-time implied volatility behaves as follows whenever x \not = 0:

\sigma 2t (x) =
| x| 

2
\surd 
2mt

+

\left\{   h
(1)
1 (x) + h

(1)
2 log(t) + o(1) for \omega = 1,

c1(x)

4mt1/4
+ h

(2)
1 (x) + h

(2)
2 log(t) + o(1) for \omega = 2,

where

h
(1)
1 (x):=

1

4m

\biggl\{ 
\rho \xi m

2
x+

\biggl( 
| \gamma 0|  - 

1

2

\biggr) 
log | x| +\gamma 1+log(4

\surd 
\pi ) - 

\biggl( 
| \gamma 0| 
2

+
1

4

\biggr) 
log(2m) - log\Gamma (| \gamma 0| )

\biggr\} 
,

h
(2)
1 (x):=

1

4m

\biggl\{ 
\rho \xi m

2
x+\gamma 0\gamma 2+

9\gamma 0
4m

+
5

8
log2 - 3

8
logm+

1

4
log\gamma 0 - 

1

4
log | x| 

\biggr\} 
,

h
(1)
2 :=

1

8m

\biggl( 
1

2
 - | \gamma 0| 

\biggr) 
, h

(2)
2 :=

1

16m

\biggl( 
1

2
+\gamma 0\gamma 1

\biggr) 
, c1(x) defined as in Lemma D.2.

A particular example of a randomization satisfying Assumption 4.8 is the noncentral \chi -
squared distribution. This case was the central focus of [39], where the small-time behavior
of the forward smile in the Heston model was analyzed. As a sanity check, our Theorem 4.11
corresponds to [39, Theorem 4.1].

Corollary 4.12. Under Assumption 4.8, for \omega \leq 2, X \sim LDP0(
\surd 
t,\Lambda \ast ).

Remark 4.13. Even though the leading order in the expansion is symmetric, Theorem 4.11
explains how the asymmetry in the volatility smile is generated. In particular, the term \rho \xi x/8
immediately shows how the leverage effect can be produced with \rho < 0.

4.4. Large-time asymptotics. As observed in Figure 1, the effect of initial randomness
decays when the maturity becomes large, so that the large-time behavior of the random-
ized Heston model should be similar to that of the standard Heston model, which has been
discussed in detail in [25, 27, 38]. In the particular example of the forward Heston model---
which coincides with randomizing with a noncentral \chi -squared distribution---such a large-time
behavior was analyzed in [40]. Throughout this section we assume | \rho | < 1 and \kappa > \rho \xi (this
condition usually holds on equity markets, where the instantaneous correlation \rho is negative---
the so-called leverage effect), which guarantees the essential smoothness of the limiting cgf in
a standard Heston as t tends to infinity, and define the function \frakL on \BbbR by

(4.11) \frakL (u) :=

\left\{   
\kappa \theta 

\xi 2
(\kappa  - \rho \xi u - d(u)) for u \in [u - , u+],

+\infty for u \in \BbbR \setminus [u - , u+],

where u\pm := 1
2\rho 2\xi 

\bigl( 
\xi  - 2\kappa \rho \pm 

\surd 
(\xi  - 2\kappa \rho )2 + 4\kappa 2\rho 2

\bigr) 
, and where the function d is given in (A.1).

We further denote \frakL \ast (x) := supu\in \BbbR \{ ux - \frakL (u)\} , the convex conjugate of \frakL . Forde and
Jacquier [25, Theorem 2.1] proved that u - < 0 and u+ > 1. Consider now the following
assumption.

Assumption 4.14. max\{ u - (u -  - 1), u+(u+  - 1)\} < m\xi 2 \leq \infty .

Remark 4.15. Assumption 4.14 is a technical one, needed to ensure that the limiting cgf of
the randomized model is essentially smooth. Should it break down, a more refined analysis,
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similar to the one in [40], could be carried out to prove large deviations, but we leave this for
future research.

Theorem 4.16. Under Assumption 4.14, (t - 1Xt) \sim LDP\infty (t - 1,\frakL \ast ) and

lim
t\uparrow \infty 

\sigma 2t (xt) =

\left\{       
2
\Bigl( 
2\frakL \ast (x) - x+ 2

\sqrt{} 
\frakL \ast (x)(\frakL \ast (x) - x)

\Bigr) 
for x \in 

\biggl( 
 - \theta 
2
,
\theta 

2

\biggr) 
,

2
\Bigl( 
2\frakL \ast (x) - x - 2

\sqrt{} 
\frakL \ast (x)(\frakL \ast (x) - x)

\Bigr) 
for x \in \BbbR \setminus 

\biggl[ 
 - \theta 
2
,
\theta 

2

\biggr] 
,

where \theta := \kappa \theta 
\kappa  - \rho \xi > 0. If x \in 

\bigl\{ 
 - \theta 

2 ,
\theta 
2

\bigr\} 
, then limt\uparrow \infty \sigma 

2
t

\bigl( 
\theta t
2

\bigr) 
= \theta and limt\uparrow \infty \sigma 

2
t

\bigl( 
 - \theta t

2

\bigr) 
= \theta .

Remark 4.17.

\bullet As proved in [25], the map x \mapsto \rightarrow \frakL \ast (x)  - x is smooth and strictly convex, it attains its
minimum at the point \theta /2, and \frakL \ast (\theta /2) - \theta /2 = \frakL \ast (\theta /2)\prime  - 1 = 0.

\bullet Theorem 4.16 has the same form as [25, Corollary 2.4], confirming the similar large-time
behaviors of the classical and the randomized Heston models.

\bullet Higher-order terms can be derived using the saddle point method described in detail in [27]
(see also [40, Proposition 2.12]).

Theorem 4.16 provides the large-time behavior of the implied volatility smile with a time-
dependent strike. For fixed strike, the initial randomization has no effect, and we recover the
flattening effect of the smile.

Corollary 4.18 (fixed strike). Under Assumption 4.14,

lim
t\uparrow \infty 

\sigma 2t (x) = 8\frakL \ast (0) =
4\kappa \theta 

\xi 2(1 - \rho 2)

\Bigl( 
 - 2\kappa + \rho \xi +

\sqrt{} 
\xi 2 + 4\kappa 2  - 4\kappa \rho \xi 

\Bigr) 
for all x \in \BbbR .

4.5. At-the-money case. All our small-maturity results above hold in the out-of-the-
money case x \not = 0. As usual in the literature on implied volatility asymptotics, the at-
the-money case exhibits radically different behavior, and a separate analysis is needed. We
first recall in Lemma 4.19 the at-the-money asymptotics in the classical Heston model [26].
To differentiate between standard and randomized Heston models, denoting by \sigma t(x, v0) the
implied volatility in the standard Heston model with fixed initial condition V0 = v0 > 0.

Lemma 4.19 (see [26, Corollary 4.4]). In the standard Heston model with V0 = v0 > 0,
assume that there exists \varepsilon > 0 such that the map (t, x) \mapsto \rightarrow \sigma 2t (x, v0) is of class \scrC 1,1([0, \varepsilon ) \times 
( - \varepsilon , \varepsilon )). Then \sigma 2t (0, v0) = v0+a(v0)t+o(t), where a(v0) :=  - 1

12\xi 
2
\bigl( 
1 - 1

4\rho 
2
\bigr) 
+ 1

4v0\rho \xi +
1
2\kappa (\theta  - 

v0).

Theorem 4.20. In a randomized Heston model, \sigma t(0) = \BbbE (
\surd 
\scrV ) + o(1) holds as time tends

to zero.

Proof. Since m \in (0,\infty ], then \BbbE (
\surd 
\scrV ) is finite. Denote by C\mathrm{B}\mathrm{S}(t, x,\Sigma ) the European Call

option price in the Black--Scholes model with maturity t, strike ex, and volatility \Sigma , and denote
by C\mathrm{H}(t, x, v) its price in the standard Heston model with V0 = v. Using the tower property,

(4.12) \BbbE 
\bigl( 
eXt  - 1

\bigr) +
= \BbbE 

\Bigl( 
\BbbE 
\bigl( 
eXt  - 1

\bigr) + | \scrV 
\Bigr) 
= \BbbE (C\mathrm{H}(t, 0,\scrV )) ,
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and Lemma 4.19 and [26, Corollary 4.5] imply that the equation C\mathrm{H}

\bigl( 
t, 0,\scrV 

\bigr) 
= C\mathrm{B}\mathrm{S}

\bigl( 
t, 0,\sqrt{} 

\scrV + a(\scrV )t
\bigr) \bigl( 
1+o(1)

\bigr) 
holds \BbbP -almost surely. Also for any c \in \BbbR , [26, Proposition 3.4] implies

that

C\mathrm{B}\mathrm{S}

\Bigl( 
t, 0,

\sqrt{} 
\Sigma 2 + ct

\Bigr) 
=

1\surd 
2\pi 

\biggl( 
\Sigma t1/2 +

12c/\Sigma  - \Sigma 4

24\Sigma 
t3/2 +\scrO 

\Bigl( 
t5/2
\Bigr) \biggr) 

.

Plugging these equations back into (4.12) and equating (4.12) with C\mathrm{B}\mathrm{S} (t, 0, \sigma t(0)), the the-
orem follows from\sqrt{} 

t

2\pi 
\BbbE 

\Biggl\{ \Biggl( 
\surd 
\scrV +

12a(\scrV ) - \scrV 5/2

24\scrV 
t+\scrO 

\bigl( 
t2
\bigr) \Biggr) 

(1+o(1))

\Biggr\} 
=

\sqrt{} 
t

2\pi 

\biggl( 
\sigma t(0) - 

\sigma 3t (0)

24
t+\scrO 

\bigl( 
t2
\bigr) \biggr) 

.

Remark 4.21. If \BbbE (\scrV  - 1/2) is finite, then following a similar procedure we obtain higher-
order terms of \sigma t(0),

\sigma t(0) = \BbbE (
\surd 
\scrV ) +

\Bigl\{ 
c1\BbbE (\scrV  - 1/2) + c2\BbbE (

\surd 
\scrV ) + c3

\Bigl( 
\BbbE (

\surd 
\scrV )3  - \BbbE (\scrV 3/2)

\Bigr) \Bigr\} 
t+ o(t),

where c1 :=
1
4(\kappa \theta +\xi 

2(\rho 2 - 4)/24), c2 :=
1
8(\rho \xi  - 2\kappa ), and c3 :=

1
24 . In the noncentral \chi -squared

case we recover the result of [39, Theorem 4.4].

5. A dynamic pricing framework. The model proposed in this paper has so far only
been studied in a static way, namely, from the inception time of the (European contract),
with a view towards calibration of the implied volatility surface. Although it provides a
better fit to short-maturity options by steepening the skew, it is not obvious how to use the
model dynamically; in particular, it is unclear how to choose the random initial value of the
volatility process during the life of the contract, should one wish to sell or buy the option, or
for hedging purposes. Mathematically, assume that at time zero the trader chooses an initial
randomization \scrV (or classically a Dirac mass at some positive point), and suppose that at some
later time \u t > 0 she needs to reprice the option (with retaining the maturity \tau ). How should
she choose the new initial random variable \scrV \u t? Since the variance process has continuous
paths, a suitable choice of \scrV \u t, consistent with the dynamics of the variance, is obviously V\u t,
the solution of the SDE (2.1), after running it from time zero to time \u t. With an initial
guess \scrV at time zero, then, at time \u t, conditional on \scrV , \scrV \u t is distributed as \beta \u t\chi 

2(q, \lambda ), where

\beta \u t := \xi 2(1 - e - \kappa \u t)/(4\kappa ), and \chi 2(q, \lambda ) is a noncentral \chi -squared distribution with q := 4\kappa \theta /\xi 2

degrees of freedom and noncentrality parameter \lambda := 4\kappa \scrV /(\xi 2(e\kappa \u t  - 1)). From the tower
property, the moment generating function of \scrV \u t then reads

(5.1) M\scrV \u t(u) = \BbbE 
\bigl[ 
\BbbE 
\bigl( 
euV\u t | \scrV 

\bigr) \bigr] 
= (1 - 2\beta \u tu)

 - q/2M\scrV 

\biggl( 
exp( - \kappa \u t)u
1 - 2\beta \u tu

\biggr) 
for all u \in \scrD H

\u t
= \{ u \in \BbbR : M\scrV \u t(u) <\infty \} . Setting bt := 1/(2\beta \u t), we have

\scrD H
\u t

= ( - \infty , b\u t)
\bigcap \biggl\{ 

u \in \BbbR :
exp( - \kappa \u t)u
1 - 2\beta \u tu

\in \scrD \scrV 
\biggr\} 

=

\left\{     
( - \infty , b\u t) if m = \infty ,

( - \infty , b\u t)
\bigcap \Biggl( 

 - \infty ,
m

e - \kappa \u t + 2\beta \u tm

\Biggr) 
= ( - \infty , b\ast \u t ) if m <\infty ,
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where b\ast \u t :=
mb\u t

m+b\u t \mathrm{e}\mathrm{x}\mathrm{p}( - \kappa \u t)
. We now discuss the impact of different choices of \scrV at time zero

on the distribution of \scrV \u t and on the implied variance \sigma 2\tau (x, \u t) at time \u t (for a remaining
maturity \tau ). We keep here the terminology introduced in section 4 regarding the tail behavior
of \scrV .

Before diving into the detailed analysis, we argue that \scrV \u t chosen this way should only
serve as a candidate for the initial distribution at time \u t and in practice should be recalibrated
according to updated (noisy) market observations at time \u t. Market noises explain how the
distribution of \scrV \u t can deviate from the ergodic distribution: the impact of the (instantaneous)
noises can change the shape and parameterization of the randomization. We further comment
that understanding the choice of \scrV \u t is also useful from a model risk point of view: at time
zero, it is important to understand and simulate the behaviors of model parameters at a
given future time. We show in this section, in our setting, that \scrV \u t can in fact only be fat
tailed, and therefore, for consistency, one should probably start with \scrV in the class of fat-tail
distributions.

5.1. The bounded-support case. In this case, \scrD H
\u t

= ( - \infty , b\u t); the proof of Proposi-

tion 4.1 showed that limu\uparrow \infty u
 - 1 logM\scrV (u) = v+. Combining this with (5.1), we obtain, as u

tends to b\u t from below,

logM\scrV \u t(u) =  - q
2
log(1 - 2\beta \u tu) +

e - \kappa \u tv+u

1 - 2\beta \u tu
(1 + o(1))

=
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
+

e - \kappa \u tv+b\u tu

b\u t  - u
(1 + o(1)) =

e - \kappa \u tv+b
2
\u t

b\u t  - u
(1 + o(1)) ,

so that, at leading order, \scrV \u t behaves asymptotically as a fat-tail distribution as in Assump-
tion 4.8 with \omega = 2. In the particular case of a uniform distribution on [v - , v+] \subset [0,\infty ), as u
tends to b\u t from below, we obtain

logM\scrV \u t(u)

=
q

2
log

\biggl( 
b\u t

b\u t - u

\biggr) 
+b\u tv+e

 - \kappa \u t
\biggl( 

b\u t
b\u t - u

 - 1

\biggr) 
+log

\Biggl( 
1 - exp\{ (v -  - v+)e

 - \kappa \u tb\u tu/(b\u t - u)\} 
e - \kappa \u tb\u tu(v+ - v - )

(b\u t - u)

\Biggr) 

=
e - \kappa \u tb2\u tv+

b\u t - u

\left[  1+ e\kappa \u t(2 - q)
2b2\u tv+

(b\u t - u)log(b\u t - u)+

\left\{   e\kappa \u t

b\u tv+
log

\left(  e\kappa \u tb
q/2 - 2
\u t

v+ - v - 

\right)   - 1

\right\}   b\u t - u
b\u t

+o(b\u t - u)

\right]  .
Hence in a uniform randomization environment, at future time \u t, the shape of the distribution
of \scrV \u t depends both on \scrV and on the parameters \kappa , \theta , \xi that control the dynamics of the variance
process. Moreover, from Theorem 4.11, the implied variance at time \u t, denoted by \sigma 2\tau (x, \u t),
has an explosion rate of

\surd 
\tau :

\sigma 2\tau (x, \u t) =
| x| \tau  - 1/2

2
\sqrt{} 
2b\u t

+

\sqrt{} 
v+| x| 

2e\kappa \u t/2
(2b\u t\tau )

 - 1/4 + o
\Bigl( 
\tau  - 1/4

\Bigr) 
for all x \not = 0, as \tau tends to zero.
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5.2. The thin-tail case (Assumption 4.4). Here again, \scrD H
\u t

= ( - \infty , b\u t), and applying

Lemma 4.7 with log f \sim  - l1vl2 , we have

logM\scrV \u t(u) =
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
+ l1(l2  - 1)

\biggl( 
1

l1l2

\biggr) l2
l2 - 1

\Biggl( 
e - \kappa \u tb2\u t
b\u t  - u

\Biggr) l2
l2 - 1

(1 + o(1))

=
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
+

2\gamma  - 1c

\gamma 

\Biggl( 
e - \kappa \u tb2\u t
b\u t  - u

\Biggr) \gamma 

(1 + o(1)) ,(5.2)

as u tends to b\u t from below, so that a thin-tail initial randomization generates a fat-tail
distribution for \scrV \u t at time \u t. In light of (5.2), Assumption 4.8 does not hold, and hence \scrV \u t

is neither of Gamma nor of noncentral \chi -squared type. A case-by-case analysis depending on
the distribution of \scrV is therefore needed in order to make the o(\cdot ) term in (5.2) more precise.

Example 5.1 (folded-Gaussian randomization). When f(v) \equiv ce - l1v
2
, straightforward com-

putations yield

logM\scrV \u t(u) =
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
+

1

4l1

\Biggl( 
e - \kappa \u tb\u tu

b\u t  - u

\Biggr) 2

+ log

\biggl( 
c

\sqrt{} 
\pi 

l1

\biggr) 
+ log

\Biggl( 
1

2
+ \Phi 

\Biggl( 
e - \kappa \u tb\u tu\surd 
2l1(b\u t  - u)

\Biggr) \Biggr) 
=:

c0
(b\u t  - u)2

+
c1

b\u t  - u
+ c2  - 

q

2
log(b\u t  - u) + o(1).

We can obtain the small-time asymptotic expansion of the option price using an approach
similar to the proof of Theorem 4.11. Specifically, only Lemma D.3 needs to be adjusted, and
the rescaling factor is now \vargamma (\tau ) = \tau 1/6; the main contribution to the asymptotics of out-of-
the-money option prices is still given in Lemma D.2. Translating this into the asymptotics of
the implied variance, we obtain, for small \tau ,

\sigma 2\tau (x, \u t) =
| x| 

2
\sqrt{} 

2b\u t\tau 
+

2| x| 2/3

3(4l1)1/3

exp
\Bigl( 
 - 2\kappa \u t

3

\Bigr) 
\tau 1/3

+ o(\tau  - 1/3).

5.3. The fat-tail case. In this case, \scrD H
\u t

= ( - \infty , b\ast \u t ). Here we only discuss two special
cases for \scrV : the Gamma distribution, and the (scaled) noncentral \chi -squared distribution.

Example 5.2 (Gamma randomization). If \scrV (Law)
= \Gamma (\alpha ,m), then from (5.1) we have

logM\scrV \u t(u) =
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
 - \alpha log

\Biggl( 
1 - 

e - \kappa \u tub\u t
m(b\u t  - u)

\Biggr) 
=  - \alpha log

\biggl( 
mb\u t  - (m+ exp( - \kappa \u t)b\u t)u

m(b\u t  - u)

\biggr) 
=  - \alpha log(b\ast \u t  - u) + \alpha log

\biggl( 
m(b\u t  - u)

m+ exp( - \kappa \u t)b\u t

\biggr) 
+
q

2
log

\biggl( 
b\u t

b\u t  - u

\biggr) 
.

Consequently \scrV \u t is still a fat-tail distribution satisfying Assumption 4.8 with \omega = 1, \gamma 0 =  - \alpha ,
while the upper bound of the support of the mgf now depends on both the initial distribution \scrV 
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and the evolution of the process (through b\ast \u t ). A direct application of Theorem 4.11 further
suggests that, for small enough \tau > 0,

\sigma 2\tau (x, \u t) =
| x| 

2
\sqrt{} 
2b\ast \u t \tau 

+ h
(1)
1 (x) + h

(1)
2 log(\tau ) + o(1), with h

(1)
1 ,h

(1)
2 given in Theorem 4.11.

Example 5.3 (noncentral \chi 2 randomization). If \scrV (Law)
= \alpha \chi 2(a, b), then m = 1/(2\alpha ), and

logM\scrV \u t(u)=
q

2
log

\biggl( 
b\u t

b\u t - u

\biggr) 
+

\biggl( 
\alpha bz

1 - 2\alpha z
 - a

2
log(1 - 2\alpha z)

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=\mathrm{e}\mathrm{x}\mathrm{p}( - \kappa \u t)u/(1 - 2\beta \u tu)

=
\alpha e - \kappa \u tbb\ast \u tu

b\ast \u t  - u
 - a

2
log

\Biggl( 
b\u t(b

\ast 
\u t
 - u)

b\ast \u t (b\u t - u)

\Biggr) 
+
q

2
log

\biggl( 
b\u t

b\u t - u

\biggr) 

=
\alpha e - \kappa \u tbb\ast 2\u t
b\ast \u t  - u

 - a

2
log(b\ast \u t  - u)+

q - a

2
log

\Biggl( 
b\u t

b\u t - b\ast \u t

\Biggr) 
+
a

2
logb\ast \u t  - \alpha e

 - \kappa \u tbb\ast \u t +\scrO (b\ast \u t  - u),

which satisfies (4.7) in Assumption 4.8 with \omega = 2 as u tends to b\ast \u t , with b\ast \u t playing the

role of the boundary m, and \gamma 0 = \alpha bb\ast 2\u t e - \kappa \u t. As a result, the implied variance \sigma 2\tau (x, \u t) has
an explosion rate of

\surd 
\tau as \tau tends to zero, and its full asymptotic expansion is provided in

Theorem 4.11.

This analysis shows that a suitable choice for \scrV \u t, consistent with the dynamics of the
variance process, can actually depend on the initial randomization at time zero, as well as the
evolution of the variance. Even though all three types of initial randomization imply a fat-tail
initial distribution at future time, the generated small remaining-maturity implied volatility
smiles are very different. The folded-Gaussian (thin tail) generates a steeper smile compared
to the bounded support case; a fat-tail distribution for \scrV generates an even steeper volatility
smile at \tau , since the coefficient of the leading order is b\ast \u t , which is strictly less than b\u t.

Remark 5.4. All distributions discussed in section 4 generate a fat-tail distribution for \scrV \u t.
However, should the assumptions in section 4 break down, this may no longer be true: Equa-
tion (5.1) suggests that the mgf of \scrV \u t can be ill-defined whenever that of \scrV does not exist---in
the case of a Cauchy distribution, for example. That said, the study of the effective domain
below (5.1) indicates that, in our setting, only fat-tail distributions for \scrV \u t are possible.

Remark 5.5. As \u t tends to zero, \beta \u t also converges to zero, b\u t diverges to infinity, and b\ast \u t
tends to m (defined on Page 101). Plugging these into the asymptotic behavior developed in
section 5, we recover the moment generating functions from section 4 as well as the asymptotics
of the implied variance.

6. Examples and numerics. We now choose some common distributions supported on a
subset of [0,\infty ) for the initial randomization to illustrate the results in section 4. We first
start with the bounded support case and provide rigorous justification for the statements in
section 3. In section 6.1, we consider a uniformly distributed initial variance, with v+ finite,
and provide full asymptotics of European Call prices. The remaining sections are devoted
to the unbounded support case; specifically, sections 6.2--6.4 correspond to the fat-tail case,
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so that Theorem 4.11 can be applied. The thin-tail environment is illustrated in section 6.3,
where the initial distribution satisfies Assumption 4.4 with l2 = 2.

6.1. Uniform randomization. Assume that \scrV is uniformly distributed on [v - , v+] with
0 \leq v - < v+ < \infty . Then Corollary 4.3 provides the leading term of short-time implied
volatility. However, as will be shown in section 6.6, the true volatility smile for small t is
much steeper compared with the leading term, so that higher-order terms shall be considered.
For any x \not = 0, denote by u\ast v+(x) the unique solution in (u - , u+) to the equation x = \Lambda \prime (u)v+,
with \Lambda described in (4.2). From [26, Remark 2.1], existence and uniqueness of such a solution
are straightforward, and u\ast v+(x) \not = 0 holds for any nonzero x. Introduce the function U : \BbbR \ast \rightarrow 
\BbbR \ast + by

(6.1) Uv+(x) := exp
\Bigl\{ 
D0

0(u
\ast 
v+(x))v+ +C0(u

\ast 
v+(x)) + x

\Bigr\} 
,

where the functions D0
0 and C0 are provided in (C.1)--(C.2). From [26, Remark 3.2], the

function U is well defined on \BbbR \ast . The following theorem is the main result of this section and
provides a detailed asymptotic behavior of call option prices as the maturity becomes small.

Theorem 6.1. Under uniform randomization, as t decreases to zero, European Call option
prices behave as

\BbbE 
\bigl( 
eXt  - ex

\bigr) +
= (1 - ex)+ + exp

\biggl( 
 - 
\Lambda \ast v+(x)

t

\biggr) 
Uv+(x)t

5/2 (1 + o(1))

(v+  - v - )\Lambda (u\ast v+(x))u
\ast 
v+(x)

2
\sqrt{} 
2\pi v+\Lambda \prime \prime (u\ast v+(x))

for any x \not = 0,

where the function \Lambda \ast v+ was introduced in Corollary 4.3.

Remark 6.2.

\bullet The remainder is of order t5/2, instead of t3/2, as in both standard Heston and Black--
Scholes models [26]. This can also be seen at the level of the (asymptotic behavior of)
corresponding densities, as noted in Remark 6.3 below.

\bullet The asymptotics holds locally for any fixed log-strike x \not = 0. The numerics indicate that
for small t > 0, as x tends to zero, the asymptotics of option prices and volatility smile
explode to infinity. This is in contrast with the standard Heston case [26, section 5].

\bullet Since the function \Lambda is strictly positive and strictly convex on (u - , u+)\setminus \{ 0\} and uv+(x) \in 
(u - , u+) \setminus \{ 0\} for any x \not = 0, the quotient on the right-hand side is well defined.

\bullet In a Black--Scholes model we have (see [26, Corollary 3.5])

\BbbE 
\bigl( 
eXt  - ex

\bigr) +
= (1 - ex)+ +

1\surd 
2\pi x2

exp

\biggl( 
 - x2

2\Sigma 2t
+
x

2

\biggr) 
(\Sigma 2t)3/2(1 +\scrO (t)).

Comparing it with Theorem 6.1, we then obtain the higher-order term in the expansion of
the implied variance, as t tends to zero:

\sigma t(x)
2=

x2

2\Lambda \ast v+(x)
+

x2t

2\Lambda \ast v+(x)
2
log

\left(  Uv+(x)exp( - x/2)(2\Lambda \ast v+(x))
3/2t

(v+ - v - )\Lambda (u\ast v+(x))u
\ast 
v+(x)

2
\sqrt{} 
v+\Lambda \prime \prime (u\ast v+(x))x

2

\right)  +o(t).



THE RANDOMIZED HESTON MODEL 105

Proof. The procedure is essentially the same as that of the proof of Theorem 4.11. Apply-
ing Lemmas C.2 and C.4, the rescaled cgf of Xt for each t is given by (with the same notation
as in (4.1))

(6.2)

\Lambda t(u) := \Lambda 1

\Bigl( 
t,
u

t

\Bigr) 
= tC

\Bigl( 
t,
u

t

\Bigr) 
+ t log

\Bigl( 
M\scrV \circ D

\Bigl( 
t,
u

t

\Bigr) \Bigr) 
= tC

\Bigl( 
t,
u

t

\Bigr) 
+ t log

\Biggl( 
ev+\mathrm{D}(t,u/t)  - ev - \mathrm{D}(t,u/t)

(v+  - v - )D(t, u/t)

\Biggr) 
= v+\Lambda (u) + t

\bigl( 
C0(u) + v+D

0
0(u) - log ((v+  - v - )\Lambda (u))

\bigr) 
+ t log t+\scrO 

\bigl( 
t2
\bigr) 
.

For fixed x > 0 and small enough t > 0, introduce the time-dependent probability measure \BbbQ t

by
d\BbbQ t

d\BbbP 
:= exp

\biggl( 
u\ast v+(x)Xt  - \Lambda t(u

\ast 
v+(x))

t

\biggr) 
.

Changing the measure, plugging in (6.2), and rearranging terms yield the following expression
for the call option price with strike ex:

\BbbE 
\bigl( 
eXt  - ex

\bigr) +
= exp

\biggl( 
 - 
\Lambda \ast v+(x)

t

\biggr) 
Uv+(x)

t (1 +\scrO (t))

(v+  - v - )\Lambda (u\ast v+(x))
\BbbE \BbbQ t

\biggl[ 
exp

\biggl(  - u\ast v+(x)(Xt  - x)

t

\biggr) \bigl( 
eXt - x  - 1

\bigr) +\biggr] 
.

It is easy to show that, for fixed t > 0, under \BbbQ t the random variable
\bigl( 
Xt - x\surd 

t

\bigr) 
converges weakly

to a Gaussian distribution. The rest of the proof is similar to that of section D.2, so we omit
the details.

We now explain the steepness of the volatility smile in the uncorrelated case \rho = 0.
Using the at-the-money curvature formula for the implied volatility (in uncorrelated stochastic
volatility models) proved by De Marco and Martini [17, Equation (2.9)], we can write, for any
t > 0,

(6.3) \partial 2x\sigma (t, x)
2
\bigm| \bigm| 
x=0

=
2

t

\biggl\{ 
\sigma (t, 0)

\surd 
2\pi t exp

\biggl( 
\sigma (t, 0)2t

8

\biggr) 
pt(0) - 1

\biggr\} 
,

where pt is the density of the log-price process at time t. In the standard Heston model with
initial condition V0 = v0 \in (v - , v+), such that \BbbE (

\surd 
\scrV ) = \surd 

v0, the small-time asymptotics of
the density reads [30, section 5.3]

pt(x) = exp

\biggl( 
 - 
\Lambda \ast v0(x)

t

\biggr) 
Uv0(x)\sqrt{} 
2\pi v0\Lambda \prime \prime (x)

t - 1/2 (1 + o(1)) for any x \not = 0,

with the function U defined in (6.1). Applying the saddle point method similar to the proof
of [26, Theorem 3.1], the small-time asymptotics of the density in a randomized setting,
denoted by \widetilde pt, has the expression

\widetilde pt(x) = exp

\biggl( 
 - 
\Lambda \ast v+(x)

t

\biggr) 
Uv+(x)\sqrt{} 
2\pi v+\Lambda \prime \prime (x)

t1/2 (1 + o(1))

(v+  - v - )\Lambda (u\ast v+(x))
, x \not = 0.
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Figure 2. Uniform randomization with (v - , v+) = (0, 0.135). Blue squares represent the implied volatility
obtained from the standard Heston model, with maturity t = 0.005. Blue, yellow, red, green, and black triangles
represent the implied volatilities computed from the randomized Heston model by FFT, with the maturities equal
to 0.005, 0.01, 0.05, 0.1, and 0.2. The graph illustrates the increase of steepness in a randomized Heston setting
as the maturity tends to zero.

Remark 6.3. Note the difference between the powers t1/2 and t - 1/2 in the expressions for pt
and \widetilde pt above. Even if, in the bounded support case, the leading-order term is not affected by
the randomization, the latter does act at higher order. We leave a precise study of this issue
to further research.

The ratio pt(x)/\widetilde pt(x) then reads

pt(x)\widetilde pt(x) =
1

t
exp

\biggl( 
 - 
\Lambda \ast v0(x) - \Lambda \ast v+(x)

t

\biggr) \biggl( 
v+
v0

\biggr) 1
2 Uv0(x)

Uv+(x)
(v+  - v - )\Lambda (u

\ast 
v+(x)) (1 + o(1)) , x \not = 0.

It is easy to verify that limx\downarrow 0Uv0(x) = limx\downarrow 0Uv+(x) = 1 and limx\downarrow 0 \Lambda (u
\ast 
v+(x)) = 0. More-

over, for any fixed x \not = 0,

\partial v\Lambda 
\ast 
v(x) = \partial v [u

\ast 
v(x)x - v\Lambda (u\ast v(x))] =

\bigl[ 
x - v\Lambda \prime (u\ast v(x))

\bigr] \partial u\ast v(x)
\partial v

 - \Lambda (u\ast v(x)) =  - \Lambda (u\ast v(x)) < 0.

Combining these results, assume that the density at zero can be approximated by pt(x) for
small enough x > 0. Then there exists t\ast > 0 small enough such that pt(x)/\~pt(x) < 1
for all t \in (0, t\ast ). Plugging it back into (6.3), and noticing that (see section 4.5) \sigma (t, 0) \sim 
\BbbE [
\surd 
\scrV ] = \surd 

v0 \sim \sigma t(0, v0) holds as t tends to zero, then the small-time curvature in a uniformly
randomized Heston is much larger compared with that of a standard Heston, implying a much
steeper smile around the at-the-money. Figure 2 provides some visual help.

Finally, we mention that the tail behavior of the implied volatility in a uniformly ran-
domized Heston model is similar to that of the standard Heston. To see this, notice that the
moment explosion property in the standard Heston setting is described in [3, Proposition 3.1].
Specifically, the explosion of the mgf of Xt is equivalent to the explosion of the function D
provided in (A.1). Moreover, (2.3) suggests that this is still the case in the uniform random-
ized setting, since m is infinity. Then the similarity of the tail behaviors follows from [45] (see
also [9, 13]).
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6.2. Noncentral \bfitchi -squared distribution. Assume that \scrV is noncentral \chi -squared dis-
tributed with q > 0 degrees of freedom and noncentrality parameter \lambda > 0, so that its mgf
reads

M\scrV (u) =
1

(1 - 2u)q/2
exp

\biggl( 
\lambda u

1 - 2u

\biggr) 
for all u \in \scrD \scrV = ( - \infty , 1/2).

Then v+ is infinite and m = 1/2. By Proposition 4.1, the only suitable scale function is
h(t) \equiv 

\surd 
t, which corresponds exactly to the forward-start Heston model, the asymptotics

of which have been studied thoroughly in [39]. Applying (D.3) and L'H\^opital's rule with
M\prime \scrV (u) = M\scrV (u)

\bigl( 
\lambda (1 - 2u) - 2 + q(1 - 2u) - 1

\bigr) 
implies that, at the right endpoint u =

\surd 
2m =

1, as t tends to zero, the pointwise limit

lim
t\downarrow 0

\Lambda 1/2

\biggl( 
t,

1\surd 
t

\biggr) 
=

4

2 - \rho \xi 
lim
s\downarrow 0

s2M\prime \scrV (1/2 - s)

M\scrV (1/2 - s)
=

\lambda 

2 - \rho \xi 

can be either finite or infinite. In particular, since \lambda > 0, the pointwise limiting rescaled
cgf is not continuous at the right boundary of its effective domain. The cgf of \scrV satisfies
Assumption 4.8 with \omega = 2. Then Theorem 4.11 implies that we can recover [39, Theorem 4.1]

\sigma 2t (x) =
| x| 
2
t - 1/2 +

\sqrt{} 
\lambda | x| 
2

t - 1/4 + o
\Bigl( 
t - 1/4

\Bigr) 
, as t tends to zero.

6.3. Folded Gaussian distribution. Assume that \scrV (\mathrm{L}\mathrm{a}\mathrm{w})
= | \scrN (0, 1)| . Then the density of \scrV 

reads

f(v) =

\sqrt{} 
2

\pi 
exp

\biggl( 
 - 1

2
v2
\biggr) 

for all v \in \scrD \scrV = \BbbR +,

which satisfies Assumption 4.4. Simple computations yield M\scrV (z) = 2 exp
\bigl( 
z2/2

\bigr) 
\Phi (z) for

any z \in \BbbR , where \Phi denotes the Gaussian cumulative distribution function. Therefore,
Lemma C.2 implies that for \gamma \in (0, 1),

t\gamma logM\scrV 

\Bigl( 
D
\Bigl( 
t,
u

t\gamma 

\Bigr) \Bigr) 
=
u4

8
t2 - 3\gamma +

\rho \xi u5

8
t3 - 4\gamma  - u3

4
t2 - 2\gamma +\scrO 

\bigl( 
t4 - 5\gamma 

\bigr) 
+\scrO (t\gamma ) .

If \gamma = 1, then M\scrV (x\Lambda (u)) = 2 exp
\bigl( 
1
2\Lambda 

2(u)x2
\bigr) 
\Phi (x\Lambda (u)), and hence

t logM\scrV 

\Bigl( 
D
\Bigl( 
t,
u

t

\Bigr) \Bigr) 
=

\Lambda 2(u)

2t
+D0

0(u) +\scrO (t).

The limit is therefore nondegenerate if and only if h(t) = t2/3, in which case \Lambda 2/3(u) =
1
8u

4

for all u \in \BbbR , and Theorem 4.5 implies

lim
t\downarrow 0

t1/3\sigma 2t (x) =
(2x)2/3

3
for all x \not = 0.
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6.4. Starting from the ergodic distribution. Remark 2.1 shows that the stationary dis-
tribution of a randomized Heston model has the density

f\infty (v) =
ab

\Gamma (b)
vb - 1e - av for v > 0,

where a := 2\kappa 
\xi 2

and b := a\theta . Assume now that f\infty is the density of \scrV , so that the cgf of \scrV 
is given by logM\scrV (u) =  - b log (a - u) + b log a, with u < a = m. Then Assumption 4.8 is
satisfied with \omega = 1. A direct application of Theorem 4.11 implies that

\sigma 2t (x) =
\xi | x| 
4
\surd 
\kappa t

+ o
\Bigl( 
t - 1/2

\Bigr) 
for any x \not = 0.

6.5. Other distributions. Table 1 (a more refined version of the table in section 1) presents
some common continuous distributions for the initial variance, together with the corresponding
parameters v+,m, l2. In each case, we indicate (up to a constant multiplier) the short-time
behavior of the smile.

Table 1
Some continuous distributions with support in \BbbR +.

Name v+ m l2 Behavior of \sigma 2
t (x) (x \not = 0) Reference

Beta 1 \infty x2/\Lambda \ast 
1(x) Equation (4.3)

Exponential(\lambda ) \infty \lambda < \infty 1 | x| t - 1/2 Theorem 4.11

\chi -squared \infty 1/2 1 | x| t - 1/2 Theorem 4.11

Rayleigh \infty \infty 2 x2/3t - 1/3 Theorem 4.5

Weibull (k > 1) \infty \infty k (x2/t)1/(1+k) Theorem 4.5

6.6. Numerics. We present numerical results for the implied volatility surface for three
types of initial randomization: uniform (v+ < \infty ), exponential (m < v+ = \infty ), and folded-
Gaussian (m = v+ = \infty ). To generate these surfaces, we apply fast Fourier transform
(FFT) methods [14] to derive a matrix of option prices, and then we compute the corre-
sponding implied volatilities using a root-finding algorithm. The Heston parameters are given
by (\kappa , \theta , \xi , V0, \rho ) = (2.1, 0.05, 0.1, 0.06, - 0.6), which corresponds to a realistic data set cali-
brated on the S\&P options data. In view of Theorem 4.20, parameters of \scrV are chosen to
satisfy \BbbE (

\surd 
\scrV ) =

\surd 
V0, so that results of standard and randomized Heston models can be

compared.
The numerics show that the randomized Heston model provides a much steeper short-time

volatility smile compared with the standard Heston model, but this difference tends to fade
away as maturity increases. In the uniform case, Figure 3 and (4.3) may seem contradictory
at first, since the former indicates steepness and the latter excludes explosion. There is no
issue here, and in fact this suggests that even though there is no proper explosion, it is still
possible to generate steep short-time volatility smiles in a randomized setting. In Figure 4, we
show the impact of a random distribution following a folded Gaussian on the implied volatility
smile, leaving the Heston parameters unchanged. In Figure 5 we test higher-order terms in a
Gamma randomization scheme while the Heston parameters remain unchanged.



THE RANDOMIZED HESTON MODEL 109

Figure 3. Uniform randomization with (v - , v+) = (0, 0.135). Time to maturity is represented in years.
Left: volatility surfaces of randomized and standard Heston calculated with the FFT method. Right: triangles,
squares, and circles represent implied volatility by FFT, leading-, and second-order asymptotics. Time to
maturity is t = 1/24. Higher-order terms are obtained by inverting the asymptotic formula in Theorem 6.1 (see
also Remark 6.2).

Figure 4. \scrV (Law)
= folded-Gaussian. Left: implied volatility surfaces of folded-Gaussian randomization and

standard Heston, calculated using FFT. Middle: implied volatility by FFT (triangles) and the leading order
(squares) in Theorem 4.5, t = 1/24. Right: triangles, squares, and circles represent

\surd 
V0, at-the-money implied

volatility \sigma t(0) by FFT, and large-time limit. The parameter l1 in Assumption 4.4 is 63.46.

Figure 5. \scrV (Law)
= \Gamma (\alpha , \beta ) with (\alpha , \beta ) = (0.4, 3.868). Here we preset \alpha and calculate \beta using Theorem 4.20.

Blue and cyan squares are first- and second-order asymptotics, and yellow triangles are true smiles by FFT.
From left to right, maturities are one week, two weeks, and one month.
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Figure 6. Numerical examples for the dynamic pricing framework. We price the option at \u t = 1/12 in
three different randomization schemes: Gamma (\Gamma (0.4, 3.868), top), noncentral \chi -squared (0.07\chi 2(0.23, 1.25),
middle), and folded-Gaussian (l2 = 2, l1 = 63.46, bottom). Time to maturity \tau is one week, one month, two
months (left to right). Blue and cyan squares are first- and second-order asymptotics, red squares (in the second
row) are third-order asymptotics, and yellow triangles are true implied volatilities computed by FFT.

In Figure 6 we illustrate the results in section 5. We price the option in three different
randomization schemes after one month (\u t = 1/12) into the life of the contract. To compare
different schemes, we again match the parameters of \scrV (at time zero) with different distri-
butions according to Theorem 4.20. We see that the higher-order term in Theorem 4.11 is
quite accurate even for relatively large time to maturity. Not surprisingly (especially in the
folded-Gaussian case) the leading order is insufficient, and higher orders are needed for reliable
approximations.

6.7. USD/JPY FX options. We test the calibration accuracy of the randomized Heston
model using the USD/JPY FX market (ask) prices on January 20th, 2017. In the FX market
the implied volatility still has the small-time explosion feature: Figure 7 shows that the volatil-
ity smile generated by a standard Heston model is too flat compared with the market data
with small maturities. This finding agrees with the existing literature. For instance, in [42]
the authors fixed \kappa and v0 and calibrated the remaining 3 parameters (\theta , \xi , \rho ) in a standard
Heston environment to the EUR/USD market data. They selected maturities ranging from
one week to two years, then calibrated the Heston model for each fixed maturity. Even with
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Figure 7. Calibration results of the randomized Heston model with Gamma (yellow) and uniform (red)
randomizations, compared to the standard Heston model (cyan).

this ``slice-by-slice"" calibration procedure, they observed poor fit of Heston to the market
data for small maturities. Unsurprisingly, they commented that time-dependent parameters,
or ``stochastic volatility plus jumps,"" as appeared in [5, 6], are needed to improve the calibra-
tion accuracy. We use the same initial guess for both the standard and the randomized Heston
models, then calibrate the parameter sets using the market data. The results are presented
in Figure 7 and Table 2. Both randomization schemes show a substantial improvement over
the standard Heston model.

Table 2
The root-mean-square deviation (RMSD) of standard and randomized Heston models (\times 10 - 3). Small ma-

turities are those less than one month; the total RMSD is calculated over all maturities including extrapolations
up to seven years.

Model Small maturities Less than one year Total

Standard Heston 11.91 8.22 7.34
Gamma randomization 5.86 5.02 5.32
Uniform randomization 6.86 5.13 5.51

Appendix A. Notation from the Heston model. In the Heston model, the log stock price
satisfies the SDE (2.1), where the initial distribution \scrV is a Dirac mass at some point v0 > 0.
As proved in [1], the mgf (2.2) admits the closed-form representation M(t, u) = exp

\bigl( 
C(t, u)+

D(t, u)v0
\bigr) 
for any u \in \scrD t

\mathrm{M}, where

(A.1)

\left\{                     

C(t, u) :=
\kappa \theta 

\xi 2

\Biggl[ 
(\kappa  - \rho \xi u - d(u))t - 2 log

\Biggl( 
1 - g(u)e - d(u)t

1 - g(u)

\Biggr) \Biggr] 
,

D(t, u) :=
\kappa  - \rho \xi u - d(u)

\xi 2
1 - exp ( - d(u)t)

1 - g(u) exp ( - d(u)t)
,

d(u) :=
\bigl( 
(\kappa  - \rho \xi u)2 + \xi 2u(1 - u)

\bigr) 1/2
and g(u) :=

\kappa  - \rho \xi u - d(u)

\kappa  - \rho \xi u+ d(u)
.
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In the proof of [26, Lemma 6.1], the authors showed that the functions d and g have the
following behavior as t tends to zero:

(A.2) d
\Bigl( u
t

\Bigr) 
= \tti 

d0u

t
+ d1 +\scrO (t) and g

\Bigl( u
t

\Bigr) 
= g0  - \tti 

g1
u
t+\scrO (t2),

with d0 := \xi \rho sgn(u), d1 := \tti 2\kappa \rho  - \xi 
2\rho sgn(u), g0 := \tti \rho  - \rho \mathrm{s}\mathrm{g}\mathrm{n}(u)

\tti \rho +\rho \mathrm{s}\mathrm{g}\mathrm{n}(u) and g1 := (2\kappa  - \rho \xi )\mathrm{s}\mathrm{g}\mathrm{n}(u)
\xi \rho (\rho +\tti \rho \mathrm{s}\mathrm{g}\mathrm{n}(u))2

. The

pointwise limit of the (rescaled) cgf of Xt then reads

lim
t\downarrow 0

t logM
\Bigl( 
t,
u

t

\Bigr) 
= \Lambda (u)v0 for any u \in (u - , u+),

where u - , u+, and \Lambda are introduced in (4.2). From [26, section 2], the function \Lambda is well
defined, smooth, and strictly convex on (u - , u+), and is infinite elsewhere.

Appendix B. Reminder on large deviations and regular variations.

B.1. Large deviations and the G\"artner--Ellis theorem. In this appendix, we briefly recall
the main definitions and results from large deviations theory, which we need in this paper.
For full details, the interested reader is advised to look at the excellent monograph by Dembo
and Zeitouni [19]. Let (Yn)n\geq 0 denote a sequence of real-valued random variables. A map
I : \BbbR \rightarrow \BbbR + is said to be a good rate function if it is lower semicontinuous and if the set
\{ y : I(y) \leq \alpha \} is compact in \BbbR for each \alpha \geq 0.

Definition B.1. Let h : \BbbR \rightarrow \BbbR + be a continuous function that tends to zero at infinity. The
sequence (Yn)n\geq 0 satisfies a large deviations principle as n tends to infinity with speed h(n) and
rate function I (in our notation, Y \sim LDP\infty (h(n), I)) if for each Borel measurable set \scrS \subset \BbbR 
the following inequalities hold:

 - inf
y\in \scrS o

I(y) \leq lim inf
n\uparrow \infty 

h(n) log\BbbP (Yn \in \scrS ) \leq lim sup
n\uparrow \infty 

h(n) log\BbbP (Yn \in \scrS ) \leq  - inf
y\in \scrS 

I(y).

Now let \Lambda h be the pointwise limit---whenever the limit exists---of the rescaled cgf of Y :
\Lambda h(u) := limn\uparrow \infty h(n) log\BbbE 

\bigl[ 
exp(uYn/h(n))

\bigr] 
, and denote by \scrD \Lambda := \{ u \in \BbbR : | \Lambda h(u)| < \infty \} its

effective domain. Then \Lambda h is said to be essentially smooth if the interior \scrD o
\Lambda is nonempty, \Lambda h

is differentiable on \scrD o
\Lambda , and limu\rightarrow u0 | \Lambda \prime h(u)| = \infty for any u0 \in \partial \scrD \Lambda . Finally, for any y \in \BbbR ,

define \Lambda \ast h(y) := supu\in \scrD \Lambda 
\{ uy  - \Lambda h(u)\} to be the convex conjugate of function \Lambda h.

Theorem B.2 (G\"artner--Ellis theorem, Theorem 2.3.6 in [19]). If the function \Lambda h is lower
semicontinuous on \scrD \Lambda and essentially smooth, and 0 \in \scrD o

\Lambda , then (Yn)n\geq 0 \sim LDP\infty (h(n),\Lambda \ast h).

B.2. Regular variations. We recall here some notions on regular variations, following the
monograph [10].

Definition B.3. Let a > 0. A function f : (a,\infty ) \rightarrow \BbbR \ast + is said to be regularly varying with
index l \in \BbbR (and we write f \in \scrR l) if limx\uparrow \infty f(\lambda x)/f(x) = \lambda l for any \lambda > 0. When l = 0, the
function f is called slowly varying.

Lemma B.4 (Bingham's lemma, Theorem 4.12.10 in [10]). Let f be a regularly varying func-
tion with index l > 0; then, as x tends to infinity, the asymptotic equivalence  - log

\int \infty 
x e - f(y)dy

\sim f(x) holds.
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Let Y be a random variable supported on [0,\infty ) with a smooth density f . The following
lemma ensures that its mgf has unbounded support.

Lemma B.5. If there exists l > 1 such that | log f | \in \scrR l, then sup\{ u \in \BbbR : \BbbE (euY ) <\infty \} =
+\infty .

Proof. Karamata's characterization theorem [10, Theorem 1.4.1] implies that | log f(v)| =
vlg(v) for any v > 0, where the function g is slowly varying, and Karamata's representation
theorem [10, Theorem 1.3.1] provides the following expression:

g(v) = c(v) exp

\biggl( \int v

a
\varepsilon (y)

dy

y

\biggr) 
,

where the functions c and \varepsilon satisfy limv\uparrow \infty c(v) = c > 0, limv\uparrow \infty \varepsilon (v) = 0, and a is a fixed
positive number. Then there exists v1 \geq a such that c(v) > c/2 for all v \geq v1. Additionally,
for any small enough fixed \varepsilon 0 satisfying that l > 1 + \varepsilon 0, there exists v2 \geq a such that\int v
v2
\varepsilon (y)dy/y >  - \varepsilon 0 log(v/v2) for any v \geq v2. Denote d := exp

\bigl( \int v2
a \varepsilon (y)\mathrm{d}yy

\bigr) 
. Then for any

v > max(v1, v2), and any u > 0,

u - c(v) exp

\biggl( \int v

a
\varepsilon (y)

dy

y

\biggr) 
vl - 1 < u - cd

2
exp

\biggl( \int v

v2

\varepsilon (y)
dy

y

\biggr) 
vl - 1 < u - cd

2
v\varepsilon 02 v

l - 1 - \varepsilon 0 .

Thus there exists v3 large enough so that u  - 1
2cdv

\varepsilon 0
2 v

l - 1 - \varepsilon 0 <  - 1 for v \geq v3. With v\ast :=
max(v1, v2, v3),

\BbbE 
\bigl( 
euY
\bigr) 
=

\int v\ast 

0
euvf(v)dv +

\int \infty 
v\ast 

ev(u - v
l - 1g(v))dv <

\int v\ast 

0
euvf(v)dv +

\int \infty 
v\ast 

e - vdv <\infty .

Appendix C. Preliminary computations. In view of (2.3), short-time asymptotic expan-
sions of the functions C and D are necessary in order to derive the pointwise limit of the
rescaled cgf of (Xt)t\geq 0. In this appendix we provide these expansions.

C.1. Components of the mgf. We start by investigating the short-time behavior of the
function D(t, u/h(t)). For any \beta \in \BbbR , define the function D\beta 

0 : (u - , u+) \rightarrow \BbbR by

D\beta 
0 (u) :=

1 - e - \tti d0u

\xi 2(1 - g0e - \tti d0u)
[(\rho \xi + \tti d0)\beta u+ \kappa  - d1] +

\tti g1(\rho \xi + \tti d0)

\xi 2
1 - e - \tti d0u

(1 - g0e - \tti d0u)2
e - \tti d0u

(C.1)

 - (\rho \xi + \tti d0)u

\xi 2
d1  - \tti d0u\beta 

(1 - g0e - \tti d0u)2
(1 - g0) e

 - \tti d0u,

where the functions d0, d1, g0, g1 are defined below (A.2).

Remark C.1. The function D\beta 
0 is well defined; to see this, we only need to check that the

\beta terms sum up to a real number, and the rest follows from [26, Remark 3.2]. The first term
in (C.1) reads

1 - e - \tti d0u

\xi 2(1 - g0e - \tti d0u)
(\rho \xi + \tti d0)\beta u =  - \beta \Lambda (u),
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which is a real number, and the sum of the remaining terms with \beta reads (taking out the
prefactor \tti d0u\beta )

(\rho \xi + \tti d0)ue
 - \tti d0u(1 - g0)

\xi 2(1 - g0 exp( - \tti d0u))2
=

(g0  - 1)e - \tti d0u\Lambda (u)

(1 - g0e - \tti d0u)(1 - e - \tti d0u)
=

\tti \rho sgn(u)\Lambda (u)

\rho cos(d0u) + \rho sgn(u) sin(d0u) - \rho 
,

which is purely imaginary, so that the whole term is a real number.

The following lemma makes the effective domain of D\beta 
0 precise and shows that it arises as

the second order of the short-time expansion of a rescaled version of the function D in (A.1).

Lemma C.2. Let \beta \in \BbbR . As t tends to zero, the map t \mapsto \rightarrow D(t, u/h(t)) behaves as

D

\biggl( 
t,

u

h(t)

\biggr) 
=

\left\{             

0, if u=0, for any function h,
undefined, u \not =0, if h(t)=o(t),

t - 1\Lambda (u)+D\beta 
0 (u)+o(1), u\in (u - ,u+), if h(t)=t+\beta t2+o(t2),

u2t

2h2(t)

\biggl[ 
1 - h(t)

u
+
\rho \xi ut

2h(t)
+\scrO 

\biggl( 
t+h2(t)+

t2

h2(t)

\biggr) \biggr] 
, u\in \BbbR , if t=o(h(t)).

Remark C.3.

(i) If h(t) = t+ o(t) without further information on higher-order terms (third case in the
lemma), then only the leading order is available: D

\bigl( 
t, u/h(t)

\bigr) 
= t - 1\Lambda (u)(1 + o(1)).

(ii) As in Remark 4.2(ii), one can consider h(t) = ct+ \beta t2 + o(t2), but by dilation, setting
c = 1 is inconsequential.

(iii) When h(t) = t1/2, D
\bigl( 
t, u

h(t)

\bigr) 
= 1

2u
2 + 1

4

\bigl( 
\rho \xi u2  - 2

\bigr) 
ut1/2 + \scrO (t), which is consistent

with [39, Lemma 6.2].

The function C0 : (u - , u+) \rightarrow \BbbR defined as

(C.2) C0(u) :=  - \kappa \theta 
\xi 2

\biggl[ 
(\rho \xi + \tti d0)u+ 2 log

\biggl( 
1 - g0 exp( - \tti d0u)

1 - g0

\biggr) \biggr] 

is clearly real-valued [26, Remark 6.2] and determines the asymptotic behavior of the func-
tion C as follows.

Lemma C.4. The map t \mapsto \rightarrow C (t, u/h(t)) has the following asymptotic behavior as t tends
to zero:

C

\biggl( 
t,

u

h(t)

\biggr) 
=

\left\{       
undefined, u \not =0, h(t)=o(t),
C0(u)+\scrO (t), u\in (u - ,u+), h(t)=t+\scrO (t2),

\scrO 
\bigl( 
th(t)+h3(t)

\bigr) 
+
\kappa \theta u2

4

\biggl( 
t

h(t)

\biggr) 2\biggl[ 
1+\scrO 

\biggl( 
h(t)+

t

h(t)

\biggr) \biggr] 
, u\in \BbbR , t=o(h(t)).
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Proof of Lemma C.2. Obviously D (t, 0) \equiv 0, so we assume from now on that u \not = 0. From
(A.2), we have

(C.3) d

\biggl( 
u

h(t)

\biggr) 
= \tti 

d0u

h(t)
+ d1 +\scrO (h(t)) and g

\biggl( 
u

h(t)

\biggr) 
= g0  - \tti 

g1
u
h(t) +\scrO 

\bigl( 
h2(t)

\bigr) 
.

Plugging these back into the expression of the function D in (A.1), we obtain
(C.4)

D

\biggl( 
t,

u

h(t)

\biggr) 
=

\Biggl[ 
\kappa  - d1 - \rho \xi u+\tti d0u

h(t) +\scrO (h(t))

\xi 2

\Biggr] \left[  1 - exp
\Bigl\{ 
 - \tti ud0t

h(t)  - d1t+\scrO (th(t))
\Bigr\} 

1 - 
\bigl[ 
g0 - \tti g1

u h(t)+\scrO (h2(t))
\bigr] 
e
 - \tti ud0t

h(t)
 - d1t+\scrO (th(t))

\right]  .
If h(t) = o(t), d0 is a real number, and d1 is purely imaginary, then as t/h(t) goes to infinity
the term exp ( - \tti ud0t/h(t) - d1t) oscillates on the unit circle in the complex plane; thus no
asymptotic can be derived.

Assume now that h(t) = t+ \beta t2 + o(t2). Then th - 1(t) = 1 - \beta t+ o(t), and (C.4) yields

D

\biggl( 
t,

u

h(t)

\biggr) 
=

1

\xi 2

\biggl[ 
 - (\rho \xi +\tti d0)u

h(t)
+(\kappa  - d1)+\scrO (h(t))

\biggr] 
\biggl[ 

1 - exp( - \tti d0ut/h(t) - d1t+\scrO (th(t)))

1 - (g0 - \tti tg1/u+\scrO (t2))exp( - \tti d0ut/h(t) - d1t+\scrO (th(t)))

\biggr] 
=

1

\xi 2

\biggl( 
 - (\rho \xi +\tti d0)u

t
(1 - \beta t+o(t))+(\kappa  - d1)+\scrO (t)

\biggr) \Bigl( 
1 - e - \tti d0u

\bigl( 
1 - d1t+\scrO (t2)

\bigr) 
(1+\tti \beta d0ut+o(t))

\Bigr) 
1

1 - g0e - \tti d0u

\biggl( 
1+

( - \tti g1/u+g0(\tti d0u\beta  - d1))e - \tti d0u

1 - g0e - \tti d0u
t+o(t)

\biggr) 
=
e - \tti d0u - 1

\xi 2t

(\rho \xi +\tti d0)u

1 - g0e - \tti d0u
+

1 - e - \tti d0u

\xi 2(1 - g0e - \tti d0u)
((\rho \xi +\tti d0)\beta u+\kappa  - d1) - 

(\rho \xi +\tti d0)u

\xi 2
(d1 - \tti \beta d0u)e

 - \tti d0u

1 - g0e - \tti d0u

+
(\rho \xi +\tti d0)(\tti g1 - g0u(\tti \beta d0u - d1))(1 - e - \tti d0u)

\xi 2(1 - g0e - \tti d0u)2
e - \tti d0u+o(1)

=
\Lambda (u)

t
+D\beta 

0 (u)+o(1).

The form of the effective domain is straightforward from these expressions.
If h(t) = t+o(t) without further information on higher-order terms, then t/h(t) = 1+o(1).

Following the same procedure as above, then only the leading order can be derived, i.e.,
D (t, u/h(t)) = t - 1\Lambda (u)[1 + o(1)].

Finally in the case t = o(h(t)),

\biggl[ 
1 - 
\biggl( 
g0 - 

\tti g1
u
h(t)+\scrO (h2(t))

\biggr) 
e
 - \tti d0ut

h(t)
 - d1t+\scrO (th(t))

\biggr]  - 1
=
1 - \tti g1h(t)

u(1 - g0) - 
\tti d0g0ut

(1 - g0)h(t)+\scrO 
\Bigl( 
t+h2(t)+ t2

h2(t)

\Bigr) 
1 - g0

,

1 - exp

\biggl( 
 - \tti d0ut
h(t)

 - d1t+\scrO (th(t))

\biggr) 
=
\tti d0ut

h(t)
+d1t+

d20u
2t2

2h2(t)
+\scrO 

\biggl( 
t2

h(t)

\biggr) 
+\scrO (th(t)).
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Plugging these results into (C.4) yields

D

\biggl( 
t,

u

h(t)

\biggr) 
=

1

\xi 2(1 - g0)

\biggl[ 
 - (\rho \xi +\tti d0)u

h(t)
+(\kappa  - d1)+\scrO (h(t))

\biggr] \biggl[ 
\tti d0ut

h(t)
+d1t+

d20u
2t2

2h2(t)
+\scrO 

\biggl( 
t2

h(t)
+th(t)

\biggr) \biggr] 
\biggl[ 
1 - \tti g1h(t)

u(1 - g0)
 - \tti d0g0ut

(1 - g0)h(t)
+\scrO 

\biggl( 
t+h2(t)+

t2

h2(t)

\biggr) \biggr] 
=

1

\xi 2(1 - g0)

\biggl[ 
(d0 - \tti \rho \xi )d0u

2t

h2(t)
+
[\tti d0u(\kappa  - d1) - d1u(\rho \xi +\tti d0)]t

h(t)
 - d20u

3(\rho \xi +\tti d0)t
2

2h3(t)
+\scrO 

\biggl( 
t+

t2

h2(t)

\biggr) \biggr] 
\biggl[ 
1 - \tti g1h(t)

u(1 - g0)
 - \tti d0g0ut

(1 - g0)h(t)
+\scrO 

\biggl( 
t+h2(t)+

t2

h2(t)

\biggr) \biggr] 
=

u2t

2h2(t)

\biggl[ 
1 - h(t)

u
+
\rho \xi ut

2h(t)
+\scrO 

\biggl( 
t2

h2(t)
+h2(t)+t

\biggr) \biggr] 
,

where we used the identity

(d0  - \tti \rho \xi )d0
(1 - g0)\xi 2

=
(\xi \rho sgn(u) - \tti \rho \xi )\xi \rho sgn(u)

\xi 2
\Bigl( 
1 - \tti \rho  - \rho \mathrm{s}\mathrm{g}\mathrm{n}(u)

\tti \rho +\rho \mathrm{s}\mathrm{g}\mathrm{n}(u)

\Bigr) =
1

2
.

Proof of Lemma C.4. Assume that u \not = 0. Expanding d(u/h(t)) and g(u/h(t)) to the third
order,

(C.5)

d

\biggl( 
u

h(t)

\biggr) 
= \tti 

d0u

h(t)
+ d1  - \tti d2h(t) +\scrO 

\bigl( 
h2(t)

\bigr) 
,

g

\biggl( 
u

h(t)

\biggr) 
= g0  - \tti 

g1
u
h(t) - \tti 

g2
u2
h2(t) +\scrO 

\bigl( 
h3(t)

\bigr) 
,

where d2 := (\kappa 2  - d21)/(2d0u) and g2 := [(\kappa 2  - d21)\rho \xi /d0 + (\kappa  - d1)(\rho \xi  - \tti d0)g1](\rho \xi  - \tti d0)
 - 2.

Combining these expansions with (C.3) implies

C

\biggl( 
t,

u

h(t)

\biggr) (C.6)

= - 2\kappa \theta 

\xi 2
log

\Biggl( 
1 - 

\bigl( 
g0  - \tti g1h(t)/u - \tti g2h

2(t)/u2 +\scrO (h3(t))
\bigr) 
e - \tti d0ut/h(t) - d1t+\tti d2th(t)+\scrO (th2(t))

1 - g0 + \tti g1h(t)/u+ \tti g2h2(t)/u2 +\scrO (h3(t))

\Biggr) 

+
\kappa \theta 

\xi 2

\biggl[ 
(\kappa  - d1) t - 

(\rho \xi + \tti d0)ut

h(t)
+\scrO (th(t))

\biggr] 
.

If h(t) = o(t), no short-time asymptotics can be derived since t/h(t) tends to infinity. For
the proof of the case where h(t) = t+\scrO (t2) we refer the reader to [26, Lemma 6.1]. Assume
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now that t = o(h(t)). Then the following asymptotic expansions hold:\biggl( 
1 - g0+

\tti h(t)g1
u

+
\tti h2(t)g2
u2

+\scrO 
\bigl( 
h3(t)

\bigr) \biggr)  - 1
=

1

1 - g0

\biggl( 
1 - \tti g1h(t)

u(1 - g0)
 - g3h

2(t)

u2(1 - g0)2
+\scrO 

\bigl( 
h3(t)

\bigr) \biggr) 
,

exp

\biggl( 
 - \tti d0ut

h(t)
 - d1t+\tti d2th(t)+\scrO 

\bigl( 
th2(t)

\bigr) \biggr) 
=1 - \tti d0ut

h(t)
 - 1

2

\biggl( 
d0ut

h(t)

\biggr) 2

 - d1t+\tti d2th(t)+\scrO 
\biggl( 
th2(t)+

t2

h(t)

\biggr) 
,

where g3 := g21 + \tti g2(1 - g0). Consequently,

1 - 
\bigl( 
g0 - \tti g1h(t)/u - \tti g2h

2(t)/u2+\scrO (h3(t))
\bigr) 
e - \tti d0ut/h(t) - d1t+\scrO (th(t))

1 - g0+\tti g1h(t)/u+\tti g2h2(t)/u2+\scrO (h3(t))

=

\biggl\{ 
1 - 
\biggl[ 
g0 - 

\tti g1
u
h(t) - \tti g2

u2
h2(t)+\scrO (h3(t))

\biggr] \biggr\} 
\Biggl[ 
1 - \tti d0ut

h(t)
 - 1

2

\biggl( 
d0ut

h(t)

\biggr) 2

 - d1t+\tti d2th(t)+\scrO 
\biggl( 
th2(t)+

t2

h(t)

\biggr) \Biggr] 
1

1 - g0

\biggl( 
1 - \tti g1h(t)

u(1 - g0)
 - g3h

2(t)

u2(1 - g0)2
+\scrO (h3(t))

\biggr) 
=

\biggl( 
1+

\tti g0d0ut

(1 - g0)h(t)
+

\tti g1h(t)

u(1 - g0)
+
d1g0+d0g1

1 - g0
t+

\tti g2h
2(t)

u2(1 - g0)
+

g0d
2
0u

2t2

2(1 - g0)h2(t)
+\scrO 

\biggl( 
th(t)+h3(t)+

t2

h(t)

\biggr) \biggr) 
\biggl( 
1 - \tti g1h(t)

u(1 - g0)
 - g3h

2(t)

u2(1 - g0)2
+\scrO 

\bigl( 
h3(t)

\bigr) \biggr) 
=1+

\tti g0d0u

1 - g0
t

h(t)
+

u2d20g0t
2

2(1 - g0)h2(t)
+

\biggl( 
d1g0+d0g1

1 - g0
+

d0g0g1
(1 - g0)2

\biggr) 
t+\scrO 

\biggl( 
th(t)+h3(t)+

t2

h(t)

\biggr) 
,

and therefore

log

\Biggl( 
1 - 
\bigl[ 
g0 - \tti h(t)g1/u - \tti h2(t)g2/u

2+\scrO (h3(t))
\bigr] 
e - \tti d0ut/h(t) - d1t+\scrO (th(t))

1 - g0+\tti h(t)g1/u+\tti h2(t)g2/u2+\scrO (h3(t))

\Biggr) 

=
\tti g0d0u

1 - g0
t

h(t)
+

u2d20g0
2(1 - g0)2

t2

h2(t)
+

\biggl( 
d1g0+d0g1

1 - g0
+

d0g0g1
(1 - g0)2

\biggr) 
t+\scrO 

\biggl( 
th(t)+h3(t)+

t2

h(t)
+

t3

h3(t)

\biggr) 
.

Plugging this into (C.6), the result follows by noticing that the coefficients of t
h(t) and t are

both zero.

Appendix D. Proofs of the main results.

D.1. Proof of Proposition 4.1. In [39, section 6] the authors proved that \scrD \ast = \BbbR when-
ever \gamma < 1, and \scrD \ast = (u - , u+) if \gamma = 1. Throughout the proof we keep the notation h,
emphasizing that the statement still holds for function h with a general form, not only poly-
nomials.

Case \bfitgamma \in (0, 1/2). We need to analyze the behavior of logM(z) as z approaches zero.
Since m is strictly positive, by continuity of the mgf around the origin, M\scrV 

\bigl( 
u2t(2h2(t)) - 1(1+
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\scrO (h(t)))
\bigr) 
converges to M\scrV (0) = 1 as t tends to zero for any u in \BbbR , which implies that \scrD \ast \scrV = \BbbR .

For small t, a Taylor expansion indicates that

logM\scrV 

\biggl( 
D

\biggl( 
t,

u

h(t)

\biggr) \biggr) 
= log\BbbE 

\biggl( 
exp

\biggl\{ 
u2t\scrV 
2h2(t)

\biggl[ 
1 - h(t)

u
+\scrO 

\biggl( 
t

h(t)

\biggr) 
+\scrO 

\bigl( 
h2(t)

\bigr) \biggr] \biggr\} \biggr) 
= log

\biggl\{ 
1 +

u2\BbbE (\scrV )t
2h2(t)

\biggl[ 
1 - h(t)

u
+\scrO 

\biggl( 
t

h(t)
+ h2(t)

\biggr) \biggr] 
+
u4\BbbE (\scrV 2)t2

8h4(t)
+\scrO 

\biggl( 
t3

h6(t)

\biggr) \biggr\} 
=
u2\BbbE (\scrV )t
2h2(t)

\biggl( 
1 +\scrO 

\biggl( 
h(t) +

t

h2(t)

\biggr) \biggr) 
.

Since h(t)C(t, u/h(t)) is of order \scrO 
\bigl( 
t2/h(t) + h4(t)

\bigr) 
, then

(D.1) \Lambda \gamma 

\biggl( 
t,

u

h(t)

\biggr) 
=
u2\BbbE (\scrV )t
2h(t)

\biggl\{ 
1 +\scrO 

\biggl( 
h(t) +

t

h2(t)
+ h4(t)

\biggr) \biggr\} 
,

and therefore limt\downarrow 0 \Lambda \gamma (t, u/h(t)) = 0 for all u \in \BbbR .

Case \bfitgamma \in (1/2, 1]. We need to evaluate M\scrV at infinity. If m is finite, for t sufficiently
small, the term M\scrV 

\bigl( 
1
2u

2th - 2(t) (1 +\scrO (t/h(t)))
\bigr) 
is infinite for any nonzero u; hence \scrD \ast \scrV = \{ 0\} ,

and \Lambda \gamma (u) is null at u = 0, and is infinite elsewhere. If m is infinite, then obviously \scrD \ast \scrV = \BbbR .
Assume first that v+ is finite; we claim that limu\uparrow \infty (v+u)

 - 1 logM\scrV (u) = 1. In fact, let F\scrV be
the cumulative distribution function of \scrV . Then

M\scrV (u) = \BbbE 
\bigl( 
eu\scrV 
\bigr) 
\leq exp(uv+)

\int 
[v - ,v+]

F\scrV (dv) = exp(uv+).

For any small \varepsilon > 0, fix \delta \in (0, \varepsilon v+/2), so that

logM\scrV (u)

uv+
\geq 1

uv+
log

\biggl( \int v+

v+ - \delta 
euvF\scrV (dv)

\biggr) 
\geq 1

uv+
log
\Bigl( 
eu(v+ - \delta )\BbbP (\scrV \geq v+  - \delta )

\Bigr) 
= 1 - \delta 

v+
+

log\BbbP (\scrV \geq v+  - \delta )

uv+
,

since v+ is the upper bound of the support; therefore \BbbP (\scrV \geq v+ - \delta ) is strictly positive, and the
result follows. If \gamma \in (1/2, 1), notice that h(t)C(t, u/h(t)) is of order t2 - \gamma from Lemma C.4,
and hence

lim
t\downarrow 0

\Lambda \gamma 

\biggl( 
t,

u

h(t)

\biggr) 
= lim

t\downarrow 0
\scrO 
\bigl( 
t2 - \gamma 

\bigr) 
+ lim

t\downarrow 0
t\gamma logM\scrV 

\biggl( 
u2t1 - 2\gamma 

2

\bigl( 
1 +\scrO (t1 - \gamma )

\bigr) \biggr) 
=
u2v+
2

lim
t\downarrow 0

t1 - \gamma = 0 for any u in \BbbR .

When \gamma = 1, \Lambda (u) is positive whenever u \in (u - , u+) \setminus \{ 0\} . Therefore,

lim
t\downarrow 0

\Lambda \gamma 

\biggl( 
t,

u

h(t)

\biggr) 
= lim

t\downarrow 0
\scrO (t)+lim

t\downarrow 0
t

\biggl( 
v+\Lambda (u)

t
(1 +\scrO (t))

\biggr) 
= \Lambda (u)v+ for any u \in \scrD \ast = (u - , u+).
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Case \bfitgamma = 1/2. If v+ is finite, then the pointwise limit is null on the whole real line.

Assume now that v+ is infinite and m is finite. Following Remark C.3(iii), u2

2 +
\bigl( \rho \xi u3

4  - u
2

\bigr) 
t1/2+

\scrO (t) < m implies \scrD \ast o\scrV =
\bigl( 
 - 
\surd 
2m,

\surd 
2m
\bigr) 
\subseteq \scrD \ast \scrV \subseteq lim supt\downarrow 0\scrD t

\scrV \subseteq 
\bigl[ 
 - 
\surd 
2m,

\surd 
2m
\bigr] 
= \scrD \ast \scrV . For

sufficiently small t,

\Lambda 1/2

\biggl( 
t,
u\surd 
t

\biggr) 
=
\kappa \theta u2

4
t3/2 +\scrO 

\bigl( 
t2
\bigr) 
+ t1/2 logM\scrV 

\biggl( 
u2

2
+

\biggl( 
\rho \xi u3

4
 - u

2

\biggr) 
t1/2 +\scrO (t)

\biggr) 
.

For any fixed u in \scrD \ast o\scrV , by definition there exists a positive t0 such that u is in \scrD t
\scrV for all t

less than t0. Then the mgf of \scrV is infinitely differentiable around the point u2/2, and the

nth order derivative at this point is M
(n)
\scrV 
\bigl( 
1
2u

2
\bigr) 
= \BbbE 

\bigl[ 
\scrV n exp

\bigl( 
1
2u

2\scrV 
\bigr) \bigr] 
. Denote now an(u) :=

M
(n)
\scrV 
\bigl( 
1
2u

2
\bigr) 
M - 1\scrV 

\bigl( 
1
2u

2
\bigr) 
for n \in \BbbN +, and a0(u) := logM\scrV 

\bigl( 
1
2u

2
\bigr) 
. A Taylor expansion of the

function M\scrV around the point 1
2u

2 yields

\Lambda 1/2

\biggl( 
t,
u\surd 
t

\biggr) 
=

\surd 
t log

\biggl\{ 
M\scrV 

\biggl( 
u2

2

\biggr) \biggl[ 
1 + a1(u)

\biggl( 
\rho \xi u2

2
 - 1

\biggr) 
u
\surd 
t

2
+\scrO (t)

\biggr] \biggr\} 
+
\kappa \theta u2

4
t3/2 +\scrO 

\bigl( 
t2
\bigr) 

= a0(u)
\surd 
t+ a1(u)

\biggl( 
\rho \xi u2

2
 - 1

\biggr) 
ut

2
+\scrO (t3/2).(D.2)

Letting t tend to zero, we finally obtain

\Lambda 1/2(u) =

\biggl\{ 
0 when u \in \scrD \ast o\scrV ,
\infty when u \in \BbbR \setminus \scrD \ast \scrV .

However, the limit of \Lambda 1/2

\bigl( 
t,\pm 

\sqrt{} 
2m/t

\bigr) 
depends on the explicit form of M\scrV . To see this,

assume that \rho \xi m < 1, which is guaranteed in particular when \rho \leq 0, and compute the limit
when u =

\surd 
2m. L'H\^opital's rule implies

(D.3) lim
t\downarrow 0

t1/2 logM\scrV 

\biggl( 
m+

\sqrt{} 
m

2
(\rho \xi m - 1) t1/2 +\scrO (t)

\biggr) 
=

\sqrt{} 
2

m

1

1 - \rho \xi m
lim
s\downarrow 0

s2M\prime \scrV (m - s)

M\scrV (m - s)
.

D.2. Proof of Theorem 4.11. The systematic procedure is similar to the proof of [39,
Theorem 3.1]. To simplify notation, write \widetilde \Lambda t(u) := \Lambda 1/2

\bigl( 
t, u/

\surd 
t
\bigr) 
, \widetilde Ct(u) := C(t, u/

\surd 
t), and\widetilde Dt(u) := D(t, u/

\surd 
t) whenever these quantities are well defined. We shall prove the theorem

in several steps: In Lemma D.1 we show that a saddle point analysis is feasible; by taking
the expectation under a new probability measure, the main contribution of the option price
arises, and its asymptotic expansion is provided in Lemma D.2; in Lemma D.3 we prove the
convergence (with rescaling) of the sequence (Xt  - x)t\geq 0 under this new measure; finally, the
full asymptotics of the call option price is obtained via inverse Fourier transform.

Lemma D.1. Under Assumption 4.8, for any x \not = 0, t > 0 small enough, the equa-
tion \partial u\widetilde \Lambda t(u) = x admits a unique solution u\ast t (x) such that \widetilde Dt(u

\ast 
t (x)) \in \scrD t

\scrV , and the following
holds as t tends to zero:

u\ast t (x) =

\left\{   sgn(x)
\surd 
2m+ b1(x)t

1
2\omega + o

\Bigl( 
t

1
2\omega 

\Bigr) 
for \omega = 1,

sgn(x)
\surd 
2m+ b1(x)t

1
2\omega + b2(x)t

1
\omega log t+ b3(x)t

1
\omega + o

\Bigl( 
t
1
\omega 

\Bigr) 
for \omega \geq 2,
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where

b1(x) :=  - sgn(x)(2m)(1 - \omega )/(2\omega )
\biggl( 
11\{ \omega =1\} | \gamma 0| + 11\{ \omega \geq 2\} (\omega  - 1)\gamma 0

| x| 

\biggr) 1/\omega 

+
1 - \rho \xi m

2
11\{ \omega =1\} ,

b2(x) :=  - sgn(x)
a
\surd 
2m

2\omega 2
b21(x),

b3(x) := sgn(x)

\biggl\{ 
b21(x)\surd 
2m\omega 

\Bigl( 
1 - \omega 

2
 - 2am log

\Bigl( \surd 
2m| b1(x)| 

\Bigr) 
 - 2bm

\Bigr) \biggr\} 
+

1 - \rho \xi m

2
11\{ \omega =2\} .

If x = 0, then u\ast t (0) defined as the solution to \partial u\widetilde \Lambda t(u) = 0 satisfies u\ast t (0) =
1
2

\surd 
t+ o(

\surd 
t).

Proof of Lemma D.1. Assume that x > 0, the case when x < 0 being analogous. Equa-
tion (2.3) implies that for any u \in \BbbR , the equation \partial u\widetilde \Lambda t(u) = x reads

(D.4) x = \partial u\widetilde \Lambda t(u) =
\surd 
t

\biggl( 
logM

\biggl( 
t,
u\surd 
t

\biggr) \biggr) \prime 
=

\surd 
t\widetilde C\prime t(u) +\surd 

t
M\prime \scrV 

\Bigl( \widetilde Dt(u)
\Bigr) 

M\scrV 

\Bigl( \widetilde Dt(u)
\Bigr) \widetilde D\prime t(u).

The existence and uniqueness of the solution to (D.4) are guaranteed by the strict convexity
of the rescaled cgf \widetilde \Lambda t for each t [43, Theorem 2.3] and (4.8), in which the denominator tends
to zero as u tends to the boundary of \scrD t

\scrV . Denote now the unique solution by u\ast t (x). Applying
Lemmas C.2 and C.4 with h(t) \equiv t1/2,

\widetilde C\prime t(u) = u\kappa \theta 

2
t+\scrO 

\Bigl( 
t
3
2

\Bigr) 
and \widetilde D\prime t(u) = u+

\biggl( 
3\rho \xi u2

4
 - 1

2

\biggr) \surd 
t+\scrO (t).

We first prove that limt\downarrow 0 u
\ast 
t (x) =

\surd 
2m. If limt\downarrow 0 u

\ast 
t (x) \not =

\surd 
2m, there exist a sequence \{ tn\} \infty n=1

and (small enough) \varepsilon 0 > 0 satisfying limn\uparrow \infty tn = 0 and | u\ast tn(x)  - 
\surd 
2m| \geq \varepsilon 0 for any n \geq 1.

In section D.1 it is proved that limt\downarrow 0\scrD t
\scrV \subseteq lim supt\downarrow 0\scrD t

\scrV \subseteq \scrD \ast \scrV = [ - 
\surd 
2m,

\surd 
2m]. Also

notice that for any fixed t small enough, the map \partial u\widetilde \Lambda t : \scrD t
\scrV \rightarrow \BbbR is continuous and strictly

increasing. Hence for fixed positive \varepsilon 0 there are at most finitely many ti in the sequence such
that u\ast ti(x) \geq 

\surd 
2m+ \varepsilon 0.

Equation (D.4) implies that for fixed x > 0 the limit of t - 1/2\partial u\widetilde \Lambda t(u
\ast 
t (x)) is infinity as t

tends to zero. Taking a subsequence of \{ tn\} n\geq 1 if necessary, assume now that u\ast tn(x) \leq \surd 
2m - \varepsilon 0 for any n \geq 1. Since \widetilde Dt(

\surd 
2m - \varepsilon ) = m - 

\surd 
2m\varepsilon + \varepsilon 2/2+\scrO (

\surd 
t), then for any \varepsilon > 0

there exists N(\varepsilon ) \in \BbbN such that
\bigm| \bigm| \widetilde Dtn(

\surd 
2m  - \varepsilon )  - m +

\surd 
2m\varepsilon  - \varepsilon 2/2

\bigm| \bigm| < \surd 
2m\varepsilon /2 holds for

any n \geq N(\varepsilon ). Fix 0 < \varepsilon 1 < min(\varepsilon 0,
\surd 
2m) small enough so that m - 3

\surd 
2m\varepsilon 1/2+\varepsilon 

2
1/2 > m - \delta 0,

where \delta 0 > 0 is chosen such that, for any m  - \delta 0 < u < m, the higher-order term in (4.8)
is bounded above by one. Then for such \varepsilon 1 and for any n \geq N(\varepsilon 1) we have m  - \delta 0 <\widetilde Dtn(

\surd 
2m - \varepsilon 1) < m - 

\surd 
2m\varepsilon 1/2+\varepsilon 

2
1/2 < m. The function \partial u\widetilde \Lambda t is strictly increasing, implying

lim
n\uparrow \infty 

\partial u\widetilde \Lambda tn

\bigl( 
u\ast tn(x)

\bigr) 
\surd 
tn

\leq lim
n\uparrow \infty 

\partial u\widetilde \Lambda tn

\bigl( \surd 
2m - \varepsilon 1

\bigr) 
\surd 
tn

\leq 2\omega +1\delta 1

\varepsilon \omega 1 (
\surd 
2m - \varepsilon 1)\omega  - 1

<\infty ,

where \delta 1 := 11\{ \omega =1\} | \gamma 0| + 11\{ \omega \geq 2\} (\omega  - 1)\gamma 0, hence the contradiction. Therefore limt\downarrow 0 u
\ast 
t (x) =\surd 

2m. Analogously we can prove that limt\downarrow 0 u
\ast 
t (0) = 0.
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Case \bfitomega = 1. Assume that u\ast t (x) =
\surd 
2m + hx(t), where hx(t) = o(1). Equation (D.4)

implies that hx(t) = \scrO 
\bigl( \surd 
t
\bigr) 
, and hence all the terms of order \scrO (

\surd 
t) in the expansion of\widetilde Dt(u

\ast 
t (x)) should be included. More specifically,

\widetilde Dt (u
\ast 
t (x)) = m+

\surd 
2mhx(t) +

\surd 
2m

2
(\rho \xi m - 1)

\surd 
t+ o(

\surd 
t).

Plugging this back into (D.4) and solving at the leading order yields the desired result.

Case \bfitomega \geq 2. In this case hx(t) = \scrO (t1/(2\omega )). Equation (D.4) now reads
(D.5)\surd 
t

x

\Biggl\{ 
\kappa \theta 

\surd 
2m

2
t+

\kappa \theta 

2
thx(t)+\scrO 

\Bigl( 
t3/2
\Bigr) 
+

\Biggl( 
\delta 0 (1+o(1))\bigl( 

 - 
\surd 
2mhx(t)+\scrO 

\bigl( 
h2x+

\surd 
t
\bigr) \bigr) \omega 
\Biggr) \Bigl( \surd 

2m+hx(t)+\scrO 
\Bigl( \surd 

t
\Bigr) \Bigr) \Biggr\} 

\equiv 1.

Denote by h\ast x the leading order of the function hx. Solving (D.5) at the leading order, we

obtain \delta 0
\surd 
2mt \equiv x

\bigl( 
 - 
\surd 
2mh\ast x(t)

\bigr) \omega 
, from which h\ast x(t) =  - (2m)

1 - \omega 
2\omega (\delta 0/x)

1
\omega t

1
2\omega . Higher orders

in the expansion of u\ast t (x) can be derived similarly, simply by replacing the little-o term in (D.5)
with precise higher-order terms provided in (4.8). We omit the details.

Finally, when x = 0, write u\ast t (0) = h(t) with h(t) = o(1). As t tends to zero, M\scrV (u
\ast 
t (0)) \sim 

1, M\prime \scrV (u
\ast 
t (0)) \sim \BbbE (\scrV ), and \widetilde D\prime t (u\ast t (0)) = h(t) - 1

2

\surd 
t+\scrO 

\bigl( 
t+ h2(t)

\surd 
t
\bigr) 
. Plugging these into (D.4)

with x = 0 proves the lemma.

Lemma D.2.
1. When \gamma 0 > 0 and \omega \geq 2, as t tends to zero,

exp

\Biggl( 
 - xu\ast t (x) + \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) 
= exp

\biggl( 
 - \Lambda \ast (x)\surd 

t
+ c1(x)t

1 - \omega 
2\omega + o

\Bigl( 
t
1 - \omega 
2\omega 

\Bigr) \biggr) 

for any x \not = 0, where c1(x) := \omega \gamma 
1/\omega 
0

\bigl( | x| \surd 
2m(\omega  - 1)

\bigr) 1 - 1/\omega 
, and the function \Lambda \ast is defined

in (4.9).
2. If \gamma 0 < 0 and \omega = 1, then for any x \not = 0, as t tends to zero,

exp

\Biggl( 
 - xu\ast t (x) + \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) 
= exp

\biggl( 
 - \Lambda \ast (x)\surd 

t
+ c2(x) + \gamma 1

\biggr) \biggl( 
| x| 

| \gamma 0| 
\surd 
2mt

\biggr) | \gamma 0| 
(1 + o(1)) ,

where c2(x) :=
1
2 (\rho \xi m - 1)x - \gamma 0.

Proof of Lemma D.2.

Case \bfitomega \geq 2. Assumption 4.8 and Lemma D.1 imply

exp

\biggl( 
 - xu

\ast 
t (x)\surd 
t

\biggr) 
= exp

\biggl\{ 
 - x\surd 

t

\Bigl[ \surd 
2m+ b1(x)t

1
2\omega + o(t

1
2\omega )
\Bigr] \biggr\} 

= exp

\biggl\{ 
 - \Lambda \ast (x)\surd 

t
 - b1(x)xt

1 - \omega 
2\omega + o

\Bigl( 
t
1 - \omega 
2\omega 

\Bigr) \biggr\} 
,

exp

\Biggl( \widetilde \Lambda t(u
\ast 
t (x))\surd 
t

\Biggr) 
= exp

\Bigl( \widetilde Ct(u
\ast 
t ) + logM\scrV (\widetilde Dt(u

\ast 
t ))
\Bigr) 
= exp

\Biggl\{ 
\gamma 0\bigl( \surd 

2m| b1(x)| 
\bigr) \omega  - 1 t 1 - \omega 

2\omega + o
\Bigl( 
t
1 - \omega 
2\omega 

\Bigr) \Biggr\} 
.
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Using the expression of b1(\cdot ) provided in Lemma D.1, the coefficient of the term of order t
1 - \omega 
2\omega 

is given by

 - b1(x)x+
\gamma 0\bigl( \surd 

2m| b1| 
\bigr) \omega  - 1 =

\Bigl\{ 
[(\omega  - 1)\gamma 0]

1
\omega + \gamma 0[(\omega  - 1)\gamma 0]

1 - \omega 
\omega 

\Bigr\} \Bigl( \surd 
2m
\Bigr) 1 - \omega 

\omega | x| 1 - 
1
\omega 

= \omega \gamma 
1
\omega 
0

\biggl( 
| x| \surd 

2m(\omega  - 1)

\biggr) 1 - 1
\omega 

= c1(x).

Case \bfitomega = 1. This case follows by straightforward computations after noticing that

exp

\Biggl\{ \widetilde \Lambda t(u
\ast 
t (x))\surd 
t

\Biggr\} 
= exp

\Bigl\{ 
\scrO (t) + \gamma 0 log

\Bigl( 
m - \widetilde Dt(u

\ast 
t (x))

\Bigr) 
+ \gamma 1 + o(1)

\Bigr\} 
= e\gamma 1

\Biggl( 
| \gamma 0| 

\surd 
2mt

| x| 

\Biggr) \gamma 0

(1 + o(1)) .

For each x \not = 0 and t > 0 small enough, define the time-dependent measure \BbbQ t by

d\BbbQ t

d\BbbP 
:= exp

\Biggl( 
u\ast t (x)Xt  - \widetilde \Lambda t(u

\ast 
t (x))

t1/2

\Biggr) 
.

Lemma D.1 implies that \widetilde \Lambda t(u
\ast 
t (x)) is finite for small t. Also, by definition it is obvious that

\BbbE [d\BbbQ t/d\BbbP ] = 1; then \BbbQ t is a well-defined probability measure for each t.

Lemma D.3. For any x \not = 0, let Zt := (Xt  - x)/\vargamma (t), where \vargamma (t) := 11\{ \omega =1\} + 11\{ \omega =2\} t
1/8.

Under Assumption 4.8, as t tends to zero, the characteristic function of Zt under \BbbQ t is

\Psi t(u) := \BbbE \BbbQ t
\bigl( 
e\tti uZt

\bigr) 
=

\left\{       
e - \tti ux

\biggl( 
1 - \tti ux

| \gamma 0| 

\biggr) \gamma 0

(1 + o(1)) for \omega = 1,

exp

\biggl( 
 - u2\zeta 2(x)

2

\biggr) 
(1 + o(1)) for \omega = 2,

where \zeta (x) :=
\surd 
2
\bigl( 
2m
\gamma 2
0

\bigr) 1/8| x| 3/4.
Remark D.4. Lemma D.3 and L\'evy's convergence theorem [50, Theorem 18.1] imply that

under \BbbQ t the process (Zt)t\geq 0 converges weakly to a Gamma distribution (or a Gamma dis-
tribution mirrored to the negative real half line) if x > 0 (or x < 0) minus the constant x
when \omega = 1, and to a Gaussian distribution when \omega = 2.

Remark D.5. Intuitively, the case \omega \geq 3 should be similar to the case \omega = 2, so that
a suitable candidate for the function \vargamma can be found. However, in such a scenario more
information on the asymptotics of logM\scrV and its derivative are required in order to obtain the
suitable (nonconstant) characteristic function. These extra assumptions turn out to be very
restrictive and of little practical use, and are thus omitted.
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Proof of Lemma D.3. Assume that x > 0, with x < 0 being analogous. Function log\Psi t

can be written as

log\Psi t(u) = log\BbbE 

\Biggl[ 
exp

\Biggl( 
\tti u(Xt  - x)

\vargamma (t)
+
u\ast t (x)Xt  - \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) \Biggr] 
(D.6)

=  - \tti ux

\vargamma (t)
+ log\BbbE 

\Biggl[ 
exp

\Biggl( \bigl( 
\tti u

\surd 
t/\vargamma (t) + u\ast t (x)

\bigr) 
Xt\surd 

t

\Biggr) \Biggr] 
 - 
\widetilde \Lambda t(u

\ast 
t (x))\surd 
t

=  - \tti ux

\vargamma (t)
+

1\surd 
t

\Bigl( \widetilde \Lambda t

\Bigl( 
u\ast t (x) + \tti u

\surd 
t/\vargamma (t)

\Bigr) 
 - \widetilde \Lambda t (u

\ast 
t (x))

\Bigr) 
.

Case \bfitomega = 1. Lemma D.1 implies that

\widetilde D1(u) := \widetilde Dt

\biggl( 
u\ast t (x) +

\tti u
\surd 
t

\vargamma (t)

\biggr) 
= m+

\gamma 0
\surd 
2mt

x
+ \tti u

\surd 
2mt+ o(

\surd 
t),

\widetilde D2 := \widetilde D(u\ast t (x)) = m+
\gamma 0
\surd 
2mt

x
+ o(

\surd 
t),

\widetilde C1(u) := \widetilde C\biggl( u\ast t (x) + \tti u
\surd 
t

\vargamma (t)

\biggr) 
=

m\kappa \theta t

2
+\scrO 

\Bigl( 
t3/2
\Bigr) 
,

\widetilde C2 := \widetilde C(u\ast t (x)) = m\kappa \theta t

2
+\scrO 

\Bigl( 
t3/2
\Bigr) 
.

As a result, the lemma follows in this case from the following computations:

log\Psi t(u) =  - \tti ux+ \widetilde C1(u) - \widetilde C2 + logM\scrV 

\Bigl( \widetilde D1(u)
\Bigr) 
 - logM\scrV 

\Bigl( \widetilde D2

\Bigr) 
=  - \tti ux+ \gamma 0 log

\Biggl( 
m - \widetilde D1(u)

m - \widetilde D2

\Biggr) 
+ o(1)

=  - \tti ux+ \gamma 0 log

\biggl( 
1 - \tti ux

| \gamma 0| 
+ o(1)

\biggr) 
+ o(1).

Case \bfitomega = 2. Denote \theta := 1/8. Then 1
2  - \theta > 1

4 = 1
2\omega . Lemma D.1 implies

\widetilde D1(u) = m+
\surd 
2mb1t

1/4 + \tti u
\surd 
2mt1/2 - \theta +

\biggl( 
b21
2

+
\surd 
2mb3 +

\sqrt{} 
m

2
(m\rho \xi  - 1)

\biggr) 
t1/2 + o(

\surd 
t),

\widetilde D2 = m+
\surd 
2mb1t

1/4 +

\biggl( 
b21
2

+
\surd 
2mb3 +

\sqrt{} 
m

2
(m\rho \xi  - 1)

\biggr) 
t1/2 + o(

\surd 
t),

\widetilde C1(u) =
m\kappa \theta t

2
+
\kappa \theta 

\surd 
2mb1
2

t5/4 +\scrO 
\Bigl( 
t11/8

\Bigr) 
, and \widetilde C2 =

m\kappa \theta t

2
+
\kappa \theta 

\surd 
2mb1
2

t5/4 +\scrO 
\Bigl( 
t3/2
\Bigr) 
.
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Consequently,

\widetilde \Lambda t

\bigl( 
u\ast t + \tti ut1/2 - \theta 

\bigr) 
 - \widetilde \Lambda t (u

\ast 
t )\surd 

t
= \widetilde C1(u) - \widetilde C2 + logM\scrV (\widetilde D1(u)) - logM\scrV (\widetilde D2)

=
\gamma 0

\Bigl( \widetilde D1(u) - \widetilde D2

\Bigr) 
\Bigl( 
m - \widetilde D1(u)

\Bigr) \Bigl( 
m - \widetilde D2

\Bigr) + \gamma 0\gamma 1

\Bigl( 
log
\Bigl( 
m - \widetilde D1(u)

\Bigr) 
 - log

\Bigl( 
m - \widetilde D2

\Bigr) \Bigr) 
+ o(1)

=
\gamma 0
\bigl( 
\tti u

\surd 
2mt1/2 - \theta + o(

\surd 
t)
\bigr) 

2mb21t
1/2

\Biggl[ 
1 - \tti ut1/4 - \theta 

b1
+\scrO 

\Bigl( 
t1/4
\Bigr) \Biggr] 

+
\tti u\gamma 0\gamma 1t

1/4 - \theta 

b1
+ o(1)

=
\tti \gamma 0u\surd 
2mb21

t - \theta +
\gamma 0u

2

\surd 
2mb31

+ o(1),

and the proof follows by noticing that b1 < 0 and \gamma 0 = x
\surd 
2mb21 from Lemma D.1.

We finally prove the main theorem, when x > 0. The price of a European Call option
with strike ex is

\BbbE \BbbP \bigl( eXt  - ex
\bigr) +

= \BbbE \BbbQ t

\biggl[ \bigl( 
eXt  - ex

\bigr) + d\BbbP 
d\BbbQ t

\biggr] 
= \BbbE \BbbQ t

\Biggl[ 
exp

\Biggl( 
 - u\ast t (x)Xt + \widetilde \Lambda t(u

\ast 
t (x))

t1/2

\Biggr) \bigl( 
eXt  - ex

\bigr) +\Biggr] 

= exp

\Biggl( 
 - xu\ast t (x) + \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) 
ex\BbbE \BbbQ t

\biggl[ 
exp

\biggl( 
 - u\ast t (x)(Xt  - x)\surd 

t

\biggr) \bigl( 
eXt - x  - 1

\bigr) +\biggr] 

= exp

\Biggl( 
 - xu\ast t (x) + \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) 
ex\BbbE \BbbQ t

\biggl[ 
exp

\biggl( 
 - u\ast t (x)Zt\surd 
t/\vargamma (t)

\biggr) \Bigl( 
eZt\vargamma (t)  - 1

\Bigr) +\biggr] 
.

Case \bfitomega = 2. The proof is identical to [39, Theorem 3.1] and is therefore omitted.

Case \bfitomega = 1. The Fourier transform of the modified payoff exp
\bigl( 
 - u\ast 

t (x)Zt\surd 
t

\bigr) \bigl( 
eZt  - 1

\bigr) +
under \BbbQ t is\int \infty 

0
exp

\biggl( 
 - u
\ast 
t (x)z\surd 
t

\biggr) 
(ez  - 1) e\tti uzdz =

\Biggl[ 
e(1+\tti u - u\ast 

t (x)t
 - 1/2)z

1 + \tti u - u\ast t (x)t
 - 1/2

\Biggr] \infty 
0

 - 

\Biggl[ 
e(\tti u - u

\ast 
t (x)t

 - 1/2)z

\tti u - u\ast t (x)t
 - 1/2

\Biggr] \infty 
0

=
1

\tti u - u\ast t (x)t
 - 1/2  - 1

1 + \tti u - u\ast t (x)t
 - 1/2

=
t\bigl( 

u\ast t (x) - (1 + \tti u)
\surd 
t
\bigr) \bigl( 
u\ast t (x) - \tti u

\surd 
t
\bigr) ,

where in the second line we use the fact that limt\downarrow 0 u
\ast 
t (x)t

 - 1/2 = +\infty . Recall that the Gamma
distribution with shape | \gamma 0| and scale | x\gamma 0 | has density f\Gamma \in L2(\BbbR ) given by

(D.7) f\Gamma (y) =
y| \gamma 0|  - 1

\Gamma (| \gamma 0| )
exp

\Bigl( 
 - 
\bigm| \bigm| \bigm| \gamma 0
x

\bigm| \bigm| \bigm| y\Bigr) \Bigl( \bigm| \bigm| \bigm| \gamma 0
x

\bigm| \bigm| \bigm| \Bigr) | \gamma 0| for y > 0.
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Applying [35, Theorem 13.E] and Lemma D.3,

\BbbE \BbbQ t

\biggl[ 
exp

\biggl( 
 - u\ast t (x)Zt\surd 

t

\biggr) \bigl( 
eZt  - 1

\bigr) +\biggr] 
=

t

2\pi 

\int \infty 
 - \infty 

\Psi t(u)du\bigl( 
u\ast t (x) - (1 - \tti u)

\surd 
t
\bigr) \bigl( 
u\ast t (x) + \tti u

\surd 
t
\bigr) 

=
t

4\pi m

\int \infty 
 - \infty 

e - \tti ux
\biggl( 
1 - \tti ux

| \gamma 0| 

\biggr) \gamma 0

(1 + o(1)) du =
tf\Gamma (x)

2m
(1 + o(1)) ,(D.8)

where the last line follows from Fourier inversion. Combining Lemma D.2 and (D.8), the call
price reads

\BbbE 
\bigl( 
eXt - ex

\bigr) +
=exp

\biggl( 
 - \Lambda \ast (x)\surd 

t
+x+c2(x)+\gamma 1

\biggr) \biggl( 
x

| \gamma 0| 
\surd 
2m

\biggr) | \gamma 0| f\Gamma (x)
2m

t1 - 
| \gamma 0| 
2 (1+o(1)) for x>0.

Assuming now that x < 0, the price of a European Put option with strike ex is

\BbbE 
\bigl( 
ex  - eXt

\bigr) +
= exp

\Biggl( 
 - xu\ast t (x) + \widetilde \Lambda t(u

\ast 
t (x))\surd 

t

\Biggr) 
ex\BbbE \BbbQ t

\biggl[ 
exp

\biggl( 
 - u\ast t (x)Zt\surd 

t

\biggr) \bigl( 
1 - eZt

\bigr) +\biggr] 
,

and the Fourier transform of the modified payoff function exp
\Bigl( 
 - u\ast 

t (x)Zt\surd 
t

\Bigr) \bigl( 
1 - eZt

\bigr) +
is\int 0

 - \infty 
exp

\biggl( 
 - u
\ast 
t (x)z\surd 
t

\biggr) 
(1 - ez) e\tti uzdz =

t\bigl( 
u\ast t (x) - (1 + \tti u)

\surd 
t
\bigr) \bigl( 
u\ast t (x) - \tti u

\surd 
t
\bigr) .

Following a similar procedure, and noticing that (eXt)t\geq 0 is a \BbbP -martingale, the put-call parity
implies

\BbbE 
\bigl( 
eXt - ex

\bigr) +
=(1 - ex)+exp

\biggl( 
 - \Lambda \ast (x)\surd 

t
+x+c2(x)+\gamma 1

\biggr) \biggl( 
| x| 

| \gamma 0| 
\surd 
2m

\biggr) | \gamma 0| f\Gamma (| x| )
2m

t1 - 
| \gamma 0| 
2 (1+o(1))

for x<0.

In the standard Black--Scholes model with volatility \Sigma > 0, the short-time asymptotics of the
call option price reads [26, Corollary 3.5] \BbbE 

\bigl( 
eXt  - ex

\bigr) +
= (1  - ex)+ + 1\surd 

2\pi x2 exp
\bigl( 
 - x2

2\Sigma 2t
+

x
2

\bigr) 
(\Sigma 2t)3/2(1+\scrO (t)). Then the asymptotics of implied volatility can be derived following the

systematic approach provided in [32].

D.3. Proof of Theorem 4.16. We first prove the large deviations statement, which we
then translate into the large-maturity behavior of the implied volatility. Andersen and Piter-
barg [3, Proposition 3.1] analyzed moment explosions in the standard Heston model and
proved that for any u > 1 the quantity \BbbE (euXt) always exists as long as

(D.9) \kappa > \rho \xi u and d(u) \geq 0.

Moreover, the assumption \kappa > \rho \xi implies (see [25]) that (D.9) holds for any u \in [u - , u+], so
that \BbbE (euXt) is well defined for u \in [u - , u+] and any (large) t in the standard Heston model.
The tower property then yields

M(t, u) = \BbbE 
\bigl[ 
\BbbE (euXt | \scrV )

\bigr] 
= C(t, u) (M\scrV \circ D(t, u)) .
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Consequently, for any large t, M(t, u) is well defined for u \in \scrS := [u - , u+] \cap \scrS \scrV , where the
set \scrS \scrV is defined by

\scrS \scrV :=
\bigcup 
t>0

\bigcap 
s\geq t

\{ u : D(s, u) < m\} .

Using the expressions of functions C and D in (A.1), the rescaled cgf of the process (t - 1Xt)t\geq 0
reads

\Xi (t, u) :=
1

t
log\BbbE 

\bigl( 
euXt

\bigr) 
=

1

t
C(t, u) +

1

t
logM\scrV (D(t, u))

=
\kappa \theta (\kappa  - \rho \xi u - d(u))

\xi 2
 - 2\kappa \theta 

\xi 2t
log

\Biggl( 
1 - g(u)e - d(u)t

1 - g(u)

\Biggr) 
(D.10)

+
1

t
logM\scrV 

\Biggl( 
\kappa  - \rho \xi u - d(u)

\xi 2
1 - e - d(u)t

1 - g(u)e - d(u)t

\Biggr) 
.

For any u \in (u - , u+), since the quantity d(u) is strictly positive, then
(D.11)

lim
t\uparrow \infty 

1

t
log

\Biggl( 
1 - g(u)e - d(u)t

1 - g(u)

\Biggr) 
= 0 and lim

t\uparrow \infty 

\kappa  - \rho \xi u - d(u)

\xi 2
1 - e - d(u)t

1 - g(u)e - d(u)t
=
\kappa  - \rho \xi u - d(u)

\xi 2
.

Since u \mapsto \rightarrow \Xi (t, u) is continuous for each t > 0, L'H\^opital's rule implies that limt\uparrow \infty \Xi (t, u\pm ) =
\kappa \theta (\kappa  - \rho \xi u\pm )/\xi 

2.

Case m = \infty . Obviously \scrS \scrV = \BbbR , implying that \scrS = [u - , u+]. Equation (D.10) shows
that

\Xi (u) := lim
t\uparrow \infty 

\Xi (t, u) \equiv \frakL (u) for any u \in \BbbR ,

with \frakL provided in (4.11). In [25, Theorem 2.1], it is proved that the limiting function \Xi and
its effective domain \scrS satisfy all the assumptions of the G\"artner--Ellis theorem (Theorem B.2),
and hence the large deviations principle for the sequence (t - 1Xt)t\geq 0 follows.

Case m < \infty . Equation (D.11) implies that\biggl\{ 
u :

\kappa  - \rho \xi u - d(u)

\xi 2
< m

\biggr\} 
\subset \scrS \scrV \subset 

\biggl\{ 
u :

\kappa  - \rho \xi u - d(u)

\xi 2
\leq m

\biggr\} 
.

As a result, the essential smoothness of function \Xi is guaranteed if

[u - , u+] \subset 
\biggl\{ 
u :

\kappa  - \rho \xi u - d(u)

\xi 2
< m

\biggr\} 
=
\Bigl\{ 
u : \kappa  - \rho \xi u < \xi 2m+

\sqrt{} 
(\kappa  - \rho \xi u)2 + \xi 2u(1 - u)

\Bigr\} 
.

Since \kappa  - \rho \xi u > 0 holds for any u \in [u - , u+],
(D.12)

\kappa  - \rho \xi u<\xi 2m+
\sqrt{} 
(\kappa  - \rho \xi u)2+\xi 2u(1 - u) \Leftarrow \Rightarrow 0<u(1 - u)+\xi 2m2+2m

\sqrt{} 
(\kappa  - \rho \xi u)2+\xi 2u(1 - u)

\Leftarrow \Rightarrow u(u - 1)

\xi 2
<m2+

2m

\xi 2

\sqrt{} 
(\kappa  - \rho \xi u)2+\xi 2u(1 - u).



THE RANDOMIZED HESTON MODEL 127

Since [0, 1] \subset (u - , u+), condition (D.12) holds for any u \in [0, 1]. Whenever u > 1 or u < 0,
as functions of u, the left-hand side is strictly increasing while the right-hand side is strictly
decreasing. Therefore, (D.12) holds for any u \in [u - , u+] if and only if max\{ u - (u -  - 1), u+(u+ - 
1)\} < m2\xi 2. Consequently, Assumption 4.14 ensures that \scrS = [u - , u+], and the proof follows
from the G\"artner--Ellis theorem (Theorem B.2).

We now prove the asymptotic behavior for the implied volatility. We claim that in a
randomized Heston setting the European option price has the following limiting behavior:

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
\BbbE 
\bigl( 
eXt  - ext

\bigr) +\Bigr) 
= \frakL \ast (x) - x for x \geq \theta 

2
,

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
1 - \BbbE 

\bigl( 
eXt  - ext

\bigr) +\Bigr) 
= \frakL \ast (x) - x for  - \theta 

2
\leq x \leq \theta 

2
,

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
\BbbE 
\bigl( 
ext  - eXt

\bigr) +\Bigr) 
= \frakL \ast (x) - x for x \leq  - \theta 

2
.

The proof is covered in detail in [40, section 5.2.2], and we therefore highlight the main ideas
for completeness. From Theorem 4.16, define a time-dependent probability measure \BbbQ t:

d\BbbQ t

d\BbbP 
:= exp \{ u\ast (x)Xt  - \Xi (t, u\ast (x)) t\} ,

where u\ast (x) is the solution to the equation x = \Xi \prime (u). The option price is then expressed
as the expectation under \BbbQ t of a modified payoff and can be computed by (inverse) Fourier
transform with the main contribution equal to exp \{  - (\frakL \ast (x) - x) t\} . It is also known (see [24,
Corollary 2.12], for instance) that in the Black--Scholes model with volatility \Sigma the asymptotics
of European option prices with strike ext are given by

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
\BbbE 
\bigl( 
eXt  - ext

\bigr) +\Bigr) 
= \Lambda \ast \mathrm{B}\mathrm{S} (x,\Sigma ) - x for x \geq \Sigma 2

2
,

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
1 - \BbbE 

\bigl( 
eXt  - ext

\bigr) +\Bigr) 
= \Lambda \ast \mathrm{B}\mathrm{S} (x,\Sigma ) - x for  - \Sigma 2

2
\leq x \leq \Sigma 2

2
,

 - lim
t\uparrow \infty 

1

t
log
\Bigl( 
\BbbE 
\bigl( 
ext  - eXt

\bigr) +\Bigr) 
= \Lambda \ast \mathrm{B}\mathrm{S} (x,\Sigma ) - x for x \leq  - \Sigma 2

2
,

where \Lambda \ast \mathrm{B}\mathrm{S} (x,\Sigma ) :=
(x+\Sigma 2/2)

2

2\Sigma 2 . Then the leading order of the large-time implied variance is
obtained by solving

\frakL \ast (x) - x = \Lambda \ast \mathrm{B}\mathrm{S}(x,\Sigma ) - x =

\bigl( 
 - x+\Sigma 2/2

\bigr) 2
2\Sigma 2

.

We omit the details of the proof, which can be found in [25, 27].

REFERENCES

[1] H. Albrecher, P. Mayer, W. Schoutens, and J. Tistaert, The little Heston trap, Wilmott Magazine,
January 2007, pp. 83--92.



128 ANTOINE JACQUIER AND FANGWEI SHI

[2] E. Al\`os, J. A. Le\'on, and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion
models with stochastic volatility, Finance Stoch., 11 (2007), pp. 571--589.

[3] L. Andersen and V. Piterbarg, Moment explosions in stochastic volatility models, Finance Stoch., 11
(2007), pp. 29--50.

[4] L. Andersen, Efficient Simulation of the Heston Stochastic Volatility Model, preprint, http://ssrn.com/
abstract=946405, 2007.

[5] G. Bakshi, C. Cao, and Z. Chen, Empirical performance of alternative option pricing models, J.
Finance, 52 (1997), pp. 2003--2049.

[6] D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options,
Rev. Financ. Stud., 9 (1996), pp. 69--107.

[7] C. Bayer, P. Friz, and J. Gatheral, Pricing under rough volatility, Quant. Finance, 16 (2016),
pp. 887--904.

[8] S. Benaim and P. Friz, Smile asymptotics 2: Models with known moment generating function, J. Appl.
Probab., 45 (2008), pp. 16--32.

[9] S. Benaim and P. Friz, Regular variation and smile asymptotics, Math. Finance, 19 (2009), pp. 1--12.
[10] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press,

Cambridge, UK, 1989.
[11] D. Brigo, The General Mixture-Diffusion SDE and Its Relationship with an Uncertain-Volatility Option

Model with Volatility-Asset Decorrelation, preprint, https://arxiv.org/abs/0812.4052, 2008.
[12] D. Brigo, F. Mercurio, and F. Rapisarda, Lognormal-mixture dynamics and calibration to market

volatility smiles, Int. J. Theoret. Appl. Finance, 5 (2002), pp. 427--446.
[13] F. Caravenna and J. Corbetta, General smile asymptotics with bounded maturity, SIAM Financial

Math., 7 (2016), pp. 720--759, https://doi.org/10.1137/15M1031102.
[14] P. Carr and D. B. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance, 2

(1999), pp. 61--73.
[15] J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure of interest rates, Econo-

metrica, 53 (1985), pp. 385--407.
[16] H. Cram\'er, Sur un nouveau th\'eor\`eme-limite de la th\'eorie des probabilit\'es, Actualit\'es Scientifiques In-

dust., 736 (1938), pp. 5--23.
[17] S. De Marco and C. Martini, The term structure of implied volatility in symmetric models with

applications to Heston, Int. J. Theoret. Appl. Finance, 15 (2012), 1250026.
[18] A. Dembo and O. Zeitouni, Large deviations via parameter dependent change of measure and an

application to the lower tail of Gaussian processes, in Seminar on Stochastic Analysis, Random Fields
and Applications (Ascona, 1993), Progress Probab. 36, Birkh\"auser, Basel, Switzerland, 1995, pp. 111--
121.

[19] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin,
Heidelberg, 1998.

[20] D. Dufresne, The Integrated Square-Root Process, Research Paper 90, University of Melbourne, Mel-
bourne, Australia, 2001.

[21] O. El Euch and M. Rosenbaum, Perfect hedging in rough Heston models, Ann. Appl. Probab., 28
(2018), pp. 3813--3856.

[22] O. El Euch and M. Rosenbaum, The characteristic function of rough Heston models, Math. Finance,
29 (2019), pp. 3--38.

[23] O. El Euch, M. Fukasawa, and M. Rosenbaum, The microstructural foundations of leverage effect
and rough volatility, Finance Stoch., 22 (2018), pp. 241--280.

[24] M. Forde and A. Jacquier, Small-time asymptotics for implied volatility under the Heston model, Int.
J. Theor. Appl. Finance, 12 (2009), pp. 861--876.

[25] M. Forde and A. Jacquier, The large-maturity smile for the Heston model, Finance Stoch., 15 (2011),
pp. 755--780.

[26] M. Forde, A. Jacquier, and R. Lee, The small-time smile and term structure of implied volatility
under the Heston model, SIAM J. Financial Math., 3 (2012), pp. 690--708, https://doi.org/10.1137/
110830241.

[27] M. Forde, A. Jacquier, and A. Mijatovi\'c, Asymptotic formulae for implied volatility under the
Heston model, Proc. Roy. Soc. A, 466 (2010), pp. 3593--3620.

http://ssrn.com/abstract=946405
http://ssrn.com/abstract=946405
https://arxiv.org/abs/0812.4052
https://doi.org/10.1137/15M1031102
https://doi.org/10.1137/110830241
https://doi.org/10.1137/110830241


THE RANDOMIZED HESTON MODEL 129

[28] M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM J. Financial Math.,
8 (2017), pp. 114--145, https://doi.org/10.1137/15M1009330.

[29] J.-P. Fouque and B. Ren, Approximation for option prices under uncertain volatility, SIAM Financial
Math., 5 (2014), pp. 360--383, https://doi.org/10.1137/130908385.

[30] P. Friz, S. Gerhold, and A. Pinter, Option pricing in the moderate deviations regime, Math. Finance,
28 (2018), pp. 962--988.

[31] M. Fukasawa, Short-time at-the-money skew and rough fractional volatility, Quant. Finance, 17 (2017),
pp. 189--198.

[32] K. Gao and R. Lee, Asymptotics of implied volatility to arbitrary order, Finance Stoch., 18 (2014),
pp. 342--392.

[33] J. Gatheral, The Volatility Surface: A Practitioner's Guide, Wiley, New York, 2006.
[34] J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough, Quant. Finance, 18 (2018), pp. 933--

949.
[35] R. Goldberg, Fourier Transforms, Cambridge University Press, Cambridge, UK, 1965.
[36] H. Guennoun, A. Jacquier, P. Roome, and F. Shi, Asymptotic behavior of the fractional Heston

model, SIAM J. Financial Math., 9 (2018), pp. 1017--1045, https://doi.org/10.1137/17M1142892.
[37] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and

currency options, Rev. Financ. Stud., 6 (1993), pp. 327--343.
[38] A. Jacquier, M. Keller-Ressel, and A. Mijatovi\'c, Large deviations and stochastic volatility with

jumps: asymptotic implied volatility for affine models, Stochastics, 85 (2013), pp. 321--345.
[39] A. Jacquier and P. Roome, The small-maturity Heston forward smile, SIAM Financial Math., 4 (2013),

pp. 831--856, https://doi.org/10.1137/13091703X.
[40] A. Jacquier and P. Roome, Asymptotics of forward implied volatility, SIAM Financial Math., 6 (2015),

pp. 307--351, https://doi.org/10.1137/140960712.
[41] A. Jacquier and P. Roome, Black-Scholes in a CEV random environment, Math. Financial Economics,

12 (2018), pp. 445--474.
[42] A. Janick, T. Kluge, R. Weron, and U. Wystup, FX smile in the Heston model, in Statistical Tools

for Finance and Insurance, Springer, Heidelberg, 2010, pp. 133--162.
[43] B. Jorgensen, The Theory of Dispersion Models, Chapman and Hall, London, 1997.
[44] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.
[45] R. Lee, The moment formula for implied volatility at extreme strikes, Math. Finance, 14 (2004), pp. 469--

480.
[46] S. Mechkov, ``Hot-start"" initialization of the Heston model, Risk, 2016.
[47] A. Mijatovi\'c and P. Tankov, A new look at short-term implied volatility in asset price models with

jumps, Math. Finance, 26 (2016), pp. 149--183.
[48] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1999.
[49] P. Tankov, Pricing and hedging in exponential L\'evy models: Review of recent results, in Paris-Princeton

Lectures on Mathematical Finance, Springer, Berlin, 2010, pp. 319--359.
[50] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge, UK, 1991.
[51] Zeliade Systems, Heston 2010, Zeliade Systems White Paper, http://www.zeliade.com/whitepapers/

zwp-0004.pdf, 2011.

https://doi.org/10.1137/15M1009330
https://doi.org/10.1137/130908385
https://doi.org/10.1137/17M1142892
https://doi.org/10.1137/13091703X
https://doi.org/10.1137/140960712
http://www.zeliade.com/whitepapers/zwp-0004.pdf
http://www.zeliade.com/whitepapers/zwp-0004.pdf

	Introduction
	Model and main properties
	Practical appetizer and relation to model uncertainty
	The bounded support case: A practical appetizer

	Asymptotic behavior of the randomized model
	Preliminaries
	The thin-tail case
	The fat-tail case
	Large-time asymptotics
	At-the-money case

	A dynamic pricing framework
	The bounded-support case
	The thin-tail case (Assumption 4.4)
	The fat-tail case

	Examples and numerics
	Uniform randomization
	Noncentral -squared distribution
	Folded Gaussian distribution
	Starting from the ergodic distribution
	Other distributions
	Numerics
	USD/JPY FX options

	Appendix A. Notation from the Heston model
	Appendix B. Reminder on large deviations and regular variations
	Large deviations and the Gärtner–Ellis theorem
	Regular variations

	Appendix C. Preliminary computations
	Components of the mgf

	Appendix D. Proofs of the main results
	Proof of Proposition 4.1
	Proof of Theorem 4.11
	Proof of Theorem 4.16


